东南大学信号与系统试题含答案

合集下载

信号与系统试卷及参考答案

信号与系统试卷及参考答案

试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。

(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。

(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。

(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。

2008年东南大学信号与系统考研试题

2008年东南大学信号与系统考研试题

共7页第 1 页共 7 页第 2 页试题编号: 920 试题名称:专业基础综合12) 下列说法中,()是正确的寄存器一般是边沿触发的,仅在时钟的边沿改变状态;锁存器一般指电平触发的 (a)触发器,特点是当控制端有效的时候,输入端的变化会随时传递到输出端同步计数器各触发器的CP脉冲相同,异步计数器的各CP脉冲不同,异步计数 (b)器的速度可能比同步计数器速度快异或门当反相器使用时,把多余输入端接低电平(c)组合逻辑电路如果产生了可以采用增加冗余项的方法消除险象,这种险象属于功 (d)能险象13)对于半导体存储器,下列叙述是( )正确的(a)随机存取的存储器,使用的时候需要进行刷新和再生半导体存储器的数据读写是依靠地址译码器选中相应的存储单元,对单元进行读 (b)写的,由于是数字信号,因此从存储矩阵中获取的信号可以不经处理,送到相应的数字逻辑电路中(c)随机存取的存储器断电后数据丢失;只读存储器断电后数据不会丢失,通电后又可以继续使用可编程的只读存储器使用电进行编程,用紫外线可以擦除原来的信息(d)14)以下关于时序电路和组合电路,同步电路和异步电路的解释, ( )是正确的。

时序电路是依靠触发信号触发的电路,组合电路是不依靠触发信号触发的电路, (a)同步电路触发信号由同一个时钟驱动,异步电路触发信号使用不同时钟驱动时序电路是触发信号由同一个时钟驱动的电路,组合电路是不依靠触发信号触发 (b)的电路,同步电路是依靠触发信号触发的电路;异步电路触发信号使用不同时钟驱动(c) 时序电路是不依靠触发信号触发的电路,组合电路是依靠触发信号触发的电路,同步电路的触发信号由同一个时钟驱动,异步电路的触发信号使用不同时钟驱动(d)时序电路是依靠触发信号触发的电路,组合电路是触发信号使用不同时钟驱动的电路,同步电路是触发信号由同一个时钟驱动;异步电路是依靠时钟触发的电路共7页第 3 页共 7 页第 4 页7图(共7页第 5 页第第7)题图(c) 74190功能表和逻辑符号分)试求出的补数的最简“与或非”表达式,用的示意图如图所示,为了画图简便,输入变量及控制端可以在图的上端表明即可,不使用的线可以不画)输入PAL16L8的示意图共7页第 6 页第10)题 图74194双向移位寄存器逻辑符号简图和功能表如下图所示。

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

东 南 大 学 考 试 卷11-12-A答案

东 南 大 学 考 试 卷11-12-A答案

东 南 大 学 考 试 卷答案( A 卷)课程名称 信号与线性系统考试学期 11-12-3 得分适用专业信息科学与工程学院、吴健雄学院、理科班考试形式闭卷考试时间长度 120分钟一、简单计算或论述证明题(共7 题,共计56分)1、已知某LTI 连续因果系统的特征多项式为5432()2222D s s s s s s =+++++,试分析其特征根在s 左半开平面、虚轴以及s 右半开平面上的个数;并判断该系统的稳定性。

解:S 5 1 2 2S 4 1 2 2 S 3 )(0ϕ )(0ϕS 2 1 2 S 1 -4 0 S 0 2 0坐标轴左半平面2个根,右半平面3个根,所以该系统不稳定。

2、求序列1(){1,2,0,2,1;2,1,0,1,2}f k k =--=--和2(){1,2,1;1,0,1}f k k =-=-的卷积和。

解:-1 -2 0 2 1 -1 2 1 -1 -2 0 2 1 -2 -4 0 4 2 1 2 0 -2 -11 0 -5 -4 3 4 13、已知LTI 离散因果系统11(2)(1)()(1)2()66y k y k y k e k e k +++-=++,求该系统在激励()2,ke k k =-∞<<+∞作用下的输出响应。

解:61262)(-++=z z z z H ,2524)(2==z z H ,+∞<<-∞=k k y kzs ,22524)( 4、已知某系统函数为()9.5(0.5)(10)H z zz z =--求在以下两种收敛域:10z >和0.510z <<情况下系统的单位样值响应,并说明这两种情况下系统的稳定性与因果性。

解:10105.0105.0)(,102121---=-+-=>z z z k z k z H z ,)()105.0()(k k h kk ε-= 由此判断该系统不稳定,为因果系统。

东南大学《信号与系统、数字电路》真题2008年

东南大学《信号与系统、数字电路》真题2008年

东南大学《信号与系统、数字电路》真题2008年(总分:60.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:5,分数:15.00)1.对于一个逻辑函数表达式,______是唯一的。

∙ A.最简“与或”表达式∙ B.两级“与非”表达式∙ C.异或构成的表达式∙ D.最大项构成的表达式(分数:3.00)A.B.C.D. √解析:2.下列说法中,______是正确的。

∙ A.寄存器一般是边沿触发的,仅在时钟的边沿改变状态;锁存器一般指电平触发的触发器,特点是当控制端有效时,输入端的变化会随时传递到输出端∙ B.同步计数器各触发器的CP脉冲相同,异步计数器的各CP脉冲不同,异步计数器的速度可能比同步计数器速度快∙ C.异或门当反相器使用时,把多余输入端接低电平∙ D.组合逻辑电路如果产生了可以采用增加冗余项方法消除的险象,这种险象属于功能险象(分数:3.00)A. √B.C.D.解析:3.对于半导体存储器,下列叙述______是正确的。

∙ A.随机存取的存储器,使用时需要进行刷新和再生∙ B.半导体存储器的数据读/写是依靠地址译码器选中相应的存储单元,对单元进行读/写的,由于是数字信号,因此从存储矩阵中获取的信号可以不经处理,送到相应的数字逻辑电路中∙ C.随机存取的存储器断电后数据丢失;只读存储器断电后数据不会丢失,通电后又可以继续使用∙ D.可编程的只读存储器使用电进行编程,用紫外线可以擦除原来的信息(分数:3.00)A.B.C. √D.解析:4.以下关于时序电路和组合电路、同步电路和异步电路的解释,______是正确的。

∙ A.时序电路是依靠触发信号触发的电路,组合电路不是依靠触发信号触发的电路,同步电路触发信号由同一个时钟驱动,异步电路触发信号使用不同时钟驱动∙ B.时序电路是触发信号由同一个时钟驱动的电路,组合电路不是依靠触发信号触发的电路,同步电路是依靠触发信号触发的电路;异步电路触发信号使用不同时钟驱动∙ C.时序电路不是依靠触发信号触发的电路,组合电路是依靠触发信号触发的电路,同步电路的触发信号由同一个时钟驱动,异步电路的触发信号使用不同时钟驱动∙ D.时序电路是依靠触发信号触发的电路,组合电路是触发信号使用不同时钟驱动的电路,同步电路是触发信号由同一个时钟驱动;异步电路是依靠时钟触发的电路(分数:3.00)A. √B.C.D.解析:5.关于数模与模数转换,下列概念正确的是______。

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统_东南大学中国大学mooc课后章节答案期末考试题库2023年

信号与系统_东南大学中国大学mooc课后章节答案期末考试题库2023年

信号与系统_东南大学中国大学mooc课后章节答案期末考试题库2023年
1.两个线性时不变系统的级联构成的系统一定还是线性时不变的。

参考答案:
正确
2.(判断)卷积的方法只适用于线性时不变系统的分析 ( ) 。

参考答案:
错误
3.关于因果系统,下列说法不正确的是()
参考答案:
H(s)的零点在左半平面所对应的响应函数为衰减的。

即当t→∞时,响应均
趋于0;
4.关于抑制载波的调制与解调说法错误的是:()
参考答案:
抑制载波的调制与解调中的同步是指调制信号与已调信号之间是同步关系。

5.系统的冲激响应的函数形式与()
参考答案:
系统函数H(s)的极点位置有关
6.两个周期信号的和一定是周期信号。

参考答案:
错误
7.为使因果LTI连续系统是稳定的,要求其系统函数H(s)的极零点中()
参考答案:
全部极点都在左半平面。

《信号与系统》考研试题解答第一章信号与系统

《信号与系统》考研试题解答第一章信号与系统

第一章信号与系统一、单项选择题X1.1 (北京航空航天大学 2000 年考研题)试确定下列信号的周期:( 1) x(t )3cos 4t3;(A ) 2( B )( C )2(D )2( 2) x(k ) 2 cosk sin8k 2 cosk642(A ) 8 ( B ) 16 ( C )2 (D ) 4X1.2 (东南大学 2000 年考研题)下列信号中属于功率信号的是。

(A ) cost (t)(B ) e t (t)(C ) te t (t )t( D ) eX1.3 (北京航空航天大学 2000 年考研题)设 f(t)=0 ,t<3,试确定下列信号为 0 的 t 值:(1) f(1- t)+ f(2- t);(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1( D ) t>-2(2) f(1- t) f(2- t) ;(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1 ( D ) t>-2(3) ft ;3(A ) t>3 (B ) t=0 (C ) t<9 (D ) t=3X1.4 (浙江大学 2002 年考研题)下列表达式中正确的是 。

(A ) ( 2t )(t)( B ) ( 2t)1(t)2(C ) ( 2t )2 (t )( D )2 (t)1(2 )2X1.5 (哈尔滨工业大学 2002 年考研题)某连续时间系统的输入f( t) 和输出 y(t)满足y(t) f (t ) f (t 1) ,则该系统为。

(A )因果、时变、非线性 ( B )非因果、时不变、非线性 (C )非因果、时变、线性( D )因果、时不变、非线性X1.6 (东南大学 2001 年考研题)微分方程 y (t) 3y (t) 2 y(t) f (t 10) 所描述的系统为。

(A)时不变因果系统(B)时不变非因果系统(C)时变因果系统(D)时变非因果系统X1.7 (浙江大学2003 年考研题)y(k) f ( k 1) 所描述的系统不是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东 南 大 学 考 试 卷(A 、B 卷)(答案附后)课程名称 信号与线性系统 考试学期 03-04-3得分适用专业 四系,十一系考试形式闭卷考试时间长度 120分钟一、简单计算题(每题8分):1、 已知某连续信号()f t 的傅里叶变换为21()23F j j ωωω=-+,按照取样间隔1T =对其进行取样得到离散时间序列()f k ,序列()f k 的Z 变换。

2、 求序列{}10()1,2,1k f k ==和2()1cos ()2f k k k πε⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的卷积和。

3、 已知某双边序列的Z 变换为21()1092F z z z =++,求该序列的时域表达式()f k 。

4、 已知某连续系统的特征多项式为:269111063)(234567+++++++=s s s s s s s s D试判断该系统的稳定情况,并指出系统含有负实部、零实部和正实部的根各有几个?5、 已知某连续时间系统的系统函数为:3232642()21s s s H s s s s +++=+++。

试给出该系统的状态方程。

6、 求出下面框图所示离散时间系统的系统函数。

1-z1-z∑∑2-0.3)(k e )(k r -0.2二、(12分)已知系统框图如图(a ),输入信号e(t)的时域波形如图(b ),子系统h(t)的冲激响应波形如图(c)所示,信号()f t 的频谱为()jn n F j eπωω+∞=-∞=∑。

e(t)图(a)h(t)y(t))(t fe(t)244t 图(b)h(t)t图(c)011试:1) 分别画出)(t f 的频谱图和时域波形;2) 求输出响应y(t)并画出时域波形。

3) 子系统h(t)是否是物理可实现的?为什么?请叙述理由;三(12分)、已知电路如下图所示,激励信号为)()(t t e ε=,在t=0和t=1时测得系统的输出为1)0(=y ,5.0)1(-=e y 。

分别求系统的零输入响应、零状态响应、全响应、以及自然响应和受迫响应。

e(t)L=2HC=1FR1=2ΩR2=1Ω+y(t)_四(12分)、已知某离散系统的差分方程为)1()()1(3)2(2+=++-+k e k y k y k y其初始状态为6)2(,2)1(-=--=-zi zi y y ,激励)()(k k e ε=; 求:1) 零输入响应)(k y zi 、零状态响应)(k y zs 及全响应)(k y ;2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。

五(12分)、已知某离散时间系统的单位函数响应()cos ()2k h k k πε⎛⎫= ⎪⎝⎭。

H z;1)求其系统函数()2)粗略绘出该系统的幅频特性;3)画出该系统的框图。

六、(10分)请叙述并证明z变换的卷积定理。

答案1、 已知某连续信号()f t 的傅里叶变换为21()23F j j ωωω=-+,按照取样间隔1T =对其进行取样得到离散时间序列()f k ,序列()f k 的Z 变换。

解法一:f(t)的拉普拉斯变换为2111)2)(1(1321)(2+-+=++=++=s s s s s s s F ,2111)(Re )(--===---=-=⎥⎦⎤⎢⎣⎡-=∑∑e z z e z z e z z K e z z s F s z F ni T s i s s ni sT i i解法二:f(t)=L -1{F(jw)}=(e -t - e -2t )ε(t) f(k)= (e -k - e -2k )ε(k)=)())()((21k e e k k ε---F(z)=Z[f(k)]= 21-----e z zez z 2、 求序列{}10()1,2,1k f k ==和2()1cos ()2f k k k πε⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的卷积和。

解:f 1(k)={1,2,1}=δ(k)+2δ(k -1)+ δ(k -2)f 1(k)* f 2(k)= f 2(k)+ 2f 2(k -1)+ f 2(k -2) 3、已知某双边序列的Z 变换为21()1092F z z z =++,求该序列的时域表达式()f k 。

解:5.014.01)(+-+=z z z F ,两个单阶极点为-0.4、-0.5当收敛域为|z|>0.5时,f(k)=(( -0.4)k -1-( -0.5)k -1)ε(k -1)当收敛域为0.4<|z|<0.5时,f(k)= ( -0.4)k -1ε(k -1)+( -0.5)k -1ε( -k) 当收敛域为|z|<0.4时,f(k)= - ( -0.4)k -1ε(-k)+( -0.5)k -1ε( -k)点评:此题应对收敛域分别讨论,很多学生只写出第一步答案,即只考虑单边序列。

4、已知某连续系统的特征多项式为:269111063)(234567+++++++=s s s s s s s s D试判断该系统的稳定情况,并指出系统含有负实部、零实部和正实部的根各有几个?解 构作罗斯-霍维茨阵列611617s 291036s3168385s 2314s 342(00)32s s s ++此时出现全零行,有辅助多项式34646,4,6ss +求导可得以代替全零行系数。

210322232s s s由罗斯-霍维茨数列可见,元素符号并不改变,说明s 右半平面无极点。

再由42320s s ++=令2s x =则有2320x x ++=可解得 1,2x =--相应地有1,21s =-=±j3,42s =-=±j 2这说明该系统的系统函数在虚轴上有四个单极点分别为土j 及土j 2,系统为临界稳定。

所以系统含有三个负实部的根、四个零实部的根,无正实部的根。

点评:此题得分率很低。

很多学生对全零行不知如何处理。

5、已知某连续时间系统的系统函数为:3232642()21s s s H s s s s +++=+++。

试给出该系统的状态方程。

解:系统的微分方程为)(2)(4)(6)()()()(2)(t e t e t e t e t y t y t y t y +'+''+'''=+'+''+'''取原来的辅助变量q 及其各阶导数为状态变量并分别表示为1x q =、2'x q =、3''x q =、''''3x q =,于是,由此微分方程立即可以写出如下方程状态方程:⎪⎩⎪⎨⎧+---===)(2'''32133221t e x x x x x x x x输出方程:)(436423213213t e x x x x x x x y +++=+++'=或者写成矩阵形式,上式即为e x x x x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100211010100'''321321Be Ax``[])(431321t e x x x y +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=De Cx6、求出下面框图所示离散时间系统的系统函数。

1-z1-z∑∑2-0.3)(k e )(k r -0.2解:06.05.03.22.01)3.021()(2+++=+++=z z z z z z H二、(12分)已知系统框图如图(a ),输入信号e(t)的时域波形如图(b ),子系统h(t)的冲激响应波形如图(c)所示,信号()f t 的频谱为()jn n F j eπωω+∞=-∞=∑。

e(t)图(a)h(t)y(t))(t fe(t)244t 图(b)h(t)t图(c)011试:1) 分别画出)(t f 的频谱图和时域波形;2) 求输出响应y(t)并画出时域波形。

3) 子系统h(t)是否是物理可实现的?为什么?请叙述理由;解:1)根据傅立叶变换的性质得:∑∞-∞=-=n n t t f )2()(δ2-4-24tf(t)(1)∑∞-∞=-=n n j F )()(πωδπωwF(jw)ππ2π-π2)y(t)=[e(t)•f(t)]*h(t)=[δ(t+2)+2δ(t)+ δ(t -2)] *h(t)= h(t+2)+2h(t)+ h(t -2)2-212-13t y(t)3)因h(t)是有始因果信号,所以子系统h(t)是物理可实现的。

点评:此题做对的非常少,大多数写不出f(t)的表达方式。

三(12分)、已知电路如下图所示,激励信号为)()(t t e ε=,在t=0和t=1时测得系统的输出为1)0(=y ,5.0)1(-=e y 。

分别求系统的零输入响应、零状态响应、全响应、以及自然响应和受迫响应。

e(t)L=2HC=1FR1=2ΩR2=1Ω+y(t)_解:1)电路满足KVL :得)(5.0)(5.0)(5.1)(t e t y t y t y '=+'+''2)系统函数为:5.05.15.0)(2++=s s ss H ,特征根为λ1=-0.5,λ2=-1 Y zs (s)=H(s)E(s)= s s s s 15.05.15.02•++=115.01+-+s s零状态响应:y zs (t)=(e -0.5t -e -t )ε(t) y zs (0)=0,y zs (1)=(e -0.5 -e -1);y zi (0)= y(0) -y zs (0)=1,y zi (1)= y(1) -y zs (1)= -e -1 ;y zi (t)=(C 1e -0.5t +C 2e -t )ε(t),得C 1=0,C 2=1 零输入响应:y zi (t)= e -t ε(t); 全响应:y (t)= e -0.5t ε(t)点评:此题中很多学生把全响应初始条件当成零输入响应的初始值来解答,失去少部分分数。

四(12分)、已知某离散系统的差分方程为)1()()1(3)2(2+=++-+k e k y k y k y其初始状态为6)2(,2)1(-=--=-zi zi y y ,激励)()(k k e ε=; 求:1) 零输入响应)(k y zi 、零状态响应)(k y zs 及全响应)(k y ;2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。

解:132)(2+-=z z zz H ,特征根为ν1=0.5,ν2=1 1) y zi (k)=(C 10.5k +C 2)ε(k); 代入初始条件得C 1=-2,C 2=2 零输入响应:y zi (k)= (2-20.5k )ε(k)Y zs (z)=H(z)E(z)= 22)1(15.01132-+---=-•+-z z z z z z z z z z z =115.01+-+s s零状态响应:y zs (k)= (0.5k +k -1)ε(k) y zs (0)=0,y zs (1)=(e -0.5 -e -1); 全响应:y (k)= (1+k -0.5k )ε(k) 2)自由响应:(1 -0.5k )ε(k)受迫响应:k ε(k),严格地说是混合响应。

相关文档
最新文档