湖南大学电子线路实验报告
电子线路实习报告(精选4篇)

电子线路实习报告(精选4篇)电子线路篇1:通过一个星期的电工实习,使我对电器元件及电路的连接与调试有一定的感性和理性认识,打好了日后学习电工技术课的基础。
同时实习使我获得了自动控制电路的设计与实际连接技能,培养了我理论联系实际的能力,提高了我分析问题和解决问题的能力,增强了独立工作的能力。
最主要的是培养了我与其他同学的团队合作、共同探讨、共同前进的精神。
具体如下:1.熟悉手工常用工具的使用及其维护与修理。
2.基本掌握电路的连接方法,能够独立的完成简单电路的连接。
3.熟悉控制电路板设计的步骤和方法及工艺流程,能够根据电路原理图、电器元器件实物,设计并制作控制电路板。
4.熟悉常用电器元件的类别、型号、规格、性能及其使用范围。
5.能够正确识别和选用常用的电器元件,并且能够熟练使用数字万用表。
6.了解电器元件的连接、调试与维修方法。
实习内容:1.观看关于实习的录像,从总体把握实习,明确实习的目的和意义;讲解电器元件的类别、型号、使用范围和方法以及如何正确选择元器件2.讲解控制电路的设计要求、方法和设计原理 ;3.分发与清点工具;讲解如何使用工具测试元器件;讲解线路连接的操作方法和注意事项;4.组装、连接、调试自动控制电路;试车、答辩及评分5.拆解自动控制电路、收拾桌面、地面,打扫卫生6.书写实习报告实习心得与体会:对交流接触器的认识交流接触器广泛用作电力的开断和控制电路。
它利用主接点来开闭电路,用辅助接点来执行控制指令。
主接点一般只有常开接点,而辅助接点具有两对常开和常闭功能的接点,小型的接触器也经常作为中间继电器配合主电路使用。
交流接触器的接点,由银钨合金制成,具有良好的导电性和耐高温烧蚀性。
它的动作动力来源于交流电磁铁,电磁铁由两个“山”字形的幼硅钢片叠成,其中一个固定,在上面套上线圈,工作电压有多种供选择。
为了使磁力稳定,铁芯的吸合面,加上短路环。
交流接触器在失电后,依靠弹簧复位。
另一半是活动铁芯,构造和固定铁芯一样,用以带动主接点和辅助接点的开断。
电子电路实习实验报告

一、实验目的本次电子电路实习实验旨在通过实际操作,加深对电子电路基本原理的理解,掌握电路的搭建、调试和测试方法,提高动手能力和分析问题、解决问题的能力。
二、实验器材1. 实验板:包括电源模块、电阻、电容、二极管、三极管、集成电路等;2. 电源:直流稳压电源;3. 测量仪器:万用表、示波器;4. 其他:导线、焊接工具、螺丝刀等。
三、实验内容1. 电阻、电容、二极管、三极管等基本元件的识别与检测;2. 基本电路的搭建与调试,如串联电路、并联电路、RC低通滤波器、晶体管放大电路等;3. 集成电路的应用,如555定时器、运算放大器等;4. 电路的测试与分析,包括静态工作点测试、动态响应测试等。
四、实验步骤1. 实验前准备(1)熟悉实验器材和实验步骤;(2)了解实验原理,明确实验目的;(3)准备好实验记录表格。
2. 实验操作(1)基本元件的识别与检测1)根据元件的外观、颜色、封装等特征进行识别;2)使用万用表测量元件的阻值、电容值、二极管正向导通压降、三极管放大倍数等参数。
(2)基本电路的搭建与调试1)根据电路图,将元件焊接在实验板上;2)连接电源,进行电路的调试;3)测试电路的静态工作点,确保电路正常工作。
(3)集成电路的应用1)根据电路图,搭建集成电路的应用电路;2)连接电源,进行电路的调试;3)测试集成电路的输出波形、幅度等参数。
(4)电路的测试与分析1)使用万用表测试电路的静态工作点;2)使用示波器观察电路的动态响应,如频率响应、瞬态响应等;3)分析测试结果,判断电路性能是否符合要求。
3. 实验记录与总结(1)记录实验数据,包括元件参数、电路参数、测试结果等;(2)分析实验结果,总结实验心得,提出改进建议。
五、实验结果与分析1. 电阻、电容、二极管、三极管等基本元件的识别与检测结果符合预期;2. 基本电路的搭建与调试成功,电路性能符合要求;3. 集成电路的应用电路搭建成功,电路性能符合要求;4. 电路的测试与分析结果表明,电路性能良好,满足设计要求。
湖南大学电路实验报告1

HUNAN UNIVERSITY实践报告科目:电路分析基础院系: 信息科学与工程学院专业:计算机科学与技术学号:20110801323姓名:肖倩2012年12月28日实验一实验名称:基尔霍夫电流、电压定理的验证。
实验原理:(1)基尔霍夫电流定律(KCL)在集总电路中,在任意时刻,对于电路中的任意一个节点,流出与流入该节点的代数和恒等于零,即∑i=0式中,若取流出节点的电流为正,流入节点的电流为负。
KCL 反映了电流的连续性,说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。
(2)基尔霍夫电压定律(KVL)在任意时刻,按约定的参考方向,电路中任一回路上全部元件端电压的代数和恒等于零,即∑u=0式中,通常规定:凡支路或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。
KVL说明了电路中各段电压的约束关系,它与电路中元件的性质无关。
实验目的:①验证基尔霍夫电流定律(KCL)和电压定律(KVL)。
②通过实验加强对电压、电流参考方向的掌握和运用能力。
实验过程:(KCL验证):测试数据:A1:285.1mA A2:91.11mA A3: 194.0mA A1=A2+A3,即基尔霍夫电流定理成立理论数据:A1:300mA A2:100mA A3: 200mA理论与实际基本相符(KVL验证):测试数据:V1: 4.861V V2: 3.570V V3:3.570V V4: 1.139V 另外E1: 12V E2: 6V在左边的网孔,V1+V2+V3-E1=0在右边的网孔,V2+V3-E2-V4=0大网孔,V1+V2+E2-E1=0故验证了基尔霍夫电压定理成立实验二实验名称:验证戴维南定理实验原理:任何一个线性含源一端口网络,对外电路来说,总可以用一个电压源和电阻的串联组合来等效置换;此电压源的电压等于外电路断开时端口处的开路电压uoc,而电阻等于一端口的输入电阻(或等效电阻Req)。
实验目的:加强对戴维南等效的理解更加熟练的掌握对workbench的应用实验过程1、设计有源二端网络(含有独立源和电压控制电流源)2、通过电压表、电流表测量二端网络的开路电压Uoc和短路电流Isc3、用戴维南等效电路代替二端网络,并与理论值进行比较。
电子线路实习报告

电子线路实习报告实习报告:电子线路一、实习背景电子线路是电子技术的基础和核心,其在现代科技领域具有广泛的应用。
为了更好地掌握电子线路的原理和设计,我选择了一家拥有丰富的电子线路设计经验的公司进行实习。
在实习的三个月时间里,我主要参与了电子线路的设计和测试工作,积累了宝贵的实践经验。
二、实习内容1. 电子线路设计在实习期间,我参与了多个电子线路的设计工作。
其中一个项目是设计一个简单的放大电路,用于放大音频信号。
我首先学习了放大电路的工作原理和常见的电子元件,然后根据需求设计了电路的拓扑结构和元件的选型。
接下来,我使用设计软件进行了电路的仿真和优化,最终得到了满足要求的电路设计。
2. 电子线路测试在电子线路设计完成后,我还参与了电路的测试工作。
我学习了如何正确使用示波器、信号发生器等测试工具,并学会了通过观察波形和测量电压、电流等参数来评估电路性能。
通过实际测试,我发现了电路设计中存在的问题,并及时进行调整和改进,最终得到了更加稳定和可靠的电路。
3. 故障排除在实习期间,我还遇到了一些电子线路故障的情况。
在导师的指导下,我学会了如何迅速定位故障点并进行修复。
通过对电路板的仔细观察和测量,我成功找到了导致故障的元件,并进行了更换和修复。
通过故障排除的实践,我加深了对电子线路工作原理的理解和实践能力。
三、实习收获1. 理论知识的巩固通过实习,我得以将在学校所学的电子线路理论知识运用到实际工作中,加深了对电子线路设计和测试的理解。
在实践中,我发现了许多理论知识在实际应用中的限制和不足之处,并进行了一些创新和改进,提高了电子线路的性能和可靠性。
2. 技术能力的提升在实习期间,我掌握了电子线路设计和测试的基本技能。
我学会了如何使用电子设计软件进行仿真和优化,掌握了使用测试工具进行电子线路测试和故障排除的方法。
通过不断的实践和学习,我的技术能力得到了提升,更加自信地应对各种电子线路的设计和测试工作。
3. 团队合作精神的培养在实习期间,我与公司的其他实习生和工程师一起合作完成了多个项目。
电子线路实验实习报告

一、实习目的本次电子线路实验实习旨在通过实际操作,使学生深入了解电子线路的基本原理和实际应用,提高学生的动手能力和实际操作技能。
通过实习,学生能够掌握电子元件的使用方法、电路图的识别与绘制、电路的搭建与调试等基本技能,并能够将所学理论知识与实际操作相结合,为今后的学习和工作打下坚实的基础。
二、实习时间与地点实习时间:2023年X月X日至2023年X月X日实习地点:XX大学电子实验室三、实习内容1. 基本电子元件的认识与使用在实习初期,我们首先学习了基本电子元件的认识与使用。
通过实验,我们了解了电阻、电容、二极管、晶体管等电子元件的型号、规格、性能、使用范围及基本测试方法。
掌握了内热式电烙铁的使用方法,学会了如何焊接电子元件。
2. 电路图的识别与绘制接下来,我们学习了电路图的识别与绘制。
通过观察和分析电路图,我们了解了电路的结构、工作原理和各个元件之间的连接关系。
同时,我们也学会了如何使用电路设计软件绘制电路图。
3. 电路的搭建与调试在掌握了电路图的识别与绘制后,我们开始进行电路的搭建与调试。
在指导老师的指导下,我们搭建了简单的电路,如稳压电路、放大电路等,并对其进行了调试,确保电路能够正常工作。
4. 电路故障排查在电路搭建与调试过程中,我们遇到了一些故障。
通过查阅资料、分析电路图和实际操作,我们学会了如何排查电路故障,并成功解决了这些问题。
5. 综合性实验最后,我们进行了一项综合性实验——设计并搭建一个音乐播放电路。
在实验过程中,我们充分发挥了团队协作精神,共同完成了电路的设计、搭建和调试。
通过这次实验,我们不仅巩固了所学知识,还提高了实际操作能力。
四、实习收获1. 提高了动手能力通过本次实习,我们学会了电子元件的使用方法、电路图的识别与绘制、电路的搭建与调试等基本技能,提高了自己的动手能力。
2. 加深了对理论知识的理解在实习过程中,我们将所学理论知识与实际操作相结合,加深了对电子线路基本原理的理解。
电子线路的实训报告

一、实训目的本次电子线路实训旨在通过实际操作,加深对电子线路基本理论的理解,提高动手能力和电路设计水平。
通过实训,使学生掌握电子线路的基本组成、工作原理和调试方法,培养学生的创新意识和团队协作精神。
二、实训环境实训环境为电子实验室,配备了各类电子元器件、实验仪器、计算机和电路设计软件。
实验室内环境整洁,设备齐全,为实训提供了良好的条件。
三、实训原理电子线路实训主要涉及以下原理:1. 电路元件的基本特性和应用:包括电阻、电容、电感、二极管、晶体管等基本元件的特性及其在电路中的应用。
2. 电路分析方法:包括基尔霍夫定律、叠加定理、戴维南定理等基本分析方法。
3. 电路设计方法:包括电路图绘制、PCB设计、电路仿真等设计方法。
4. 电路调试方法:包括仪器使用、电路故障排查、性能测试等调试方法。
四、实训过程1. 基础理论学习:首先,对电子线路的基本理论知识进行复习和巩固,包括电路元件、基本电路、分析方法等。
2. 元器件识别与测试:学习识别各类电子元器件,并使用万用表等仪器进行测试,掌握其基本性能。
3. 电路搭建:根据实验要求,搭建指定的电子线路,包括焊接、连接等操作。
4. 电路仿真:使用电路仿真软件对搭建的电路进行仿真,分析电路性能。
5. 电路调试:对搭建的电路进行调试,排查故障,确保电路正常工作。
6. 撰写实训报告:总结实训过程,分析实验结果,提出改进意见。
五、实训内容1. 基本电路实验:包括串联电路、并联电路、分压电路、分流电路等基本电路的搭建、仿真和调试。
2. 放大电路实验:包括共射放大电路、共集放大电路、共基放大电路等放大电路的搭建、仿真和调试。
3. 滤波电路实验:包括低通滤波器、高通滤波器、带通滤波器等滤波电路的搭建、仿真和调试。
4. 振荡电路实验:包括正弦波振荡器、矩形波振荡器等振荡电路的搭建、仿真和调试。
六、实训结果1. 成功搭建并调试了各类电子线路,掌握了电子线路的基本搭建和调试方法。
2. 通过电路仿真,分析了电路性能,优化了电路设计。
电子线路实训报告范文
一、实训目的本次电子线路实训旨在通过实际操作,使学生掌握电子线路的基本原理、设计方法和调试技巧,提高学生的动手能力和创新意识。
通过本次实训,使学生能够:1. 熟悉电子线路的基本元件和仪器设备;2. 掌握电子线路的设计、制作和调试方法;3. 提高电子线路故障分析和排除能力;4. 培养团队合作精神和创新意识。
二、实训内容1. 元器件识别与检测实训过程中,我们首先学习了电子线路的基本元件,如电阻、电容、电感、二极管、三极管等,并掌握了它们的识别方法和检测方法。
2. 基本电路设计在了解了基本元件后,我们开始学习基本电路的设计方法。
实训过程中,我们设计了以下电路:(1)放大电路:包括共射极放大电路、共集电极放大电路和共基极放大电路;(2)振荡电路:包括正弦波振荡电路和矩形波振荡电路;(3)滤波电路:包括低通滤波电路和高通滤波电路。
3. 电路制作与调试在电路设计完成后,我们按照设计图纸进行电路制作。
在制作过程中,我们学习了焊接技术,并掌握了焊接工具和材料的使用方法。
制作完成后,我们对电路进行调试,确保电路功能正常。
4. 电路故障分析及排除在实训过程中,我们遇到了一些电路故障。
通过分析故障原因,我们学会了如何排除故障。
以下是一些常见的故障及排除方法:(1)电路短路:检查元件是否接触不良,线路是否连接错误;(2)电路断路:检查线路是否连接正确,元件是否损坏;(3)电路性能不稳定:检查元件参数是否匹配,电路布线是否合理。
三、实训心得1. 通过本次实训,我对电子线路的基本原理和设计方法有了更深入的了解,提高了自己的动手能力。
2. 在实训过程中,我学会了如何运用所学知识解决实际问题,提高了自己的分析问题和解决问题的能力。
3. 实训过程中,我认识到团队合作的重要性。
在遇到问题时,我们互相帮助,共同解决问题,培养了良好的团队精神。
4. 实训过程中,我认识到理论与实践相结合的重要性。
只有将所学知识应用于实际操作中,才能真正掌握电子线路技术。
电子线路实训总结报告
一、前言电子线路实训是电子类专业学生掌握电子技术基本技能的重要环节,旨在通过实际操作,加深对电子线路理论知识的学习和理解,提高学生的动手能力和创新能力。
本报告将对本次电子线路实训进行总结,分析实训过程中的收获与不足,为今后类似实训提供参考。
二、实训目的1. 熟悉常用电子元器件的性能、参数及识别方法。
2. 掌握电子线路基本实验操作技能,如焊接、测量、调试等。
3. 培养学生的团队协作能力和创新能力。
4. 巩固和深化电子线路理论知识。
三、实训内容1. 常用电子元器件的识别与测试(1)认识常用电子元器件,如电阻、电容、二极管、三极管等。
(2)学习电阻、电容的识别方法,包括色环电阻、电容的单位识别等。
(3)测试电子元器件的参数,如电阻的阻值、电容的容量等。
2. 基本电路实验(1)串联电路、并联电路的实验,学习电路的连接方法及电路参数的测量。
(2)放大电路实验,学习放大电路的原理、设计方法及调试技巧。
(3)滤波电路实验,学习滤波电路的设计原理及滤波效果分析。
3. 电子线路CAD实训(1)学习电子线路CAD软件的基本操作,如原理图绘制、PCB设计等。
(2)绘制电子线路原理图,完成电路设计。
(3)进行PCB设计,包括元件布局、布线等。
4. 综合实训(1)设计并搭建一个简单的电子电路,如振荡器、稳压电源等。
(2)进行电路调试,优化电路性能。
(3)撰写实训报告,总结实训过程及收获。
四、实训收获1. 熟练掌握了常用电子元器件的识别与测试方法。
2. 掌握了电子线路基本实验操作技能,如焊接、测量、调试等。
3. 学会了电子线路CAD软件的基本操作,能够独立完成电路设计。
4. 提高了团队协作能力和创新能力。
5. 巩固和深化了电子线路理论知识。
五、实训不足1. 在实验过程中,对部分实验原理理解不够透彻,导致实验结果与预期不符。
2. 实验操作技能有待提高,如焊接过程中出现虚焊现象。
3. 在综合实训环节,设计电路时缺乏创新意识,未能充分发挥个人潜能。
实习实训报告电子线路
一、实习实训目的本次电子线路实习实训旨在通过实际操作和理论学习,使学生掌握电子线路的基本原理、设计方法和实际应用,提高学生的动手能力和创新能力。
通过实习实训,使学生能够:1. 理解电子线路的基本概念和组成;2. 掌握常用电子元件的性能和参数;3. 学会电路图的绘制和电路的搭建;4. 熟悉电子线路的测试方法和故障排除技巧;5. 培养团队合作精神和实践创新能力。
二、实习实训内容1. 电子元件识别与检测在实习实训初期,我们对常用电子元件进行了识别和检测。
通过实际操作,我们学习了电阻、电容、电感、二极管、晶体管等元件的识别方法和测试方法,掌握了元件参数的测量技巧。
2. 电路图绘制与仿真在电路图绘制与仿真环节,我们学习了电路图绘制软件的使用,如Multisim等。
通过绘制电路图,我们熟悉了电路图的基本符号和原理图的表达方式。
同时,我们利用仿真软件对电路进行仿真,验证了电路的功能和性能。
3. 电路搭建与调试在电路搭建与调试环节,我们按照电路图搭建实际电路,并进行调试。
在搭建过程中,我们学会了焊接技术,掌握了电路板的布局和布线原则。
在调试过程中,我们学会了使用示波器、万用表等仪器对电路进行测试,掌握了电路故障的排除方法。
4. 常用电路分析在常用电路分析环节,我们学习了放大电路、滤波电路、整流电路等常用电路的工作原理和设计方法。
通过对这些电路的分析,我们提高了对电路的理解能力。
5. 电子线路创新设计在电子线路创新设计环节,我们以小组为单位,进行了电子线路创新设计。
在设计中,我们充分发挥了团队协作精神,提出了具有创新性的设计方案,并完成了电路搭建和调试。
三、实习实训收获1. 理论知识与实践操作相结合通过本次实习实训,我们深刻体会到理论知识与实践操作相结合的重要性。
在实习实训过程中,我们将所学知识运用到实际操作中,提高了自己的动手能力。
2. 团队合作与创新能力在实习实训过程中,我们学会了与团队成员沟通协作,共同解决问题。
电子线路安装实训报告
一、实训目的通过本次电子线路安装实训,旨在培养学生掌握电子线路的基本原理、设计方法和安装工艺,提高学生的实际操作能力,培养严谨的工作态度和团队协作精神。
实训内容主要包括电子线路原理图绘制、元器件识别与选用、电路板焊接、调试与测试等。
二、实训时间2023年3月10日至2023年3月20日三、实训地点电子实验室四、实训内容1. 电子线路原理图绘制实训过程中,我们首先学习了电子线路原理图的绘制方法。
通过学习,我们掌握了原理图的符号、线条、文字标注等基本要素,以及如何将电路原理转化为原理图。
在绘制原理图时,我们遵循以下原则:(1)电路布局合理,便于调试和维护;(2)元件符号规范,线条清晰;(3)标注明确,便于理解。
2. 元器件识别与选用在实训过程中,我们学习了元器件的种类、型号、规格和性能。
通过对元器件的识别与选用,我们能够根据电路要求,选择合适的元器件。
实训中,我们主要学习了以下几种元器件:(1)电阻器:固定电阻、可调电阻等;(2)电容器:固定电容器、可调电容器等;(3)二极管:整流二极管、稳压二极管、发光二极管等;(4)晶体管:三极管、场效应晶体管等;(5)集成电路:运算放大器、逻辑门等。
3. 电路板焊接电路板焊接是电子线路安装过程中的重要环节。
在实训中,我们学习了焊接工具的使用、焊接技巧和焊接注意事项。
具体操作如下:(1)焊接前,检查电路板和元器件是否完好;(2)按照原理图进行元件布局,确保布局合理;(3)使用烙铁和助焊剂进行焊接,注意焊接时间、温度和力度;(4)焊接完成后,检查焊接质量,确保焊接牢固、无虚焊、无短路等。
4. 调试与测试电路板焊接完成后,我们需要对电路进行调试和测试。
调试过程中,我们遵循以下步骤:(1)检查电路板连接是否正确;(2)对电路进行通电测试,观察电路是否正常工作;(3)对电路进行调整,确保电路功能符合设计要求。
五、实训成果通过本次电子线路安装实训,我们取得了以下成果:1. 掌握了电子线路的基本原理、设计方法和安装工艺;2. 提高了实际操作能力,培养了严谨的工作态度;3. 增强了团队协作精神,学会了与他人共同完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、实验二一、实验要求(1)建立单管共发射极放大电路。
(2)分析共发射极放大电路放大性能。
(3)分析共发射极放大电路频率特性。
(4)分析共发射极放大电路静态工作点。
二、实验内容实验内容一:用Ni Multisim软件验证习题2.14,2.15,分析实验结果。
实验内容二:(1)建立单管共发射极放大电路实验电路,如图1-1所示。
NPN型晶体管(QNL电流放大系数为80,基极体电阻为100Ω,发射结电容为3pF,集电结电容为2pF。
用信号发生器产生频率为lkHz、幅值为5mV的正弦交流小信号作为输入信号。
示波器分别接到输入波形和输出端观察波形。
(2)打开仿真开关,双击示波器,进行适当调节后,用示波器观察输入波形和输出波形。
注意输出波形与输入波形的相位关系。
并测量输入波形和输出波形的幅值,计算放大电路的电压放大倍数。
(3)建立共发射极放大电路静态工作点测量电路。
如图1-2所示。
利用直流电压表和电流表测量集电极电压、电流以及基极电流。
判断晶体管是否工作在放大区。
(4)如果将基极电阻由580kΩ改变为400kΩ,再测量各项电压、电流,判断晶体管是否工作在放大区。
然后将图1—1中基极电阻Rb由580kΩ改变为400kΩ,再用示波器观察放大电路的输入波形和输出波形,观察输出波形发生什么样的变化,属于什么类型的失真。
三、实验电路原理图四、实验结果及分析2-14电路图一:要求集电极电压V0=(5~7)V,通过计算可知,R1的电阻值在(2.5~3.5)千欧,R2的电阻值为5.65千欧。
设置R1的电阻值为2.5千欧,R2的电阻值为5.65千欧,测出的VO 为7V。
电路图二:将器件改为PNP管,要求电压数值不变,保证集电极电压|VO|、电流IC不变,通过计算可知,R1的电阻值为5.65千欧,R2的电阻值在(2.5~3.5)千欧。
设置R1的电阻为5.65千欧,R2电阻值为3.5千欧,测出的VO为-5.054V。
2-15电路图一:通过计算可知,VCE为3.35V,实际VCE为3.366。
电路中存在误差。
电路图二:由图知,Ic电流为0.022安,所以三极管是导通的。
又由Vce=-3.776<0.3V,可以推测出三极管处于饱和区。
实验内容二:由波形图可知,电压放大倍数为49。
Vbe=0.538,Ib=0.020毫安,所以三极管导通,Vce=8.894.>0,所以三极管处于放大区。
Vbe=0.552V,Ib=0.029毫安,所以三极管导通,Vce=7.010>0,所以三极管处于放大区。
当R1=400千欧时,由于静态工作点的向上偏移,出现饱和失真。
实验三一、实验要求(1)分析工作点稳定的共发射极放大电路性能。
(2)分析共集电极放大电路性能。
(3)分析共基极放大电路性能。
二、实验内容(1)建立工作点稳定的共发射极放大电路实验电路如图2-1所示。
NPN型晶体管取理想模式,电流放大系数设置为50,用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表设置为交流模式,电路中用I键控制的开关选择电路输出端是否加负载。
用空格键控制的开关选择发射极支路是否加旁路电容。
(2)打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻。
(3)利用L键拨动负载电阻处并关,将负载电阻开路,适当调整示波器A通道参数,再测量输出波形幅值,然后用下列公式计算输出电阻Ro。
其中Vo是负载电阻开路时的输出电压。
(4)连接上负载电阻,再利用空格键拨动开关,使发射极旁路电容断开,适当调整示波器A通道参数,再测量、计算电压放大倍数。
并说明旁路电容的作用。
(5)建立共集电极放大电路如图2-2所示。
NPN型晶体管取理想模式,电流放大系数设置为50,用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表设置为交流模式。
(6)打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻。
仿照步骤3求电路输出电阻。
建立共基极放大电路,如图2-3所示。
NPN型晶体管取理想模式,电流放大系数设置为50。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表。
(9)打开仿真开关,用示波器观察电路的输入波形和输出波形。
单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。
根据输入端电流表的读数计算输入电阻。
(10)仿照步骤3求电路输出电阻。
三、实验电路原理图图2-1工作点稳定的共发射极放大电路图2-2 共集电极放大电路图2-3共基极放大电路四、实验结果及分析当输入信号频率过低,低于下限角频率,直接耦合电容起到分压作用,不能忽略。
当输入信号频率过高时,高于上限角频率,结电容电容起到分流作用,不能忽略。
所以,输入信号的频率设置在中频段。
设置根据输入输出信号波特图分析,中频范围在113HZ~9.6MHZ之间。
所以设置信号发生器的频率在10HZ。
当旁路电容和负载的开关都闭合的时候,放大倍数将近25.。
旁路电路闭合,负载断开时的时候,放大倍数为40。
根据公式其中,Voc是负载连接时的输出电压,Vo是负载断开时的输出电压。
Rl是负载电阻Ro=500*2*10k/200*4-10k=2.5k输出电阻为2.5k。
旁路电容断开,负载闭合时的时候,放大倍数为2.5。
旁路电容的作用:1、当不连接旁路电容时,放大倍数为25。
当连接旁路电容时,放大倍数为2.5。
旁路电容具有降低电路放大倍数的作用。
当不连接旁路电容时,电流表的读数一直在波动。
当连接旁路电容时,电流表的读数相对稳定。
旁路电容具有稳定直流静态工作点的作用。
旁路电容、负载都断开的时候,放大倍数为5.。
当负载闭合时,放大倍数为50。
输入电阻Ri=Vi/I=10/0.197=50分析:当负载闭合时,放大倍数为50。
根据公式其中,Voc是负载连接时的输出电压,Vo是负载断开时的输出电压。
Rl是负载电阻Ro=21*10k/18-10k=17k五、实验结论共发放大器的输入电阻为17.9K,输出电阻为2.5K。
共集放大器的输入电阻为133K,输出电阻为104。
共基放大器的输入电阻为50,输出电阻为17K。
共集放大器更接近于一个理想的电压放大器,而共集放大器更接近于一个理想的电流放大器。
实验四一、实验要求(1)建立场效应管放大电路。
(2)分析场效应管放大电路的性能二、实验内容(1)建立结型场效应管共源放大电路。
结型场效应管取理想模式。
用信号发生器产生频率为lkHz、幅值为10mV的正弦信号。
(2)打开仿真开关,用示波器观察场效应管放大电路的输入波形和输出波形。
测量输出波形的幅值,计算电压放大倍数。
(3)建立如图3-3所示的场效应管放大电路的直流通路。
打开仿真开关,利用电压表和电流表测量电路静态参数。
(栅源电压,漏源电压,漏极电流)三、实验电路原理图图3-2 结型场效应管共源放大电路图3-3场效应管放大电路的直流通路四、实验结果及分析场效应管放大电路的直流通路共源放大电路的电压放大倍数为10。
输出波形的幅值为100mv。
根据实验数据可得,场效应管的漏源电压为15.076V,栅源电压为0.411V,漏极电流为0.05mA。
电压表和电流表测到的栅源电压,漏源电压,漏极电流。
五、实验结论场效应管区别于晶体管主要有两点:场效应管的输入电阻很大,晶体管的输入电阻较小;场效应管是单极型器件,晶体管是双极型器件。
单极型器件是指只有一种载流子参与运动,双极型器件是两种载流子参与运动。
场效应管只有自由电子参与导电,而晶体管的自由电子和空穴两种载流子参与导电。
实验五一、实验要求(1)建立差动放大电路。
(2)分析差动放大电路性能。
二、实验内容(1)建立单端输入、单端输出长尾式差动放大电路。
T1、T2均为NPN晶体管,采用理想模式,电流放大系数设为50。
用信号发生器产生频率为lkHz、幅值为10mY的正弦信号。
示波器通道A 输入设为500mV/Div,通道B输入设为10mV/Div。
(2)打开仿真开关,用示波器观察长尾式差动放大电路的输入波形和输出波形。
测量输出波形幅值,计算差模电压放大倍数。
(3)按空格键拨动开关,使差动放大电路两个输入端同时输入同样的信号,即共模信号。
示波器通道A输入改设为10mV/Div,再用示波器观察长尾式差动放大电路的输入波形和输出波形。
测量输出波形幅值,计算共模电压放大倍数。
(4)计算共模抑制比。
三、实验电路原理图图5-1 单端输入、单端输出长尾式差动放大电路四、实验结果及分析输出波形幅值为1.435V。
差模电压放大倍数为100。
输出波形幅值很小,接近于0V。
差模电压放大倍数几乎为0。
五、实验结论差分放大电路具有放大差模信号、抑制共模信号的作用。
差分放大电路对差模信号具有抑制零点漂移的作用。
一方面,电路结构的对称性,另一方面,接在发射结的Re电阻起到的负反馈作用。
实验六一、实验要求(1)建立负反馈放大电路。
(2)分析负反馈放大电路的性能。
二、实验内容(1)建立电压串联负反馈放大电路。
晶体管为QNL,用信号发生器产生频率为lkHz、幅值为5mV 的正弦交流小信号作为输入信号。
示波器分别接到输入端和输出端观察波形。
(2)打开仿真开关,双击示波器,进行适当调节后,观察输入波形和输出波形。
测量输入波形和输出波形的幅值,计算电路闭环电压放大倍数并与理论计算值相比较。
(3)对于电路反馈电阻Rf进行参数扫描分析,以观察反馈电阻变化对闭环增益及通频带的影响。
具体步骤是:选择Analysis/ParameterSweep命令,弹出ParameterSweep对话框,选取扫描元件为Rf、扫描起始值为5k,扫描终止值为20k、扫描型态为Linear、步进值为5k、输出节点为3,再选择暂态分析或AC频率分析,然后单击Simulate按钮进行分析。
三、实验电路原理图四、实验结果及分析输入波形的幅值为4.998mV。
输出波形的幅值为437.899mV。
闭环放大倍数为70。
可见,反馈电阻越小,增益越小。
换成实际器件后:五、实验结论负反馈虽然使放大电路的增益下降,但是能改善放大电路的性能,稳定静态工作点,有效提高电路的通频带,能够提高电路放大倍数的稳定性、能够扩展通频带等。
如果负反馈放大电路属于深度负反馈,则放大电路闭环放大倍数等于反馈系数的倒数。
实验七一、实验要求(1)分析工作点稳定的共发射极放大电路性能。
(2)分析共集电极放大电路性能。
(3)分析共基极放大电路性能。
二、实验内容(1)建立如图7-1所示的反相求和电路,集成运放采用LM741,用两交流电压源分别产生V1、V2正弦交流输入信号,其频率均为lkHz,有效值分别为100mV和200mV。