中考专题复习探索规律
中考数学专题复习:规律探索题

中考链接 观察“田”字中各数之间的关系:
,…, ,则 的值为
.
七、学业检测
一.选择题(共4小题,每题10分,共40分) 1.教材上“阅读与思考”曾介绍“杨辉三角”(如图),
利用“杨辉三角”展开(1﹣3x)5= a0+a1x+a2x2+a3x3+a4x4+a5x5,那么a1+a2+a3+a4+a5=( )
“★”按一定规律组成的.已知第1个图形中有8个“●” 和1个“★”,第2个图形中有16个“●”和4个“★”,第 3个图形中有24个“●”和9个“★”,…,则第 个图 形中“★”的个数是“●”的个数的2倍.
类型三 图形变化类规律探索
针对训练4 4.我们将如图所示的两种排列形式的点
的个数分别称作“三角形数”(如1,3, 6,10…)和“正方形数”(如1,4,9, 16…),在小于200的数中,设最大 的“三角形数”为m,最大的“正方形数 ”为n,则m+n的值为 .
中考链接
将从1开始的连续自然数按以下规律排列:
第1行
1
第2行
234
第3行
56789
第4行
10 11 12 13 14 15 16
第5行 17 18 19 20 21 22 23 24 25
若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2) 表示6,则表示99的有序数对是 .
中考链接
如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作 B1A1⊥l , 交x轴于点A1 , 以A1B1为边,向右作正方形A1B1B2C1 , 延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2 , 延 长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3 , 延长 B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形 AnBnBn+1Cn的边长为 ________(结果用含正整数n的代数式表 示).
中考数学专题复习:探索规律课件

形,第 2 个图形中有 3 个小菱形,第 3 个图形中有 6 个小菱形……则第 20
个图形中小菱形的个数为( C )
A.190
B.200
C.210
D.220
第1个 第2个 第3个
第4个
2. 小明同学为庆祝建党100周年,用五角星按一定规律摆出如下图案:第1个图
案中有4个五角星,第2个图案中有7个五角星,第3个图案中有10个五角星, 第4个图案中有13个五角星,……,依此规律,第2021个图案中有_6_0_6_4__颗 五
(平相第方差n列几项,n)
的系数就
⑦ 2 4 8 16 32 … 2n (比是列相几的等;第数一)
⑧
1
-1
1
-1
1 … (-1)n+1
项决定第 n项的常
一差二比三平方,正负交替找-1.
数项。
探索数、式中的规律
a2n
例 1 一组按规律排列的式子:a2,a34,a56,a78,…,则第 n 个式子是 2n-1
3、原样组合。
二、图形变化规律型问题解决方法:
1、分层或分组法;2、数列法。
三、数学思想:
1、从特殊到一般;2、数形结合思想;3、 转化思想。
课标是船, 教材是帆, 方法就是那风。 让我们扬帆起航, 把莘莘学子送达中考成功的彼岸!
所谓探索规律型问题:指的是给出一组具有某种 特定关系的数、式、图形,要求通过观察、分析、推 理,探求其中所隐含的规律,进而归纳或猜想出一般 性的结论.
在山西近几年的中考中,此类型题目备受命题专 家的青睐,常见的类型有两种:
(1)数与式变化规律型;(2)图形变化规律型.
数与式变化规律型问题
方法探索
(用含n的代数式表示)
2023年中考数学热点专题复习课件1 规律探索型

[典例 1](2022 恩施)观察下列一组数:2, , ,….它们按一定规律排列,第 n 个数记为 an,且满足
+
=
.则 a4= ,a2 022= .
+ +
数字规律探究问题一般解法是根据数字特点通过观察、分析、归纳,发现规律,进而猜想出具有
一般性的结论.对于不容易找到规律的问题,可以将每个数分解成和、差、积、商、乘方等形式,
2.解决规律探索型问题关键点:
规律探索型问题是指给出一系列数字、一列等式或一列图形的前几项,让学生通过“观察——思
考——探究——猜想”这一系列的活动逐步找出题目中存在的规律,最后归纳出一般的结论再加以
运用.解决此类问题要仔细审题,归纳规律,合理推测,认真验证,从而得出问题的结论.
类型一
数字规律类
(1)按上面的规律归纳出一个一般性的结论(用含 n 的等式表示,n 为正整数);
(2)请运用分式的有关知识,推理说明这个结论是正确的.
思路导引:(1)观察已知等式,可得规律,用含n的等式表达即可;
(2)先通分,同分母分式相加,再约分,即可得到(1)中的等式.
解:(1)观察规律可得 =
第一代勾股树
第二代勾股树
第三代勾股树
思路导引:由已知图形观察规律,即可得到第六代勾股树中正方形的个数.
类型四
坐标规律类
[典例1](2022毕节)如图所示,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右
平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点
探究其隐含的规律.
中考规律探索题归纳总结

中考规律探索题归纳总结中考作为我国学生升入高中的重要考试,一直备受关注。
在备考过程中,除了掌握基础知识和解题技巧外,了解中考命题的规律也十分重要。
本文将对中考规律中的探索题进行归纳总结,帮助同学们更好地备考。
一、探索题的定义与特点探索题是中考题目中较为特殊的一类题型,与传统的选择题和填空题不同,它更注重考察学生的观察、分析、推理和实践能力。
在探索题中,通常会给出一定的背景信息、实验现象或问题,要求学生通过思考和实践,解答或解决问题。
探索题的特点主要有以下几个方面:1. 强调学生的动手能力:探索题往往需要学生进行实验、观察等操作,培养学生的实践能力和科学精神。
2. 强调学生的分析能力:通常会提出一些问题,要求学生根据给定的条件进行分析,得出结论或解决方法。
3. 培养学生的探索精神:探索题更多考察学生解决问题的思路和方法,培养学生的探索精神和创新意识。
二、探索题的常见形式和解题思路1. 实验探索题:要求学生根据实验现象分析,并进行实验加以验证,推理出结论。
解题思路:根据实验描述了解实验现象和背景,分析实验的目的、方法,进行实验操作,推理结果并写出结论。
2. 问题探索题:给出一些问题,要求学生思考并找出解决办法。
解题思路:仔细阅读问题,分析问题的关键点,积极思考并提出合理解决方案,给出解答。
3. 材料探索题:根据给定的材料或文段,分析问题并作出相关推理。
解题思路:认真阅读材料,理解材料提供的信息和背景,分析问题并进行相关推理,给出结论。
4. 实践探索题:要求学生通过实践操作解决问题,注重学生的动手能力和实践能力。
解题思路:认真阅读问题和给定条件,根据问题和条件进行实践操作,解决问题。
三、中考探索题的复习策略1. 熟悉题型和解题思路:通过大量练习,熟悉不同形式的探索题,掌握常见的解题思路和方法。
2. 注重实践能力培养:针对实验探索题和实践探索题,要多进行实践操作,培养学生的实践能力和动手能力。
3. 提高分析能力:通过解析常见的材料探索题和问题探索题,培养学生的分析能力和推理能力,提高解题技巧。
中考数学二轮复习专题2 规律探索问题课件

B.(-1,-2) D.(3,-2)
9.(2021·阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓 形沿 x 轴正方向无滑动滚动,当圆心经过的路径长为 2021π 时,圆心的横 坐标是( D )
A.2020π C.2021π
B.1010π+2020 D.1011π+2020
10.(2021·毕节)如图,在平面直角坐标系中,点 N1(1,1)在直线 l:y=x 上,
[点评] 本题考查了规律型中的数式变化规律,解题的关键是找出等式左右 两边的数的变化规律,熟练掌握二次根式的运算.
1.(2021·济宁)按规律排列的一组数据:12,35,□,177,296,3171,…,其中□
内应填的数是( D )
A.23
B.151
C.59
D.12
2.(2021·十堰)将从 1 开始的连续奇数按如图所示的规律排列,例如,位于 第 4 行第 3 列的数为 27,则位于第 32 行第 13 列的数是( B )
图形规律型 ☞示例 2 (2016·益阳)小李用围棋子排成下列一组有规律的图案,其中第 1 个图案有 1 枚棋子,第 2 个图案有 3 枚棋子,第 3 个图案有 4 枚棋子,第 4 个图案有 6 枚棋子,…,那么第 9 个图案的棋子数是 13 枚.
[解析] 设第 n 个图形有 an 个棋子, 观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6, a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数). 当 n=4 时,a9=3×4+1=13. 故第 9 个图案的棋子数是 13 枚.
[点评] 本题考查了规律型中的图形的变化类,解题的关键是找出变化规律 “a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数)”.本题属于基础题,难度不 大,解决该题型题目时,找出部分图形的棋子数目 ,根据数的变化找出变 化规律是关键.
2024年中考数学总复习 专题突破课件 专题一 规律探索问题

命题点1
等差(或等比)数列型
1.(2023牡丹江)观察下面两行数:
1,5,11,19,29,…;
1,3,6,10,15,….
取每行数的第7个数,计算这两个数的和是( C
A.92 B.87 C.83 D.78
)
2.(2023恩施)观察下列两行数,探究第②行数与第①行数的关系:
在同一象限内递推变化;另一种是点坐标变换在坐标轴上或象限内循环
变化.解决方法如下:
(1)定类型:根据图形中点坐标的变换特点判断属于哪一种类型(递推型
或循环型);
(2)找规律:根据图形的递变规律分别求出第1,2,3,4个点的横坐标和纵
坐标,用含n的代数式表示出第n个点的坐标.
结合图形变化求线段长、图形面积问题与求点的坐标类似,注意对含n
第一步:写序号,记每组图形的序数为“1,2,3,…,n”;
第二步:在简单的图形中,求出问题的结果;
第三步:探究所求结果与序数的关系,将这个关系用含n的式子表示;
第四步:代入n的具体数值,求出第n个图形的相关量的值.
命题点1
图形个数累加型
16.(2023重庆A卷)用长度相同的木棍按如图所示的规律拼图案,其中第
排列,第 n 个数记为 an,且满足 +
=
+ +
,则 a2 023=
.
图形的变化规律
(1)该类问题常见的解法有三种:一是根据几何图形的变化规律直接求
解;二是数一数各图案中所求图形的具体个数,把图形规律转化成数字
规律求解;三是借助函数知识求解.
(2)解图形规律探索题的一般步骤
中考数学专题复习探索规律问题

专题探索规律问题解读考点考点归纳归纳 1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.例1一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为归纳 2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例2有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn= 用含字母x和n的代数式表示.归纳 3:图形规律型基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.例3如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.例4如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.例5如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.2年中考2015年题组1.2015绵阳将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=A.14 B.15 C.16 D.17考点:1.规律型:图形的变化类;2.综合题.2.2015十堰如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是A.222 B.280 C.286 D.2923.2015荆州把所有正奇数从小到大排列,并按如下规律分组:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,…,现有等式Am=i,j表示正奇数m 是第i组第j个数从左往右数,如A7=2,3,则A2015=A.31,50 B.32,47 C.33,46 D.34,424.2015包头观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为A.2531 B.3635 C.47 D.6263考点:1.规律型:数字的变化类;2.综合题.5.2015重庆市下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为A.21 B.24 C.27 D.306.2015泰安下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为A.135 B.170 C.209 D.252考点:1.规律型:数字的变化类;2.综合题.7.2015重庆市下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是A.32 B.29 C.28 D.26考点:1.规律型:图形的变化类;2.综合题.8.2015崇左下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有A.160 B.161 C.162 D.1639.2015贺州观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是A.0 B.3 C.4 D.8考点:1.尾数特征;2.规律型;3.综合题.10.2015宜宾如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为A .231π B.210π C.190π D.171π11.2015鄂州在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是A .201421)(B .201521)(C .201533)(D .201433)(答案D .考点:1.正方形的性质;2.规律型;3.综合题.12.2015庆阳在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1n 是正整数的顶点A2n+1的坐标是A .4n ﹣3.2n ﹣3.3 D .313.2015宁德如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x 上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是A .20142,20142B .20152,20152C .20142,20152D .20152,20142考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.2015河南省如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是A .2014,0B .2015,﹣1C .2015,1D .2016,0考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.2015张家界任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:5323+=,119733++=,1917151343+++=,…按此规律,若3m 分裂后其中有一个奇数是2015,则m 的值是A .46B .45C .44D .4316.2015邵阳如图,在矩形ABCD 中,已知AB=4,BC=3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是A .2015π B.π C .3018π D.3024π17.2015威海如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为A .92432B .98132C .9812 D .88132考点:1.正多边形和圆;2.规律型;3.综合题.18.2015日照观察下列各式及其展开式:222()2a b a ab b +=++;33223()33a b a a b ab b +=+++;4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是A .36B .45C .55D .66考点:1.完全平方公式;2.规律型;3.综合题.19.2015宁波如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A2处,称为第1次操作,折痕DE 到BC 的距离记为h1;还原纸片后,再将△ADE 沿着过AD 中点D1的直线折叠,使点A 落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC 的距离记为h2015,到BC 的距离记为h2015.若h1=1,则h2015的值为A .201521B .201421C .2015211- D .2014212-考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换折叠问题;4.规律型;5.综合题.20.2015常州数学家歌德巴赫通过研究下面一系列等式,作出了一个着名的猜想. 4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是 请用文字语言表达.21.2015淮安将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a+b= .22.2015雅安若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .23.2015桂林如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.24.2015梧州如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.25.2015百色观察下列砌钢管的横截面图:则第n 个图的钢管数是 用含n 的式子表示26.2015北海如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n=2015时,S1+S2+S3+…+Sn﹣1= .考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.2015南宁如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An 与原点的距离不小于20,那么n 的最小值是 .28.2015常德取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m 最少经过7步运算可得到1,则所有符合条件的m 的值为 .29.2015株洲“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12b S a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上含顶点的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形如图1进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .30.2015内江填空:()()a b a b -+= ;22()()a b a ab b -++= ;3223()()a b a a b ab b -+++= .2猜想:1221()(...)n n n n a b a a b ab b -----++++= 其中n 为正整数,且2n ≥.3利用2猜想的结论计算:98732222...222-+-+-+. 31.2015南平定义:底与腰的比是51-的等腰三角形叫做黄金等腰三角形.如图,已知△ABC 中,AB=BC,∠C=36°,BA1平分∠ABC 交AC 于A1.AB=AA1A C;122探究:△ABC是否为黄金等腰三角形请说明理由;提示:此处不妨设AC=13应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB 交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.n为大于1的整数,直接回答,不必说明理由考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型.33.2015重庆市如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.1请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除并说明理由;2已知一个能被11整除的三位“和谐数”,设其个位上的数字x1≤x≤4,x为自然数,十位上的数字为y,求y与x的函数关系式.2014年题组1.2014年南平中考如图,将1,若规定a,b表示第a排第b列的数,则8,2与2014,2014表示的两个数的积是A.B.C. D.12.2014年株洲中考在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是A.66,34 B.67,33 C.100,33 D.99,343.2014年宜宾中考如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,……An分别是正方形的中心,则这n个正方形重叠部分的面积之和是A.n B.n-1 C.n11()4D.n1()4考点:1.正方形的性质;2.全等三角形的判定与性质.4.2014年崇左中考如图,在平面直角坐标系中,A1,1,B﹣1,1,C﹣1,﹣2,D1,﹣2.把一条长为2014个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是A.﹣1,0 B.1,﹣2 C.1,1 D.﹣1,﹣15.2014年百色中考观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.6.2014年衡阳中考 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .答案2014.7.2014年抚顺中考如图,已知CO1是△ABC 的中线,过点O1作O1E1∥AC 交BC 于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC 交BC 于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC 交BC 于点E3,……,如此继续,可以依次得到点O4,O5,……,On 和点E4,E5,……,En .则OnEn= AC .用含n 的代数式表示考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.2014年资阳中考如图,以O0,0、A2,0为顶点作正△OAP1,以点P1和线段P1A 的中点B 为顶点作正△P1BP2,再以点P2和线段P2B 的中点C 为顶点作△P2CP3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是9.2014年宜宾中考在平面直角坐标系中,若点Px,y 的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.1求出图中格点四边形DEFG 对应的S,N,L 的值.2已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.2014年凉山中考实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+n﹣2+n﹣1+n,可以发现.2×1+2+3+……+n﹣2+n﹣1+n=1+2+3+……+n﹣2+n﹣1+n+n+n﹣1+n﹣2+……3+2+1把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n个小括号都等于n+1,整个式子等于nn+1,于是得到1+2+3+……+n﹣2+n﹣1+n=12nn+1这就是说,三角点阵中前n项的点数的和是12nn+1下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12nn+1整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:1三角点阵中前n行的点数的和能是600吗如果能,求出n;如果不能,试用一元二次方程说明道理.2如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗这个三角点阵中前n行的点数的和能使600吗如果能,求出n;如果不能,试用一元二次方程说明道理.1年模拟1.2015届山东省济南市平阴县中考二模在平面直角坐标系xOy中,对于点Px,y,我们把点P-y+1,x+1叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为3,1,则点A2的坐标为0,4,…;若点A1的坐标为a,b,则点A2015的坐标为A.-b+1,a+1 B.-a,-b+2 C.b-1,-a+1 D.a,b2.2015届山东省潍坊市昌乐县中考一模如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图 A2多出“树枝”A.32 B.56 C.60 D.643.2015届山西省晋中市平遥县九年级下学期4月中考模拟如图,四边形ABCD 中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③ B.②③④ C.①③④ D.①②③④4.2015届广东省深圳市龙华新区中考二模如图,已知直线y=-12x+2与x轴交于点B,与y轴交于点A.过线段AB的中点A1做A1B1⊥x轴于点B1,过线段A1B的中点A2作A2B2⊥x轴于点B2,过线段A2B的中点A3作A3B3⊥x轴于点B3…,以此类推,则△AnBnBn-1的面积为A .112n -B .12nC .114n -D .14n5.2014-2015学年山东省潍坊市诸城市实验中学中考三模如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线y=33x 上,则A2015的坐标是 .考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型.6.2015届北京市平谷区中考二模在平面直角坐标系中,点A,B,C 的坐标分别为()1,0,()0,1,()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点P1,使得点P1与点O 关于点A 成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C 成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A 成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B 成中心对称;.…照此规律重复下去.则点P3的坐标为 ;点Pn 在y 轴上,则点Pn 的坐标为 .7.2015届北京市门头沟区中考二模在平面直角坐标系xOy 中,矩形OABC 如图放置,动点P 从0,3出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2次碰到矩形的边时,点P 的坐标为 ;当点P 第6次碰到矩形的边时,点P 的坐标为 ;当点P 第2015次碰到矩形的边时,点P 的坐标为____________.答案7,4, 0,3 ,1,4.8.2015届安徽省安庆市中考二模一组按规律排列的式子:,,,,…则第n 个式子是 n为正整数.9.2015届山东省威海市乳山市中考一模在直角坐标系xOy中,对于点Px,y,我们把点P′y+1,-x+1叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,An,…若点A1的坐标为a,b,对于任意的正整数n,点An均在y轴的右侧,则a,b应满足的条件是.10.2015届山东省日照市中考模拟如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A1,3,A12,3,A24,3,A38,3,B2,0,B14,0,B28,0,B316,0.1观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是.2若按1题找到的规律将△OAB进行了n次变换,得到的△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推出Bn的坐标是.11.2015届广东省佛山市初中毕业班综合测试如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为6和8,则第n个菱形的周长为.12.2015届湖北省黄石市6月中考模拟如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2011的阴影三角形共有__________个.13.2015届广东省佛山市初中毕业班综合测试若a是不为1的有理数,我们把11a-称为a的差倒数.如:2的差倒数是112-=-1,-1的差倒数是111(1)2=--.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.1分别求出a2,a3,a4的值;2求a1+a2+a3+…+a2160的值.。
中考专题-规律探索

B2 P2
O
A1
A2
B3
A3
x
y
A2
B3 A3 x
五、练习题
谢谢!请批评指正!
结语
谢谢大家!
(n为正整数);
(3)求a1+a2+a3+a4+…+a100的值.
Section header
说明:有循环规律的问题,关键是 从第一个循环的起始到终止找到循 环节,再用序号n除以循环节数, 看余数来判断结果.
4
2.图形规律
Section header
图形规律问题主要观察图形的
组成、分拆等过程中的特点,解答
Section header
例1、(2008年北京第12题)
一组按规律排列的式子:
b 2 ,b 5 a a2
,
b8 a3
,b 11 a4
,…
( ab 0),其中第7个式子是
_ _b_a 2_70_,第n个式子是( _1_)_n _b_a3_nn_1_ (n为正整数).
例2、(2012广东汕头第21题)观察下列等式:
第2n1次出现时(n为正整数),恰好数到的数是
6n+3 (用含n的代数式表示).
4.综合类规律
y
A8
A4
O
A1
A7
A3
A5
x
A2
A6
y
A8
A4
O
A1 x
A7
A3
A5
A2
A6
(2,6) (1,-1005)
y
A8
A4
O
A1
x
A7
A3
A5
A2
A6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BB . 365 ⨯ 29C . 214 A. ⨯ ⎪ a B. ⨯ ⎪ a C. ⨯ ⎪ aD. ⨯ ⎪ a1.如图,已知:∠MON=30o ,点 A 1、A 2、A 3 在射线 ON 上,点 B 1、B 2、B 3…..在射线 OM 上,A △1B 1A 2.A A △3、 A 3B 3A 4……均为等边三角形,若 OA 1△=l ,则 A 6B 6A 7 的边长为【 】到位置②,可得到点 P 2,此时 AP 2=2+ 3;将位置②的三角形绕点 P 2 顺时针旋转到位置③,可得到点 P 3,此时 AP 3= 3+ 3;…,按此规律继续旋转,直到得到点 P 2012 为止,则 AP 2012=【 】A .6B .12C .32D .642.小明用棋子摆放图形来研究数的规律.图 1 中棋子围城三角形,其棵数 3,6,9,12,…称为三角形数.类似地,图 2 中的 4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 35.已知整数 a , a , a , a , ⋅⋅⋅ 满足下列条件: a = 0 , a = - | a + 1| , a = - | a + 2 | ,1 2 3 4 1 2 1 3 2a = - | a + 3 | ,…,依次类推,则 a 432012 的值为【 】A .2010B .2012C .2014D .20163.如图,直角三角形纸片 ABC 中,AB=3,AC=4,D 为斜边 BC 中点,第 1 次将纸片折叠,使点 A与点 D 重合,折痕与 AD 交与点 P 1;设 P 1D 的中点为 D 1,第 2 次将纸片折叠,使点 A 与点 D 1 重合,折痕与 AD 交于点 P 2;设 P 2D 1 的中点为 D 2,第 3 次将纸片折叠,使点 A 与点 D 2 重合,折痕与 AD 交于点 P 3;…;设 P n ﹣1D n ﹣2 的中点为 D n ﹣1,第 n 次将纸片折叠,使点 A 与点 D n ﹣1 重合,折痕与 AD交于点 P n (n >2),则 AP 6 的长为【】A . -1005B . -1006C . -1007D . -20126.大于 1 的正整数 m 的三次幂可“分裂”成若干个连续奇数的和,如 23=3+5,33=7+9+11,43=13+15+17+19,…若 m 3 分裂后,其中有一个奇数是 2013,则 m 的值是【 】A .43B .44C .45D .467.边长为 a 的等边三角形,记为第 1 个等边三角形。
取其各边的三等分点,顺次连接得到一个正六边形,记为第 1 个正六边形。
取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第 2 个等边三角形。
取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作。
则第 6 个正六边形的边长是【 】A .5 ⨯ 35 2125 ⨯ 36 37 D .5 ⨯ 2114.如图,在△ABC 中,∠ACB=90º,∠B=30º,AC =1,AC 在直线 l 上.将△ABC绕点 A 顺时针旋转到位置①,可得到点 P 1,此时 AP 1=2;将位置①的三角形绕点 P 1 顺时针旋转1 ⎛ 1 ⎫53 ⎝ 2 ⎭1 ⎛ 1 ⎫52 ⎝3 ⎭1 ⎛ 1 ⎫63 ⎝ 2 ⎭ 1 ⎛ 1 ⎫6 2 ⎝ 3 ⎭B.52013﹣1C.52013-14D.A.5⋅()201098.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A—B—C-D—A一…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是【】第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是【】A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)9.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有【】A.8048个B.4024个C.2012个D.1066个11.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为【】A.0B.1C.2D.314.如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是【】A.54B.110C.19D.10915.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【】52012-1A.52012﹣1416.如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1,A2,A3,A4…,则点A30的坐标是【】32 B.5⋅(4)20109C.5⋅()201243D.5⋅()4022213.如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,A.(30,30)B.(﹣82,82)C.(﹣42,42)D.(42,﹣42)17.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;……;依(A ) 173 ,45 ,67 , 86.观察下列一组数: 2次作下去,则第 n 个正方形 A n B n C n D n 的边长是【】学习必备 欢迎下载4.如图,连接在一起的两个正方形的边长都为 1cm ,一个微型机器人由点 A 开始按 ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达 G 点时移动了 ▲ cm ;②当微型机器人移动了2012cm 时,它停在 ▲ 点.1113n -1(B )3n (C )3n +1 (D )3n +218.下图是某月的日历表,在此日历表上可以用一个矩形圈出 3×3 个位置相邻的 9 个数(如 6, ,8,l3,14,l5,20,21,22).若圈出的 9 个数中,最大数与最小数的积为 192,则这 9 个数的和为【】.5.如图,设四边形 ABCD 是边长为 1 的正方形,以对角线 AC 为边作第二个正方形 ACEF 、再以对角线 AE 为边作笫三个正方形 AEGH ,如此下去….若正方形 ABCD 的边长记为 a 1,按上述方法所作的正方形的边长依次为 a 2,a 3,a 4,…,a n ,则 a n = ▲ .的第 k 个数是▲ .10 9 , 11,…… ,它们是按一定规律排列的,那么这一组数A .32B .126C .135D .1441.在平面直角坐标系 xOy 中,我们把横 、纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是 x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为 m .当 m=3时,点B 的横坐标的所有可能值是▲ ;当点 B 的横坐标为 4n (n 为正整数)时,m= (用含 n的代数式表示.)8.在平面直角坐标系中,规定把一个三角形先沿 x 轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形 ABC 的顶点 B 、C 的坐标分别是,(-1,-1),(-3,-1),把三角形 ABC 经过连续 9 次这样的变换得到三角形 A’B’C’,则点 A 的对应点 A’的坐标是 ▲9.按照如图所示的 方法排列黑色小正方形地砖,则第 14 个图案中黑色小正方形地砖的块数是▲ .1 - x 称为 x 的差倒数,如2 的差倒数是 1 - 2 = -1 , -1的差1 - (-1) =2 ,现已知 x =- , x 是 x 的差倒数, x 是 x 的差倒数, x 是 x 的差倒3 = C学习必备 欢迎下载22.若 x 是不等于 1 的实数,我们把1 110.如图的平面直角坐标系中有一个正六边形 ABCDEF ,其中 C .D 的坐标分别为(1,0)和(2,倒数为 1 1 11 2 1 3 2 4 30).若在无滑动的情况下,将这个六边形沿着x 轴向右滚动,则在滚动过程中,这个六边形的顶数,……,依次类推,则 x 2012▲ .点 A .B .C .D .E 、F 中,会过点(45,2)的是点 ▲ .23.如图, n 个边长为 1 的相邻正方形的一边均在同一直线上,点 M 1,M 2,M 3,……M n 分别为边 B 1B 2,B 2B 3,B 3B 4,……,B n B n+1 的中点, B △1C 1M 1 的面积为 S △1, B 2C 2M 2 的面积为 S 2,…△B n C n M n 的面积为 S n ,则 S n = ▲ 。
(用含 n 的式子表示)14.已知,如图,△OBC 中是直角三角形,OB 与 x 轴正半轴重合,∠OBC=90°,且 OB=1,BC=3 ,将△OBC 绕原点 O 逆时针旋转 60°再将其各边扩大为原来的 m 倍,使 OB 1=OC ,得到OB △1C 1,将OB 绕原点 O 逆时针旋转 60°再将其各边扩大为原来的 m 倍,使 OB 2=OC △1,得到 OB 2C 2,……, 如此继续下去,得到△OB 2012C 2012,则 m= ▲ 。
点 C 2012 的坐标是 ▲ 。
24.如图,在△ABC 中,∠ACB=90°,∠A=60°,AC=a ,作斜边 AB 边中线 CD ,得到第一个三角形ACD ;DE⊥BC 于点 E ,作 Rt△BDE 斜边 DB 上中线 EF ,得到第二个三角形 DEF ;依此作下去…则第n 个三角形的面积等于 ▲ .16.如图,如图所示的图案是按一定规律排列的,照此规律,在第 1 至第 2012 个图案中“ ”,共▲ 个.20.将边长分别为 1、2、3、4……19、20 的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 ▲ .25.如图,下图是一组由菱形和矩形组成的有规律的图案,第 1 个图中菱形的面积为 S (S 为常数),第 2 个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推……,则第 n 个图中阴影部分的面积可以用含 n 的代数式表示为 ▲1和x轴上.△1OA B,△1B1A2B,△2B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2,⎪,那么点A的纵坐标是▲._。