信号分析与处理期中考试答案

合集下载

信号分析与处理答案第二版完整版

信号分析与处理答案第二版完整版

信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。

(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。

特征方程,解得特征根为。

所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。

所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。

…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。

(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。

当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。

(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。

当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。

解已知系统的微分方程及初始状态如下,试求系统的零输入响应。

(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。

解由于电容器二端的电压在t=0时不会发生突变,所以。

信号与线性系统分析试卷(含答案11.04.28,09级期中考试试卷)

信号与线性系统分析试卷(含答案11.04.28,09级期中考试试卷)
−1
0
2
f1 (τ )
f 2 (−τ )
1
−1
2
3
0
1 τ
C
、信号 e
−2
−2( t −1)
ε (t − 1)
的频谱为( 、 −2e+ jω
−2
) 。
C
A
e 、 2+ jω
B
、 2e+ jω
− jω
D
、 −2e+ jω
−2
4
、若 f (t ) ↔ F ( jω ) ,则 f (at − b) 的傅里叶变换为(
5

1 + jω 0.5(0.5 + jω ) 0.25 0.25 = + = 0.5 + 1 + j 2ω 0.5 + jω 0.5 + jω 0.5 + jω
5

解法二:时域法
ic (t ) = C uc (t ) = duc (t ) dt
1 1 h(t ) = δ (t ) + e−0.5t u (t ) 2 4
5
2π 2π 1 2 2 1 2
、 Sa(ω + 4π ) * Sa(ω − 4π ) C、 Sa (ω + 4π ) 注: f (t ) = g (t ) ↔ 2Sa(ω )
A
2 1 2
、 Sa (ω − 4π ) D、 Sa (ω + 4π ) + Sa (ω − 4π )
B
2
f 2 (t ) = cos(4π t ) ↔ π [δ (ω + 4π ) + δ (ω − 4π )]
c d
− jωt d

信号分析与处理课后答案_赵光宙

信号分析与处理课后答案_赵光宙

信号分析与处理课后答案一、信号分析基础1.1 什么是信号?信号是一种随时间变化的物理量或信息。

根据信号的特点,可以分为连续信号和离散信号。

连续信号是指在任意时间点上都能够取到值的信号,通常用连续函数来表示。

离散信号是指只在某些离散时间点上能够取到值的信号,通常用序列来表示。

1.2 信号处理的基本任务信号处理的基本任务包括信号的获取、表示、转换、分析和处理。

其中,信号的获取是指从外部获取信号的过程,信号的表示是指将信号用数学方法表示出来,信号的转换是指将信号从一种形式转换为另一种形式,信号的分析是指对信号进行频域、时域等方面的分析,信号的处理是指对信号进行滤波、降噪、压缩等处理操作。

二、离散信号的表示与运算2.1 离散信号的表示离散信号可以用序列表示。

序列是一系列按固定顺序排列的数值,通常用形如{x(n)}的表示方法。

2.2 离散信号的运算离散信号的运算包括加法、减法、乘法和除法等。

对于两个离散信号x(n)和y(n),它们的加法可以写作z(n) = x(n) + y(n),减法可以写作z(n) = x(n) - y(n),乘法可以写作z(n) = x(n) * y(n),除法可以写作z(n) = x(n) / y(n)。

三、信号的时域分析3.1 信号的时域表示信号的时域表示是指将信号用时间序列表示出来。

在时域分析中,常用的表示方法包括离散时间信号和连续时间信号。

离散时间信号可以用序列表示,连续时间信号可以用连续函数表示。

3.2 信号的时域分析方法信号的时域分析方法包括时域表示、自相关函数和相关函数等。

时域表示是指将信号在时域上的特征表达出来,自相关函数是指信号与其自身的乘积在不同时间点上的累加,相关函数是指两个信号在不同时间点上的乘积的累加。

四、信号的频域分析4.1 信号的频域表示信号的频域表示是指将信号在频域上的特征表达出来。

常用的频域表示方法包括傅里叶变换、频谱分析和功率谱分析等。

4.2 傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法。

(完整word版)西南交通大学2012第1学期数字信号处理期中试题含答案(word文档良心出品)

(完整word版)西南交通大学2012第1学期数字信号处理期中试题含答案(word文档良心出品)

西南交通大学2012-2013学年第( 1 )学期期中考试试卷课程代码 3130100 课程名称 《数字信号处理A 》 考试时间 120分钟阅卷教师签字:一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。

每小题所给答案中只有一个是正确的。

1.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( C )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器2. 对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( B ) A.[1 3 0 5 2] B.[2 1 3 0 5] C.[3 0 5 2 1] D.[3 0 5 2 0]3.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为( D )A.有限长序列B.右边序列C.左边序列D.双边序列 4.离散序列x(n)为实、偶序列,则其频域序列X(k)为:( A )。

A .实、偶序列 B. 虚、偶序列 C .实、奇序列 D. 虚、奇序列 5. 用窗函数法设计FIR 低通滤波器,当窗函数类型确定后,取窗的长度越长,滤波器的过渡带越 ( A )A. 窄B. 宽C. 不变D. 无法确定6. 当用循环卷积计算两个有限长序列的线性卷积时,若两个序列的长度分别是N 和M ,则循环卷积等于线性卷积的条件是:循环卷积长度( A )。

A.L≥N+M -1 B.L<N+M-1 C.L=N D.L=M7 序列3π()cos 5x n n ⎛⎫= ⎪⎝⎭的周期为( C )A. 3B. 5C. 10D. ∞8. 在基2 DIT —FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为( C )。

班 级 学 号 姓 名密封装订线 密封装订线 密封装订线A. 8B. 16C. 1D. 49. 已知序列()()x n n δ=,其N 点的DFT 记为X(k),则X(0)=( B )A .N-1B .1C . 0D . N 10. 关于双线性变换法设计IIR 滤波器正确的说法是( D ) A .双线性变换是一种线性变换 B .不能用于设计高通和带阻滤波器C .双线性变换法将线性相位的模拟滤波器映射为一个线性相位的数字滤波器D .需要一个频率非线性预畸变 二、(10分)判断题(对以下各题的说法,认为对的在括号内填“〇”,认为错的在括号内填 “╳”;每小题2分,共10分)1.(〇)用基2时间抽取FFT 计算1024点DFT 的计算量不到直接计算量的二百分之一。

信号与系统期中考试答案,DOC

信号与系统期中考试答案,DOC

一、(15%)已知连续时间信号x t ()和离散时间信号x n []的波形图如下图所示。

画出下列各信号的波形图,并加以标注。

1.()()11xt x t =-,2.()()221x t x t =-,3.3()()x x t ττ=-第三个自变量不为t !! 4.{}1[][][]e x n x n Even x n ==,5.2[][][1]x n x n n δ=-答案二、(25%)简要回答下列问题。

1. 推导离散时间信号[]0j n xn e ω=成为周期信号的条件(3%);若是周期信号,给出基波周期的求法(3%)。

答案:若为周期信号,则00()j nj n N e e n ωω+=∀,。

推出01j N e ω=,再推出02,,0N k k z k ωπ=∈≠。

得出02k Nωπ=为有理分数。

2.指出离散时间信号[]j n x n e ω=频率取值的主值范围(2%),指出它的最低频率和最高频率(2%)。

答案2πωπωπ-≤<≤<或0。

min max 02,21),k k z k k z ωπωππ=∈=+∈或。

而或(。

3. 断下列两个系统是否具有记忆性。

①()()()()222y t x t x t =-,(1%)②[][][]0.51y n x n x n =--。

(1%)答案①无记忆性②有记忆性4.简述连续时间和离散时间线性时不变(LTI )系统的因果性、稳定性与单位冲激响应(Unitimpulseresponse )的关系(4%)。

答案因果性与()()()[][][]h t h t u t h n h n u n ==或互为充要条件。

稳定性与|()||[]|n h t dt h n +∞+∞=-∞-∞<+∞<+∞∑⎰或互为充要条件。

5. 很广泛一类因果系统可用常系数微分方程:()()00k k NM k k k k k k d y t d x t a b dt dt ===∑∑表征,画出该类系统的增量线性系统结构(2%),用该结构说明全响应的构成方法及每一部分的物理含义(4%),在什么条件下该类系统为LTI 系统(3%)? 答案()()()x i y t y t y t =+,()()*()x y t x t h t =是仅由输入信号引起响应:零状态响应,()i y t 是仅由初始状态引起的响应:零输入响应。

信号分析与处理习题答案(P155)

信号分析与处理习题答案(P155)

信号分析与处理习题答案(P155)3、绘图程序:%sinusoidal sequence n=0:29;x=sin(16*pi/5*n+pi/4); stem(n,x);xlabel('n');ylabel('x(n)');title('Sinusoidal sequence'); grid;55825162=∴===N N m序列为周期序列为有理数πππω4、绘图程序:%delta sequencen=[-5 -4 -3 -2 -1 0 1 2 3 4 5]; x=[0 5 0 0 2 0 -4 0 3 0 0]; stem(n,x);xlabel('n');ylabel('x(n)');title('delta sequence'); grid;8、根据DTFT 性质, (1)时域尺度变换特性:连续时间傅里叶变换的尺度变换表示为:⎪⎭⎫ ⎝⎛↔a X a at x ω1)( 然而,在离散时间的情况下,若a 不是整数,x[an]就不是一个序列。

另一方面,如果a 是一个整数,例如a=2,那么x[2n]仅包含x[n]的偶数样点。

因此,离散时间中的时域尺度变换与上式有些不同。

令m 为一正整数,则序列的傅里叶变换为⎩⎨⎧≠===km n kmn k x m n x n x m 0][]/[][)(()a b{})(][][][][)()()()(Ω====∑∑∑∞-∞=Ω-∞-∞=Ω-∞-∞=Ω-m X ek x ekm xen xn x F n km j n kmj m n nj m m所以)(0]/[][)(Ω↔⎩⎨⎧≠==m X km n km n m n x n x m⎪⎭⎫⎝⎛Ω↔a X an x )( (3)时域位移:)(][00Ω↔-Ω-X en n x n j)()1()()()2()(22Ω-=Ω-Ω↔--Ω-Ω-X e X eX n x n x j j10.(2)根据P109式3-26)())(()(1)()()(00101000Ω=Ω+=ΩΩ=∑∑-=Ω--=Ωk X qN k X en x Nk X e k X n x N k njk N k njk根据题意,序列x(n)的基本周期为N=8,Ω0=2π/N=π/4 根据欧拉公式,nj nj njnjee een 002121214cos 44Ω-Ω-+=⎪⎪⎭⎫ ⎝⎛+=πππ则x(n)的傅里叶系数为X(1)=1/2,X(-1)= X(-1+8)= X(7)=1/2,其他系数等于0。

信号分析与处理A试题A卷.doc

信号分析与处理A试题A卷.doc

A u(n) = Z$(n - k)k=O C u(n)= ^J(n-k)k=-©oooBu(n) = £3(n -k) k=08D u(n) = £^(n -k)信号分析与处理A 期中试题一、选择题(每题3分,共30分)1. x(n) = 2cos(—-—),该序列是() 3 6A.非周期序列B.周期N = ^/6C.周期N = 6勿D.周期N = 2勿2. 序列x(n) = -a nu(-n-l),则X(z)的收敛域为()A. z < aB. z < aC. z > aD. z > a 3若一线性移不变系统当输入为x(n) = ^(n)时输出为y(n) = R3(n),则当输入为 u(n)-u(n-2)时输出为 ()A. R 3(n)B. R 2(n)C. RJn) + RJn-l)D. R 2(n) + R.(n-1) 4.己知序列Z 变换的收敛域为Izlvl,则该序列为 ()A.有限长序列B.右边序列C.左边序列D.双边序列 5.设系统的单位抽样响应为h(n),则系统因果的充要条件为()A.当 n>0 时,h(n)=0B.当 n>0 时,h(n)尹0C.当 n<0 时,h(n)=OD.当 n<0 时,h(n)KO6下列哪一个单位抽样响应所表示的系统不是因果系统?()A.h(n)=6(n)B.h(n)=u(n)C.h(n)=u(n)-u(n-1)D.h(n)=u(n)-u(n+1) 7.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括()A.单位圆B.原点C.实轴D.虚轴 9设系统的单位抽样响应为h(n)=6(n-1)+6(n+l),其频率响应为()A. H(e 」'")=2cos 刃B. H(e J<y )= 2sin69C. H(e 」”)=cos 刃D. H(e 均)=sin6910下列关系正确的是()。

信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案

信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案

第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。

(1) )()1(31)(n x n y n y =--解 当激励为)(n δ时,响应为)(n h ,即:)()1(31)(n n h n h δ+-=由于方程简单,可利用迭代法求解:1)0()1(31)0(=+-=δh h ,31)0(31)1()0(31)1(==+=h h h δ,231)1(31)2()1(31)2(⎪⎭⎫ ⎝⎛==+=h h h δ…,由此可归纳出)(n h 的表达式:)()31()(n n h n ε=利用阶跃响应和冲激响应的关系,可以求得阶跃响应:)(])31(2123[311)31(1)31()()(10n k h n s n n k nk nk ε-=--===+=-∞=∑∑(2) )()2(41)(n x n y n y =--解 (a)求冲激响应)()2(41)(n n h n h δ=--,当0>n 时,0)2(41)(=--n h n h 。

特征方程0412=-λ,解得特征根为21,2121-==λλ。

所以: n n C C n h )21()21()(21-+= …(2.1.2.1)通过原方程迭代知,1)0()2(41)0(=+-=δh h ,0)1()1(41)1(=+-=δh h ,代入式(2.1.2.1)中得:121=+C C0212121=-C C 解得2121==C C , 代入式(2.1.2.1):0,)21(21)21(21)(>-+=n n h n n …(2.1.2.2)可验证)0(h 满足式(2.1.2.2),所以:)(])21()21[(21)(n n h n n ε-+=(b)求阶跃响应通解为 n n c C C n s )21()21()(21-+=特解形式为 K n s p =)(,K n s p =-)2(,代入原方程有 141=-K K , 即34=K完全解为34)21()21()()()(21+-+=+=n n p c C C n s n s n s通过原方程迭代之1)0(=s ,1)1(=s ,由此可得13421=++C C134212121=+-C C 解得211-=C ,612=C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 如图所示信号f(t)。 (1)求指数形式和三角形式傅立叶级数;(2)求级数S=1-1/3+1/5-1/7+…之和
f (t )
1
...
-3 -2 -1 0 1 2 3
...
t
(1)
T1 = 2
1 T21 1 1 − jnπ t − jnω1t 2π dt = ∫ e dt ω1 = = π Fn = ∫− T1 f (t )e 2 0 T1 2 T1 nπ − jnπ / 2 sin( ) e − jnπ 1 e −1 2 = = 2 − jnπ nπ
1 n = 0时,F0 = ∫ T1
f (t ) =
T1 2 T − 1 2
1 1 1 f (t )dt = ∫ 1dt = 2 0 2
n =−∞


Fn e jnω1t
nπ nπ ∞ sin j ( nπ t − ) 2 e 2 =∑ nπ n =−∞
1 1 − e − jnπ Fn = ( an − jbn ) = − j 2 2nπ
(2)折叠 → 平移 → 压缩: f (t ) ↔ F (ω ) ⇒ f ( −t ) ↔ F ( −ω ) f [−(t − 6)] = f (6 − t ) ↔ F (−ω )e− j 6ω 1 ω − j 6ω / 2 1 ω − j 3ω f (6 − 2t ) ↔ F (− )e = F ( − )e 2 2 2 2
z3 + z2 + z − 3 = = 1 + 2 z −1 + 3z −2 z 2 ( z − 1) z − z −3 ( z 2 + 1)( z + 1) X 2 ( z) = = z −1 z3 根据卷积定理: ( z 2 + 1)( z + 1)( z 3 + z 2 − 1) X ( z) = X1 ( z) X 2 ( z) = z 3 ( z − 1)
7 已知
z 3 + 2z 2 + 1 X (Z) = 3 , z > 1, 2 z -1.5z + 0.5z
求x(n)。
法二:设a1 ( n) = nU (n), 则根据移序性质 d z z X1 ( z) = − z ( )= dz z − 1 ( z − 1) 2 a(n) = (−1) n a1 ( n),根据Z 域尺度变换性质, z −z X ( z) = X1 ( ) = , ( z > 1) 2 −1 ( z + 1)

1 2 1 1 1 = + (sin π t + sin 3π t + sin 5π t + sin 7π t + L) 2 π 3 5 7
(2) 当t=1/2时 1 2 1 1 1 f (1/ 2) = 1 = + (1 − + − + L) 2 π 3 5 7 1 1 1 π 故S = 1 − + − + L = 3 5 7 4
(5)平移 → 压缩 → 折叠: f (t ) ↔ F (ω ) ⇒ f (t + 6) ↔ F (ω )e j 6ω 1 ω j 3ω f (6 + 2t ) ↔ F ( )e 2 2 1 ω − j 3ω f (6 − 2t ) ↔ F (− )e 2 2
(6)压缩 → 折叠 → 平移: f (t ) ↔ F (ω ) ⇒ 1 ω f (2t ) ↔ F ( ) 2 2 1 ω f (−2t ) ↔ F (− ) 2 2
1 2 n为奇数时,Fn = − j ,a n = 0, bn = nπ nπ n为偶数时,Fn = 0, an = bn = 0
f (t ) = a0 + ∑ (an cos nω1t + bn sin nω1t )
n =1 ∞ 1 2 = + ∑ sin(nπ t ) 2 n =1,奇数 nπ
ω − j 3ω 1 f [−2(t − 3)] = f (6 − 2t ) ↔ F (− )e 2 2
5 求序列的z变换及其收敛域。
1 n 1 n ( ) U (n) − ( ) U (−n − 1) 5 3
3z 1 X 2 ( z) = (z < ) 3z − 1 3 z 3z X ( z ) = X1 ( z ) + X 2 ( z ) = + z − 1/ 5 3z − 1 1 1 1 1 4 收敛域 < z < ,极点 、;零点0、 。 5 5 3 3 15 z 1 X1 ( z ) = (z > ) z − 1/ 5 5
T /2
− jn
2π t T
1 F0 = a0 = T∫ NhomakorabeaT
0
2 1 tdt = T 4
1 e e −1 f (t ) = + ∑ ( + )e 2 2 4 n =−∞ 2nπ 2n π
∞ n≠ n≠0
− jnπ
− jnπ
− jn
2π t T
3 求函数f(t)的频谱,并画出频谱图。
sin[2π (t − 2)] f (t ) = π (t − 2)
(3)压缩 → 平移 → 折叠: f (t ) ↔ F (ω ) ⇒ 1 ω f (2t ) ↔ F ( ) 2 2
1 ω j 3ω f [2(t + 3)] = f (6 + 2t ) ↔ F ( )e 2 2 ω − j 3ω 1 f (6 − 2t ) ↔ F (− )e 2 2
(4)平移 → 折叠 → 压缩: f (t ) ↔ F (ω ) ⇒ f (t + 6) ↔ F (ω )e j 6ω f (6 − t ) ↔ F ( −ω )e − j 6ω ω − j 3ω 1 f (6 − 2t ) ↔ F (− )e 2 2
sin[ωτ / 2] Gτ (t ) ↔ τ ωτ / 2
(−∞ < t < +∞)
取ωτ / 2 = 2πω,即τ = 4π
sin 2πω sin 2πω G4π (t ) ↔ 4π = 2π 2πω πω
1 sin 2πω ⇒ G4π (t ) ↔ 2π πω sin 2π t 1 ⇒ ↔ 2π G4π (ω ) = G4π (ω ) πt 2π
6 利用z变换的性质求下列各序列x(n)的z变换X(z)。
(−1) n nU (n)
法一:设a1 ( n) = (−1) n U (n), 则 z X1 ( z) = , ( z > 1) z +1 a(n) = na1 (n),根据Z 域微分性质, d −z X ( z) = − z X1 ( z) = , ( z > 1) 2 dz ( z + 1)
sin 2π (t − 2) ⇒ ↔ G4π (ω )e − j 2ω π (t − 2)
4 已知f(t)的傅立叶变换为
F(ω),求f(6-2t)的傅立叶变换。
(1)折叠 → 压缩 → 平移: f (t ) ↔ F (ω ) ⇒ f ( −t ) ↔ F (−ω ) 1 ω f (−2t ) ↔ F (− ) 2 2 1 ω − j 3ω f [−2(t − 3)] = f (6 − 2t ) ↔ F (− )e 2 2
( n + 1)[U (n) − U (n − 3)]*[U (n) − U ( n − 4)]
令a1 (n) = (n + 1)[u (n) − U (n − 3)], a2 (n) = U (n) − U (n − 4), 则 X1 ( z) = z z 3z − 2 1 + − 2 − 2 ( z − 1)2 z − 1 z ( z − 1) 2 z ( z − 1)
2 求如图所示信号f(t)的傅立叶级数。
f (t )
1
… -T/2
… 0 T/2 T
t
1 2 Fn = ∫ te dt 0 T T 2π T 2π T − jn t − jn t 2 1 1 2 = 2 {− te T |02 − e T |0 } 2π 2π 2 T jn ( jn ) T T T − jnπ e 2 e− jnπ − 1 = 2 {− 2 + } 2π 2π 2 T jn (n ) T T e − jnπ e− jnπ − 1 = + 2nπ 2n 2π 2
相关文档
最新文档