第四章:雷达侦察的信号处理
雷达对抗技术04new

max=几万~几十万个脉冲/秒
3.信号处理的主要流程
信号处理包括预处理和主处理两部分,如图 示
1) 信号预处理
2)信号主处理
4.2 对雷达信号时域参数的测量
脉冲到达时间(tTOA)、脉冲宽度( 脉冲幅度(AP) 1、脉冲到达时间(tTOA)的测量
第4章 雷达侦察信号分析与处理
典型处理过程: 1、侦察天线——实时检测和参数测量电路——脉冲描述字 PDW 脉冲描述字PDW(Pulse Discreption Word): 对射频脉冲以指定长度(定长)、指定格式(定格)、指定 位含义(定位)的数字形式的信号参数描述字。 雷达侦察系统的前端:从侦察天线到射频信号实时检测和参 数测量电路的输出端。 2、前端输出——信号处理设备——辐射源分选、参数估计、 辐射源识别、威胁程度判别、作战态势判别 雷达侦察系统的后端:从信号处理设备至显示、存储、记录 设备。
对已经生成的 ,预处理的基本预分选算法:
式中 即
4.3.2 对未知信号的预处理
三参数: 、 、 1、 的生成原则
除与 的生成原则相同外,还应满足: (1) 完备性和正交性
以保证任意输入的PDW,都必将被唯一地分选到 一个 中。 (2)尽可能使同一部雷达、在同一种工作方式下的 PDW在信号预分选后处于同一个分选子流 中。
PW)、
为避免周期测量模糊,应保证
2、脉冲宽度( PW)的测量
3、脉冲幅度(AP)的测量
4.3 雷达侦察信号的预处理
4.3.1 对已知雷达信号的预处理
1、 的生成 要求:
1 构成 的各维参数特征及参数的具体描述都必须与侦 察接收机前端输出的PDW参数特征及参数的具体描述保持 一致。 2 必须表现出已知雷达j在PDW的多维特征参数空间中 详细的、具体的性质,以便于预处理能够尽快、准确地实 现信号分选。
雷达信号处理技术与应用

雷达信号处理技术与应用雷达信号处理技术是一种关键的技术,它在军事和民用领域都有广泛的应用。
本文将介绍雷达信号处理的基本原理和常见的应用。
雷达信号处理的基本原理是将收到的雷达信号进行处理,提取出目标的相关信息。
这一过程包括信号的滤波、波束形成、脉压压缩、目标检测、目标跟踪等多个步骤。
首先,信号经过滤波器进行频率滤波和带宽约束,以抑制噪声和干扰。
然后,波束形成技术根据角度信息将多个接收通道的数据进行加权组合,以增强目标信号的能量并降低干扰信号的能量。
接下来,脉冲压缩技术会对信号进行时域压缩,以提高雷达分辨率。
然后,目标检测算法会对压缩后的信号进行处理,以判断是否存在目标。
最后,目标跟踪算法会对被检测到的目标进行跟踪,以实时追踪目标的运动轨迹。
雷达信号处理技术在军事领域有着广泛的应用。
在军事侦察和情报收集中,雷达信号处理技术可以用于探测敌方目标的位置、速度和航向信息,以及判断目标的类型。
在导弹防御领域,雷达信号处理技术可以用于早期预警和导弹追踪,以及识别敌方导弹的弹道和运动特性。
此外,雷达信号处理技术还广泛应用于军事通信、干扰抵抗和电子战等领域。
雷达信号处理技术在民用领域也有着重要的应用。
在天气预报中,雷达信号处理技术可以用于测量降水量和判断降水类型,以提供准确的天气预报信息。
在航空领域,雷达信号处理技术可以用于飞机导航和防撞系统,以提供飞机的位置和避免与其他飞机的碰撞。
在智能交通系统中,雷达信号处理技术可以用于车辆检测和交通流量监控,以提高交通效率和安全性。
此外,雷达信号处理技术还在地质勘探、环境监测和医学影像等领域有着广泛的应用。
近年来,随着计算机技术和人工智能技术的快速发展,雷达信号处理技术也取得了重要的进展。
传统的基于模拟信号处理的雷达系统逐渐被数字信号处理和软件定义雷达所取代。
数字信号处理技术可以实现更复杂的算法和更高的灵活性,同时能够有效地抑制噪声和干扰,提高雷达系统的性能。
人工智能技术可以应用于雷达信号处理中的目标检测和目标跟踪等关键任务,提高雷达系统的自动化水平和目标识别性能。
雷达信号处理原理

雷达信号处理原理雷达(Radar)是利用电磁波传播的原理,通过接收和处理信号来探测、定位和追踪目标的一种技术。
雷达信号处理是指对接收到的雷达回波信号进行解调、滤波、增强、特征提取等一系列处理操作,以获取目标的位置、速度、形状、材料等信息。
本文将介绍雷达信号处理的基本原理及其主要方法。
一、雷达信号处理基本原理雷达信号处理的基本原理可以归纳为以下几个步骤:回波信号采集、信号预处理、目标检测、参数估计和跟踪。
1. 回波信号采集雷达将发射出的脉冲信号转化为电磁波,通过天线向目标发送,并接收目标反射回来的回波信号。
回波信号会包含目标的位置、形状、速度等信息。
2. 信号预处理由于雷达接收到的回波信号存在噪声、多径干扰等问题,需要对信号进行预处理。
预处理的主要目标是消除噪声、降低多径干扰,并使信号满足后续处理的要求。
3. 目标检测目标检测是指在预处理后的信号中判断是否存在目标。
常用的目标检测算法包括:恒虚警率检测、动态门限检测、自适应门限检测等。
目标检测的结果通常是二值化图像,目标区域为白色,背景区域为黑色。
4. 参数估计参数估计是指根据目标检测结果,对目标的位置、速度、方位角等参数进行估计。
常用的参数估计方法包括:最小二乘法、卡尔曼滤波等。
参数估计的结果可以用来进一步对目标进行跟踪和识别。
5. 跟踪目标跟踪是指根据参数估计的结果,对目标在时间上的变化进行预测和跟踪。
常用的目标跟踪算法包括:卡尔曼滤波、粒子滤波等。
目标跟踪的结果可以用来对目标进行轨迹分析和行为预测。
二、雷达信号处理方法雷达信号处理方法主要包括:滤波、相关、谱估计、目标识别等。
1. 滤波滤波是对信号进行频率或时间域的处理,常用于去除噪声、消除多径干扰等。
常见的滤波器包括:低通滤波器、高通滤波器、带通滤波器等。
滤波的方法有时域滤波和频域滤波两种。
2. 相关相关是利用信号的自相关或互相关性质,计算信号之间的相似度。
在雷达信号处理中,相关常用于目标的距离测量和速度测量。
大学_《雷达对抗原理》(赵国庆著)课后答案免费下载_1

《雷达对抗原理》(赵国庆著)课后答案免费下载《雷达对抗原理》(赵国庆著)内容提要第1章雷达对抗概述1.1 雷达对抗的基本概念及含义1.1.1 雷达对抗的含义及重要性1.1.2 雷达对抗的基本原理及主要技术特点1.1.3 雷达对抗与电子战1.2 雷达对抗的信号环境1.2.1 现代雷达对抗信号环境的特点1.2.2 信号环境在雷达对抗设备中的描述和参数1.3 雷达侦察概述1.3.1 雷达侦察的任务与分类1.3.2 雷达侦察的技术特点1.3.3 雷达侦察设备的基本组成1.4 雷达干扰概述1.4.1 雷达干扰技术的分类1.4.2 雷达干扰设备的基本组成习题一参考文献第2章雷达信号频率的测量2.1 概述2.1.1 雷达信号频率测量的重要性2.1.2 测频系统的主要技术指标2.1.3 现代测频技术分类2.2 频率搜索接收机2.2.1 搜索式超外差接收机2.2.2 射频调谐晶体视频接收机2.2.3 频率搜索形式2.2.4 频率搜索速度的选择2.3 比相法瞬时测频接收机2.3.1 微波鉴相器2.3.2 极性量化器的基本工原理2.3.3 多路鉴相器的并行运用2.3.4 对同时到达信号的分析与检测2.3.5 测频误差分析2.3.6 比相法瞬时测频接收机的组成及主要技术参数 2.4 信道化接收机2.4.1 基本工作原理2.4.2 信道化接收机存在的问题2.4.3 信道化接收机的特点和应用 2.5 压缩接收机2.5.1 Chirp变换原理2.5.2 表声波压缩接收机的工作原理 2.5.3 压缩接收机的参数2.6 声光接收机2.6.1 声光调制器2.6.2 空域傅立叶变换原理2.6.3 声光接收机的工作原理2.6.4 声光接收机的主要特点习题二参考文献 ?第3章雷达的方向测量和定位3.1 概述3.1.1 测向的目的3.1.2 测向的方法3.1.3 测向系统的主要技术指标3.2 振幅法测向3.2.1 波束搜索法测向技术3.2.2 全向振幅单脉冲测向技术3.2.3 多波束测向技术3.3 相位法测向3.3.1 数字式相位干涉仪测向技术3.3.2 线性相位多模圆阵测向技术3.4 对雷达的定位3.4.1 单点定位3.4.2 多点定位习题三参考文献 ?第4章雷达侦察的信号处理4.1 概述4.1.1 信号处理的任务和主要技术要求 4.1.2 信号处理的基本流程和工作原理 4.2 对雷达信号时域参数的'测量4.2.1 tTOA的测量4.2.2 PW的测量4.2.3?AP的测量4.3 雷达侦察信号的预处理4.3.1 对已知雷达信号的预处理4.3.2 对未知信号的预处理4.4 对雷达信号的主处理4.4.1 对已知雷达信号的主处理4.4.2 对未知雷达信号的主处理4.5 数字接收机和数字信号处理4.5.1 数字接收机4.5.2 数字测频4.5.3 数字测向4.5.4 信号脉内调制的分析习题四参考文献 ?第5章雷达侦察作用距离与截获概率5.1 侦察系统的灵敏度5.1.1 切线信号灵敏度PTSS和工作灵敏度POPS的定义 5.1.2 切线信号灵敏度PTSS的分析计算5.1.3 工作灵敏度的换算5.2 侦察作用距离5.2.1 简化侦察方程5.2.2 修正侦察方程5.2.3 侦察的直视距离5.2.4 侦察作用距离Rr对雷达作用距离Ra的优势 5.2.5 对雷达旁瓣信号的侦察5.3 侦察截获概率与截获时间5.3.1 前端的截获概率和截获时间5.3.2 系统截获概率和截获时间习题五参考文献第6章遮盖性干扰6.1 概述6.1.1 遮盖性干扰的作用和分类6.1.2 遮盖性干扰的效果度量6.1.3 最佳遮盖干扰波形6.2 射频噪声干扰6.2.1 射频噪声干扰对雷达接收机的作用6.2.2 射频噪声干扰对信号检测的影响6.3 噪声调幅干扰6.3.1 噪声调幅干扰的统计特性6.3.2 噪声调幅干扰对雷达接收机的作用 6.3.3 噪声调幅干扰对信号检测的影响 6.4 噪声调频干扰6.4.1 噪声调频干扰的统计特性6.4.2 噪声调频干扰对雷达接收机的作用 6.4.3 噪声调频干扰对信号检测的影响 6.5 噪声调相干扰6.5.1 噪声调相干扰的统计特性6.5.2 影响噪声调相干扰信号效果的因素 6.6 脉冲干扰习题六参考文献第7章欺骗性干扰7.1 概述7.1.1 欺骗性干扰的作用7.1.2 欺骗性干扰的分类7.1.3 欺骗性干扰的效果度量7.2 对雷达距离信息的欺骗7.2.1 雷达对目标距离信息的检测和跟踪7.2.2 对脉冲雷达距离信息的欺骗7.2.3 对连续波调频测距雷达距离信息的欺骗 7.3 对雷达角度信息的欺骗7.3.1 雷达对目标角度信息的检测和跟踪7.3.2 对圆锥扫描角度跟踪系统的干扰7.3.3 对线性扫描角度跟踪系统的干扰7.3.4 对单脉冲角度跟踪系统的干扰7.4 对雷达速度信息的欺骗7.4.1 雷达对目标速度信息的检测和跟踪7.4.2 对测速跟踪系统的干扰7.5 对跟踪雷达AGC电路的干扰7.5.1 跟踪雷达AGC电路7.5.2 对AGC控制系统的干扰习题七参考文献第8章干扰机构成及干扰能量计算8.1 干扰机的基本组成和主要性能要求8.1.1 干扰机的基本组成8.1.2 干扰机的主要性能要求8.2 干扰机的有效干扰空间8.2.1 干扰方程8.2.2 干扰机的时间计算8.3 干扰机的收发隔离和效果监视8.3.1 收发隔离8.3.2 效果监视8.4 射频信号存储技术8.4.1 模拟储频技术(ARFM)8.4.2 数字储频技术(DRFM)8.5 载频移频技术8.5.1 由行波管移相放大器构成的载频移频电路 8.5.2 由固态移相器构成的载频移频电路习题八参考文献第9章对雷达的无源对抗技术9.1 箔条干扰9.1.1 箔条干扰的一般特性9.1.2 箔条的有效反射面积9.1.3 箔条的频率响应9.1.4 箔条干扰的极化特性9.1.5 箔条回波信号的频谱9.1.6 箔条的战术应用9.2 反射器9.2.1 角反射器9.2.2 龙伯透镜反射器9.3 假目标和雷达诱饵9.3.1 带有发动机的假目标9.3.2 火箭式雷达诱饵9.3.3 投掷式雷达诱饵9.3.4 拖曳式雷达诱饵9.4 隐身技术习题九参考文献《雷达对抗原理》(赵国庆著)目录该书系统介绍了雷达对抗的基本原理,系统的组成,应用的主要技术等。
《电子对抗原理与技术》第4章 信号处理与电子侦察系统

主要内容
§4.1 信号处理概述 §4.2 脉冲时域参数测量 §4.3 雷达信号分选 §4.4 雷达信号脉内特征分析 §4.5 雷达辐射源识别 §4.6 通信信号分析与识别 §4.7 电子对抗侦察系统
2/68
大纲要求
掌握电子战信号处理的基本任务、参数 测量、信号分选、辐射源识别、脉冲描述字、 辐射源描述字等概念和基本原理。
22/68
§4.3 信号分选技术
23/68
§4.3 信号分选技术
4.3.3 信号主分选处理 主分选处理主要是针对PRI特征的详细分析和
处理,通过对脉冲列PRI特征的分析,识别辐射源 的PRI特性,利用搜索法提取属于不同辐射源的脉 冲列,达到分选的目的。
24/68
§4.3 雷达信号分选
(2)雷达信号PRI特性 在雷达信号诸多参数中,PRI是其中工作样式最多、
参差PRI :
PRI 5
PRI 4
PRI 3 P R PRI 2 I
PRI 1
pri i
骨架周期:
5
PRI i i
M
1
M
i
29/68
§4.3 雷达信号分选
成组PRI :
pri i
PRI 3 P PRI 2 R I
PRI 1
1 i
M
30/68
§4.4 雷达信号脉内特征分析
31/68
§4.4 雷达信号脉内特征分析
雷达识别参数库中第k类雷达的参数为
Rk {PW0k , RF0k , PRI0k, PWok , RFok , PRIok }
39/68
§4.5 雷达辐射源识别
定义Fi的参数与Rk相应参数之间的加权距离如
雷达对抗原理第4章 雷达侦察的信号处理

第4章
雷达侦察的信号处理
图4-2 对雷达信号极化方向的检测和测量的系统组成
第4章
雷达侦察的信号处理
第4章
雷达侦察的信号处理
4.2.2 tTOA测量
tTOA是脉冲雷达信号重要的时域参数,雷达侦察系统中 对tTOA的典型测量原理如图4-3(a)所示,其中输入信号si(t)经 过包络检波、视频放大后成为sv(t),它与检测门限VT进行比 较,当sv(t)≥VT时,从时间计数器中读取当前时刻t进入锁存
除了自身能力以外,雷达侦察系统实际能够达到的信号
处理时间还会受到实际信号环境的严重影响,S中的辐射源 越多,信号越复杂,相应的信号处理时间也越长。
第4章
雷达侦察的信号处理
4. 可处理的输入信号流密度
该指标是指在不发生前端输入的{PDWi}i或{s(n)}n数据 丢失的情况下,单位时间内信号处理机允许输入的{PDWi}i 或{s(n)}n最大平均脉冲数——λmax。在一般情况下,雷达侦 察接收机的宽带侦收前端对每一个检测到的射频脉冲均用一
处理的过程是:首先将实时输入的{PDWi}i与m个已知雷达数据库{Cj}
mj=1进行快速匹配,从中分离出符合{Cj}mj=1特征的已知雷达信号子流 {PDWi,j}mj=1,并分别放置于m个已知雷达的数据缓存区,交付信号主 处理按照对已知雷达信号的处理方法作进一步的分选、检测、参数估计 和识别处理等;对不符合{Cj}mj=1的剩余数据,再根据未知雷达知识库 {Dk}nk=1进行快速分配,产生n个未知雷达信号的分选子流{PDWi, k}nk=1, 另外放置于n个未知雷达的数据缓存区,交付信号主处理,按照对未知
1. 对输入{PDWi}i信号的处理 雷达侦察系统对{PDWi}i信号处理的基本流程如图4-1所 示,其中各部分的基本工作原理如下。
雷达信号处理方法综述

雷达信号处理方法综述雷达是一种广泛应用于军事、民用等领域的无线电测量技术,其本质是利用电磁波与物体相互作用的原理,通过测量反射回来的信号来确定目标的距离、速度和方位等信息。
然而,由于雷达应用的复杂性和环境的多样性,雷达信号处理一直是一个极具挑战性的研究领域。
本文将就雷达信号处理方法进行综述。
1. 脉冲压缩处理脉冲压缩是一种常用的雷达信号处理方法,其本质是通过合理的信号设计和处理使得雷达信号带宽变窄,达到更好的距离分辨率。
脉冲压缩技术主要包括线性调频信号、窄带信号、压缩滤波器等方法。
其中,线性调频信号是最常用的一种方法。
它通过在单个脉冲内改变信号频率,使得所产生的信号包含了多个频率分量。
通过对这些分量信号进行相位累积处理,就可以实现脉冲压缩。
此外,窄带信号则是在设计信号时选择一个窄带频率,通过窄化带宽提高距离分辨率。
压缩滤波器则是在接收端对信号进行滤波,去除绝大部分带外干扰信号。
然而,脉冲压缩技术也存在一些缺陷,比如会带来相干处理的问题,直接影响目标的信噪比等。
因此,在实际应用中,通常需要结合其他信号处理技术进行综合应用。
2. 相控阵信号处理相控阵技术是一种基于阵列天线的信号处理方法,它在空间领域实现对目标信号的精确定位、较高灵敏度和干扰抑制能力等优点。
相控阵技术的信号处理方法包括平衡传输子阵列、权重调整和波束形成等。
平衡传输子阵列是一种常用的相控阵信号处理方法,它通过对每个阵元的接收信号进行平衡处理,保证每个天线之间的插入损耗差异相同,从而消除了阵列天线的失配影响。
权重调整则是在信号接收过程中对每个天线的信号进行加权,以达到方向剖面控制和干扰抑制的目的。
波束形成是指通过迭代算法对参数进行优化,从而实现波束指向和形成的过程。
3. 非相参信号处理非相参信号处理技术是近年来迅速发展的一种信号处理方法,它不需要相位信息,只利用信号幅度和功率等信息来获取目标信息。
非相参信号处理技术主要包括多普勒谱分析、阵列信号处理和小波变换等方法。
雷达信号处理原理

雷达信号处理原理雷达信号处理原理是指将雷达接收到的信号进行处理和分析的过程,以提取有用的信息和数据。
雷达信号处理是雷达技术的核心之一,对于雷达系统的性能和效果起着重要的影响。
一、信号接收与采样雷达系统首先接收到由雷达发射器发射出来的脉冲信号。
这些信号经过天线接收后,进入到接收机中。
在接收机中,会进行信号预处理,包括了低噪声放大、滤波和混频等环节。
经过预处理后的信号会进行采样,将连续的模拟信号转换为离散的数字信号。
二、脉冲压缩在雷达接收到信号后,有时候会出现回波信号的时间宽度很宽的情况,这样就会导致目标的分辨能力变差。
为了解决这个问题,需要对信号进行脉冲压缩处理。
脉冲压缩通过降低脉冲信号的时域宽度,来提高雷达的分辨能力。
三、目标检测与跟踪在经过脉冲压缩后,雷达系统需要进行目标检测和跟踪。
目标检测是指通过对接收到的信号进行处理,找出其中的目标信息,即在雷达图像或雷达数据中找到目标的位置和特征。
目标跟踪是指对已经检测到的目标进行跟踪,通过对目标连续观测信息的处理,估计目标的位置和运动状态。
四、信号解调与波形重建在目标检测和跟踪之后,雷达系统需要对信号进行解调和波形重建。
解调是将接收到的信号还原成原始的调制信号,以便进一步分析和处理。
波形重建是指通过对解调后的信号进行处理和滤波,将信号还原成接收到的原始信号。
五、特征提取与分析在信号解调和波形重建之后,雷达系统需要进行特征提取和分析。
特征提取是指从原始信号中提取出与目标有关的特征和参数,比如目标的尺寸、速度、形状等。
特征分析是对提取出的特征进行进一步的处理和分析,以得到更深入的目标信息。
六、信号处理算法与技术雷达信号处理过程中,需要运用各种信号处理算法和技术。
常见的信号处理算法包括了滤波、频谱分析、时域分析、相关分析等。
此外,雷达信号处理还与数字信号处理、图像处理等领域相结合,采用了很多先进的技术和方法。
七、数据处理与决策最后,经过了信号接收、压缩、检测、跟踪、解调、波形重建、特征提取和分析等多个环节的处理,雷达系统会得到一系列的数据和信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达;
主要是当前战场上对我方有一定威胁的敌方
❖雷达寻的和告警系统(RHAW):
主要是对我形成威胁的火控、近炸、制导和末制导 雷达 。
可信度:
考核信号处理识别分选识别结果的质量指标。
1) 可测量和估计的雷达辐射源参数、参
数范围和估计精度
参数名称
辐射源方位 信号载频 脉冲宽度 脉冲重复周期 天线扫描周期 脉内频率调制 脉间频率调制 脉内相位调制 重复周期调制 脉冲宽度调制 天线扫描调制
{PDWi, j }
已知雷达信号主分选 检测、参数估计、 识别与决策处理等
{PDWi.k }
未知雷达信号主分选 检测、参数估计、 识别与决策处理等
数据库、知识库 的补充与修订
信号主处理
人工干预及控制、处理结果显示、记录等
SUCCESS
THANK YOU
2020/2/8
SUCCESS
THANK YOU
实时脉冲描述字流的组成和数据格式与
侦察系统的组成和性能有关。典型情况下
为: PDWi
( AOAi ,
f RFi , tTOAi , PWi , APi , Fi
i0
2.信号处理的主要技术指标
1)可分选识别的雷达辐射源类型和可信度
辐射源类型分为:
➢
信号类型
➢
工作类型
信号类型:
按照雷达发射信号的调制类型分类,具 体如下:
检测扫描周期、照射时间、扫描调制方式
参数来源
分选后PDW统计估值 分选后PDW统计估值 分选后PDW统计估值 分选后PDW相关统计 分选后PDW相关统计 由脉内信号分析电路统计 分选后PDW相关统计 由脉内信号分析电路统计 分选后PDW相关统计 分选后PDW相关统计 分选后PDW相关统计
SUCCESS
【研发社区】
第4章 侦察系统的信号处理技术
4.1 概述 4.2 对雷达信号时域参数的测量 4.3 雷达侦察信号的预处理 4.4 对雷达信号的主处理 4.5 数字化接收机与数字信号处理
4.1 概述
1.信号处理的任务
侦察系统的前端担任预处理任务,输出实 时脉冲描述字流{PDW}。信号处理的任务是 对{PDW}进行信号分选、参数估计、存储、 记录和其它任务。
THANK YOU
2020/2/8
SUCCESS
THANK YOU
2020/2/8
2)
信号处理时间
两类信号处理时间:
❖ 对指定雷达信号的处理时间TSP 是从前端输出指定的脉冲描述字流开始, 到产生对该辐射源分选和识别结果,并达 到指定的分选和识别概率、参数估计精度 所需要的时间。
❖对指定信号环境中个雷达信号的平均处理时间 对指定的雷达辐射源信号环境中的N部雷
max=几百万个脉冲/秒 机载的ESM、RHAW:
max=几十万个脉冲/秒 地面、舰载设备:
max=几万~几十万个脉冲/秒
3.信号处理的主要流程
信号处理包括预处理和主处理两部分, 如图示
信号预处理
前端输入
{PDW i }i0
已知雷达数据库{Cj}
雷达知识库{Dj}
已知雷达信号预分选 剩余{PDW i } 未知雷达信号预分选
具体如下:
幅度调制类 频率调制类
脉冲调制 连续波(CW)
单频 频率分集 线性调频 频率编码
固定相位 相位调制类 随机相位
相位编码
工作类型:
与雷达的功能、用途、工作体制和工作状态等
可分选和识别的辐射源类型与侦察系统功能和用途有关:
❖电子情报侦察(ELINK):
可分选和识别的辐射源类型多;
❖电子支援侦察(ESM):
达辐射源处理时间的加权平均:
N
TSP WiTSiP i 1
信号处理时间要求:
ELINK: 较长或者非实时
ESM: 实时处理,较短
RHAW: 实施处理,最短
信号处理时间与信号分选、识别、参数估计 精度、信号处理的信号流密度是指不发生数据丢失的条 件下,单位时间内信号处理器允许前端输入的最 大脉冲描述字流的平均数max。 如: 星载、机载的ELINK
计量单位
参数范围
估计精度
0~360
3
MHz
500~40000
3
s
0.05~500
5x10-2
ms
0.01~100
1x10-4
s
0.005~60
1x10-3
见信号类型的频率调制类
检测跳频范围、频点和频率转移概率矩阵
见信号类型的相位调制类
检测调制类型、范围和周期转移矩阵
检测脉宽调制数值和脉宽转移概率矩阵
2020/2/8