国内外密码理论与技术研究现状及发展趋势
国内外密码理论与技术研究现状及发展趋势

国内外密码理论与技术研究现状及发展趋势一、国外密码技术现状密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术).自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制,但比较流行的主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA;另一类是基于离散对数问题的,比如ElGamal公钥密码和影响比较大的椭圆曲线公钥密码.由于分解大整数的能力日益增强,所以对 RSA的安全带来了一定的威胁。
目前768比特模长的RSA已不安全.一般建议使用1024比特模长,预计要保证20年的安全就要选择1280比特的模长,增大模长带来了实现上的难度。
而基于离散对数问题的公钥密码在目前技术下512比特模长就能够保证其安全性。
特别是椭圆曲线上的离散对数的计算要比有限域上的离散对数的计算更困难,目前技术下只需要160比特模长即可,适合于智能卡的实现,因而受到国内外学者的广泛关注。
国际上制定了椭圆曲线公钥密码标准IEEEP1363,RSA等一些公司声称他们已开发出了符合该标准的椭圆曲线公钥密码。
我国学者也提出了一些公钥密码,另外在公钥密码的快速实现方面也做了一定的工作,比如在RSA的快速实现和椭圆曲线公钥密码的快速实现方面都有所突破。
公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。
另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。
公钥密码主要用于数字签名和密钥分配。
当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。
目前数字签名的研究内容非常丰富,包括普通签名和特殊签名.特殊签名有盲签名,代理签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。
国内外分组密码理论与技术的研究现状及发展趋势

国内外分组密码理论与技术的研究现状及发展趋势1 引言 密码(学)技术是信息安全技术的核心,主要由密码编码技术和密码分析技术两个分支组成。
密码编码技术的主要任务是寻求产生安全性高的有效密码算法和协议,以满足对数据和信息进行加密或认证的要求。
密码分析技术的主要任务是破译密码或伪造认证信息,实现窃取机密信息或进行诈骗破坏活动。
这两个分支既相互对立又相互依存,正是由于这种对立统一的关系,才推动了密码学自身的发展[6]。
目前人们将密码(学)理论与技术分成了两大类,一类是基于数学的密码理论与技术,包括分组密码、序列密码、公钥密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术、VPN技术等等,另一类是非数学的密码理论与技术,包括信息隐藏、量子密码、基于生物特征的识别理论与技术等。
在密码(学)技术中,数据加密技术是核心。
根据数据加密所使用的密钥特点可将数据加密技术分成两种体制,一种是基于单密钥的对称加密体制(传统加密体制),包括分组密码与序列密码,另一类是基于双密钥的公钥加密体制。
本文主要探讨和分析分组密码研究的现状及其发展趋势。
2 国内外分组密码研究的现状2.1 国内外主要的分组密码 美国早在1977年就制定了本国的数据加密标准,即DES。
随着DES的出现,人们对分组密码展开了深入的研究和讨论,已有大量的分组密码[1,6],如DES的各种变形、IDEA算法、SAFER系列算法、RC系列算法、Skipjack算法、FEAL系列算法、REDOC系列算法、CAST系列算法以及Khufu,Khafre,MMB,3-WAY,TEA,MacGuffin,SHARK,BEAR,LION,CA.1.1,CRAB,Blowfish,GOST,SQUA 算法和AES15种候选算法(第一轮),另有NESSIE17种候选算法(第一轮)等。
2.2 分组密码的分析 在分组密码设计技术不断发展的同时,分组密码分析技术也得到了空前的发展。
全球密码技术发展现状与趋势分析

全球密码技术发展现状与趋势分析密码技术被广泛运用在各个领域中,如: 移动支付、电子金融、医疗保健、云计算等等。
随着全球信息化的不断推进,密码技术在保障信息安全方面的作用越来越重要。
那么,全球密码技术发展现状与趋势如何呢?一、密码技术发展现状目前,全球密码技术的发展可以分为以下几个方面。
1.量子密码技术量子密码技术是密码技术领域的一种前沿技术,它采用量子态进行加密,能够在一定程度上解决传统密码技术中的安全问题。
这种方法将完美保障信息安全,目前在世界范围内已经有很多机构在研究。
2.区块链密码技术区块链技术的出现一度引起了全球关注,而区块链密码技术则是区块链技术的重要组成部分。
该技术采用哈希算法进行加密,能够保障数字货币等信息的安全。
3.生物密码技术生物密码技术是将生物特征作为密码的一种加密方式,包括指纹识别、视网膜扫描、声纹识别等多种形式。
生物密码技术相比其他密码技术更为安全可靠,有很大的发展前景。
二、密码技术发展趋势随着全球信息化加速推进,密码技术也将得到更快的发展。
以下是一些密码技术发展趋势。
1. 多层加密技术采用多层加密技术和多种加密算法的方式将会更加安全。
在目前的密码技术中,单一算法加密的方式已经不能够完全保障信息的安全,而采用多种加密算法、多层加密的方式,能够有效提高信息的安全性。
2. 社会化密码技术社会化密码技术是指通过人与人之间的信任关系来保障信息安全。
类似于社交网络上的朋友圈,个人可以将信息安全性设置为仅对特定人群开放,这种方式更加符合人们的日常使用需求。
3. 人工智能技术人工智能技术的快速普及也将促进密码技术的发展。
在密码技术领域,人工智能将能够扮演加密、解密、数据认证等重要角色,有望通过智能算法提高密码技术的可靠性。
4. 云技术随着云技术的普及,密码技术的保护范围也可以扩大。
在云技术的支持下,密码技术可以更加高效、灵活地运用。
总之,密码技术在保护信息安全方面的作用越来越重要。
随着我们研究和发展的深入,我相信密码技术必将在未来发挥更加重要的作用,保护我们的个人信息和国家安全。
谈密码技术的发展趋势

谈密码技术的发展趋势跟着时期的发展,科学的进步,密码技术也在不断发展中。
然而密码技术的安全性,跟着计算机计算能力的逐渐提高,在不断降低。
因而,密码钻研者要进1步钻研出新的密码算法,提出新的密码技术,实现密码技术的突破,来保证密码技术的安全性。
密码技术作为1种维护通讯秘密的手腕以及法子,已经经有几千年的历史。
自从人类文明出生以来,密码的技术法子就随之而来。
密码学不但自身触及到秘密性,就其自身的发展进程也说,也是无比神秘的。
由于保密的需要,要隐秘于秘密当中,它就是1门秘密的科学。
第2次世界大战后,美、苏、英等几个密码大国的专业密码学家由于国家军事、政治的需要,不但要隐姓埋名,而且发表着作时还要接受严格的审查,当时公然出版的文献更本没法全面反应这门科学的真实状态。
纵观密码技术的发展历程,大体可以将其分为3个阶段,即古典加密法子,古典密码体制以及现代密码体制。
古典加密法子一般为指那些通过某些原始的商定,将需要表达的信息限制在必定规模内。
比如古代的离合诗技术、倒读暗语、语言隐写技术,还有漏格法子以及俚语黑话等。
这些法子已经经体现了密码编码学中接替以及换位的基本思想。
古典密码体制是在有线与无线通讯技术发生后逐渐兴起的,尤其在军事斗争中,秘密的无线通讯就显患上格外首要。
古典密码体制的典型例子有CASER加密体制以及PLAYFAIR加密体制,其主要法子就是应用文字的接替以及换位,有时还运用某些简单的数学运算。
跟着高速、大容量以及自动化保密通讯的请求,呈现了机械与电路相结合的转轮加密装备,古典密码体制也就退出了历史舞台。
2战之后,密码技术迅速与计算机技术亲密结合,不管是其算法仍是利用对于象均与计算机、现代通讯技术紧密结合。
现代密码学不但与计算机科学密不可分,还与统计学、组合数学、信息论、和随机进程等各学科瓜葛亲密。
尤其是在一九七六年, Diffie以及Hellman发表了《密码学的新方向》1文,开拓了公钥密码算法的斩新领域。
现代密码技术的未来发展方向

现代密码技术的未来发展方向咱先来讲讲啥是密码技术。
这东西啊,就像是给咱们的宝贝信息上了一把锁,只有拿着对的钥匙才能打开。
比如说咱们上网买东西,输入银行卡密码,这就是一种简单的密码技术在保护咱们的钱不被坏人拿走。
现在这个时代,密码技术那可是越来越重要啦!为啥呢?因为信息越来越多,到处都是数字的海洋,要是没个厉害的密码保护,那咱们的隐私、财产啥的可就危险喽。
那现代密码技术未来会往哪儿走呢?我觉得啊,一个方向是变得更智能。
就像咱们的手机能人脸识别解锁一样,未来的密码可能不仅仅是你输入几个数字或者字母,它可能会通过分析你的行为、习惯,甚至是你的心跳、脉搏这些生理特征来确认是你本人。
比如说,你平时打字的速度、按键盘的力度,都能成为密码的一部分。
这多酷啊!还有呢,密码技术会和其他技术结合得更紧密。
比如说和人工智能、区块链这些热门的技术手拉手一起走。
人工智能能帮助密码技术变得更聪明,能更快地发现潜在的威胁和漏洞。
区块链呢,能让密码的存储和验证更加安全可靠。
我给您讲个事儿吧。
有一次我去参加一个科技展会,看到一家公司展示他们的最新密码技术。
他们弄了一个模拟的智能家居系统,通过密码来控制家里的灯光、窗帘啥的。
我就好奇啊,凑过去看。
工作人员给我演示,他们的密码不是传统的那种,而是通过手机的运动传感器,你得按照特定的动作晃一下手机才能解锁。
我试了好几次才成功,当时我就想,这密码技术真是越来越神奇啦,以后说不定咱们身边的一切都能用这种新奇的方式来保护。
再说说量子密码技术吧,这可是个热门话题。
量子的特性让密码几乎不可能被破解,那安全性简直杠杠的!未来,随着量子技术的不断发展,说不定咱们的密码都会用量子来加密,到时候黑客们可就只能干瞪眼啦。
另外,密码技术在云服务中的应用也会越来越广泛。
咱们现在很多东西都存在云里,照片啊、文件啊,这些都得靠强大的密码技术来保护。
未来,云服务的密码技术可能会更加个性化,根据咱们每个人的需求来定制不同级别的保护。
密码学技术的发展与网络安全研究

密码学技术的发展与网络安全研究随着互联网的快速发展和普及,网络安全问题日益受到人们的关注。
而密码学技术作为网络安全的重要组成部分,也在不断地发展和完善。
本文将从密码学技术的发展历程和网络安全研究的现状出发,介绍密码学技术在网络安全中的作用,并展望未来的发展趋势。
密码学技术的发展历程密码学是研究如何保护信息安全的学科,其研究内容主要包括加密和解密技术、数字签名技术、身份认证技术等。
密码学技术在古代就已经存在,最早的密码是凯撒密码和一次性密码本,用于军事和外交领域的信息传递。
随着科技的发展,密码学技术也在不断进步。
20世纪70年代,IBM公司提出了DES(数据加密标准)算法,这是第一个商用的对称加密算法。
而后,RSA算法的出现标志着非对称加密算法的诞生,这种算法极大地推动了密码学技术的发展。
随着互联网的飞速发展,网络安全问题愈发引人关注。
在互联网上,信息的传递以及数据的储存和处理都离不开密码学技术的支持。
密码学技术的研究也在网络安全技术中占据举足轻重的地位。
网络安全问题是当今互联网发展不可忽视的一个问题,而密码学技术正是保障网络安全的关键技术之一。
在网络通信中,不论是数据的加密传输,还是用户身份的验证,都需要密码学技术的支持。
密码学技术能够保证数据的加密传输。
在网络通信中,密文是网络安全的基础。
许多的数据传输过程都需要进行加密处理,以防止信息泄露和被篡改。
通过密码学技术,可以实现对敏感信息进行加密,防止黑客和间谍分子对数据的窃取或篡改。
密码学技术还能够实现用户身份的验证。
在网络安全中,除了对数据进行加密传输,还需要对使用者的身份进行验证,以保证只有合法用户才能够访问特定的资源。
密码学技术可以通过数字签名、公钥加密等方法来实现发送方和接收方之间的身份认证,确保通信双方的真实性和安全性。
密码学技术还能够实现数字签名和鉴别等功能。
数字签名是一种通过密码学手段来验证信息完整性和发送方真实性的技术,而鉴别是为了确定对方身份的一种技术。
密码学理论研究方向与产业化现状(END)

———密码学理论研究方向不密码技术应用的全民全球化趋势——————————————————— 20
第二节 密码技术应用研究
1 3
2 对称密码应用
随机数不单向散列凼数
公开密码应用
3 4 5 3 6 7 3 6
丌可抵赖不数字签名
数字承诹
零知识证明不丌绊意传输
多方保密计算
量子密码不生物密码技术
———密码学理论研究方向不密码技术应用的全民全球化趋势——————————————————— 21
———密码学理论研究方向与密码技术应用的全民全球化趋势——————————————————— 7
第一章 密码学的发展动力
社会生产关系収展的几个阶段,促使密码学不密码技术収展。
古典密码
现代密码
密码未来
小觃模区域沟通
大觃模区域沟通
全球全民信息沟通
———密码学理论研究方向不密码技术应用的全民全球化趋势——————————————————— 8
———密码学理论研究方向与密码技术应用的全民全球化趋势——————————————————— 2
基本思想
一切事物都有自身収展的基本觃律:
1、原因:什么力量促使了它的发展? 2、状态过去:它的发展经历了什么阶段? 3、状态现在:又是什么导致了其处于当前的阶段? 4、状态未来:它的未来还会有什么样的发展趋势? 5、结果:发展是否符合自然和社会的一般规律和需要?
内容大纲
1
原因:密码学发展动力
理论:密码学理论不应用研究 产业:国内外密码技术产业化 绌果:满足全民信息化需求 后记:密码不信息安全相关
3
4 5
———密码学理论研究方向与密码技术应用的全民全球化趋势——————————————————— 6
国内外密码学发展现状

简述国内外密码学发展现状一、近年来我国本学科的主要进展我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。
(一)最新理论与技术研究进展我国学者在密码学方面的最新研究进展主要表现在以下几个方面。
(1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。
2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。
(2)分组密码方面,我国许多学者取得了重要的研究成果。
吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。
(3)Hash函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hash函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hash函数首次给出有效碰撞攻击和原像攻击。
(4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。
(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。
该项成果获得2005年国家科技进步二等奖。
(6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国内外密码理论与技术研究现状及发展趋势一、国外密码技术现状密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。
自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制,但比较流行的主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA;另一类是基于离散对数问题的,比如ElGamal公钥密码和影响比较大的椭圆曲线公钥密码。
由于分解大整数的能力日益增强,所以对 RSA 的安全带来了一定的威胁。
目前768比特模长的RSA已不安全。
一般建议使用1024比特模长,预计要保证20年的安全就要选择1280比特的模长,增大模长带来了实现上的难度。
而基于离散对数问题的公钥密码在目前技术下512比特模长就能够保证其安全性。
特别是椭圆曲线上的离散对数的计算要比有限域上的离散对数的计算更困难,目前技术下只需要160比特模长即可,适合于智能卡的实现,因而受到国内外学者的广泛关注。
国际上制定了椭圆曲线公钥密码标准IEEEP1363,RSA等一些公司声称他们已开发出了符合该标准的椭圆曲线公钥密码。
我国学者也提出了一些公钥密码,另外在公钥密码的快速实现方面也做了一定的工作,比如在RSA的快速实现和椭圆曲线公钥密码的快速实现方面都有所突破。
公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。
另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。
公钥密码主要用于数字签名和密钥分配。
当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。
目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。
特殊签名有盲签名,代理签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。
显然,数字签名的应用涉及到法律问题,美国联邦政府基于有限域上的离散对数问题制定了自己的数字签名标准(DSS),部分州已制定了数字签名法。
法国是第一个制定数字签名法的国家,其他国家也正在实施之中。
在密钥管理方面,国际上都有一些大的举动,比如1993年美国提出的密钥托管理论和技术、国际标准化组织制定的X.509标准(已经发展到第3版本)以及麻省里工学院开发的Kerboros协议(已经发展到第5版本)等,这些工作影响很大。
密钥管理中还有一种很重要的技术就是秘密共享技术,它是一种分割秘密的技术,目的是阻止秘密过于集中,自从1979年Shamir提出这种思想以来,秘密共享理论和技术达到了空前的发展和应用,特别是其应用至今人们仍十分关注。
我国学者在这些方面也做了一些跟踪研究,发表了很多论文,按照X.509标准实现了一些 CA。
目前人们关注的是数字签名和密钥分配的具体应用以及潜信道的深入研究。
认证码是一个理论性比较强的研究课题,自80年代后期以来,在其构造和界的估计等方面已经取得了长足的发展,我国学者在这方面的研究工作也非常出色,影响较大。
目前这方面的理论相对比较成熟,很难有所突破。
另外,认证码的应用非常有限,几乎停留在理论研究上,已不再是密码学中的研究热点。
Hash函数主要用于完整性校验和提高数字签名的有效性,目前已经提出了很多方案,各有千秋。
美国已经制定了Hash标准-SHA-1,与其数字签名标准匹配使用。
由于技术的原因,美国目前正准备更新其Hash标准,另外,欧洲也正在制定Hash标准,这必然导致Hash函数的研究特别是实用技术的研究将成为热点。
在身份识别的研究中,最令人瞩目的识别方案有两类:一类是1984年Shamir提出的基于身份的识别方案,另一类是1986年Fiat等人提出的零知识身份识别方案。
随后,人们在这两类方案的基础上又提出了一系列实用的身份识别方案,比如,Schnorr识别方案、Okamoto 识别方案、Guillou-Quisquater 识别方案、Feige-Fiat-Shamir识别方案等。
目前人们所关注的是身份识别方案与具体应用环境的有机结合。
序列密码主要用于政府、军方等国家要害部门,尽管用于这些部门的理论和技术都是保密的,但由于一些数学工具(比如代数、数论、概率等)可用于研究序列密码,其理论和技术相对而言比较成熟。
从八十年代中期到九十年代初,序列密码的研究非常热,在序列密码的设计与生成以及分析方面出现了一大批有价值的成果,我国学者在这方面也做了非常优秀的工作。
虽然,近年来序列密码不是一个研究热点,但有很多有价值的公开问题需要进一步解决,比如自同步流密码的研究,有记忆前馈网络密码系统的研究,混沌序列密码和新研究方法的探索等。
另外,虽然没有制定序列密码标准,但在一些系统中广泛使用了序列密码比如RC4,用于存储加密。
事实上,欧洲的NESSIE计划中已经包括了序列密码标准的制定,这一举措有可能导致序列密码研究热。
美国早在1977年就制定了自己的数据加密标准(一种分组密码),但除了公布具体的算法之外,从来不公布详细的设计规则和方法。
随着美国的数据加密标准的出现,人们对分组密码展开了深入的研究和讨论,设计了大量的分组密码,给出了一系列的评测准则,其他国家,如日本和苏联也纷纷提出了自己的数据加密标准。
但在这些分组密码中能被人们普遍接受和认可的算法却寥寥无几。
何况一些好的算法已经被攻破或已经不适用于技术的发展要求。
比如美国的数据加密标准已经于1997年6月17日被攻破。
美国从1997年1月起,正在征集、制定和评估新一代数据加密标准(称作AES)。
AES活动使得国际上又掀起了一次研究分组密码的新高潮。
继美国征集AES活动之后,欧洲和日本也不甘落后启动了相关标准的征集和制定工作,看起来比美国更宏伟。
同时国外比如美国为适应技术发展的需求也加快了其他密码标准的更新,比如SHA-1和FIPS140-1。
我国目前的做法是针对每个或每一类安全产品需要开发所用的算法,而且算法和源代码都不公开,这样一来,算法的需求量相对就比较大,继而带来了兼容性、互操作性等问题。
国外目前不仅在密码基础理论方面的研究做的很好,而且在实际应用方面也做的非常好。
制定了一系列的密码标准,特别规范。
算法的征集和讨论都已经公开化,但密码技术作为一种关键技术,各国都不会放弃自主权和控制权,都在争夺霸权地位。
美国这次征集AES的活动就充分体现了这一点,欧洲和日本就不愿意袖手旁观,他们也采取了相应的措施,其计划比美国更宏大,投资力度更大。
我国在密码基础理论的某些方面的研究做的很好,但在实际应用方面与国外的差距较大,没有自己的标准,也不规范。
目前最为人们所关注的实用密码技术是PKI技术。
国外的PKI应用已经开始,开发PKI的厂商也有多家。
许多厂家,如Baltimore, Entrust等推出了可以应用的PKI产品,有些公司如VerySign等已经开始提供PKI服务。
网络许多应用正在使用PKI技术来保证网络的认证、不可否认、加解密和密钥管理等。
尽管如此,总的说来PKI技术仍在发展中。
按照国外一些调查公司的说法,PKI系统仅仅还是在做示范工程。
IDC公司的 Internet安全知深分析家认为:PKI技术将成为所有应用的计算基础结构的核心部件,包括那些越出传统网络界限的应用。
B2B电子商务活动需要的认证、不可否认等只有PKI产品才有能力提供这些功能。
目前国际上对非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术等)非常关注,讨论也非常活跃。
信息隐藏将在未来网络中保护信息免于破坏起到重要作用,信息隐藏是网络环境下把机密信息隐藏在大量信息中不让对方发觉的一种方法。
特别是图象叠加、数字水印、潜信道、隐匿协议等的理论与技术的研究已经引起人们的重视。
1996年以来,国际上召开了多次有关信息隐藏的专业研讨会。
基于生物特征(比如手形、指纹、语音、视网膜、虹膜、脸形、DNA等)的识别理论与技术已有所发展,形成了一些理论和技术,也形成了一些产品,这类产品往往由于成本高而未被广泛采用。
1969年美国哥伦比亚大学的Wiesner创造性地提出了共轭编码的概念,遗憾的是他的这一思想当时没有被人们接受。
十年后,源于共轭编码概念的量子密码理论与技术才取得了令人惊异的进步,已先后在自由空间和商用光纤中完成了单光子密钥交换协议,英国BT实验室通过30公里的光纤信道实现了每秒20k比特的密钥分配。
近年来,英、美、日等国的许多大学和研究机构竞相投入到量子密码的研究之中,更大的计划在欧洲进行。
到目前为止,主要有三大类量子密码实现方案:一是基于单光子量子信道中测不准原理的;二是基于量子相关信道中Bell原理的;三是基于两个非正交量子态性质的。
但有许多问题还有待于研究。
比如,寻找相应的量子效应以便提出更多的量子密钥分配协议,量子加密理论的形成和完善,量子密码协议的安全性分析方法研究,量子加密算法的开发,量子密码的实用化等。
总的来说,非数学的密码理论与技术还处于探索之中。
特别值得一提的是欧洲大计划NESSIE工程必将大大推动密码学的研究和发展,我们应予以密切关注。
二、我国密码技术现状密码技术特别是加密技术是信息安全技术中的核心技术,国家关键基础设施中不可能引进或采用别人的加密技术,只能自主开发。
目前我国在密码技术的应用水平方面与国外还有一定的差距。
国外的密码技术必将对我们有一定的冲击力,特别是在加入WTO组织后这种冲击力只会有增无减。
有些做法必须要逐渐与国际接轨,不能再采用目前这种关门造车的做法,因此,我们必须要有我们自己的算法,自己的一套标准,自己的一套体系,来对付未来的挑战。
实用密码技术的基础是密码基础理论,没有好的密码理论不可能有好的密码技术、也不可能有先进的、自主的、创新的密码技术。
因此,首先必须持之以恒地坚持和加强密码基础理论研究,与国际保持同步,这方面的工作必须要有政府的支持和投入。
另一方面,密码理论研究也是为了应用,没有应用的理论是没有价值的。
我们应在现有理论和技术基础上充分吸收国外先进经验形成自主的、创新的密码技术以适应国民经济的发展。
任何国家密码技术等同于军火,都会专门管控。
我国的密码主管部门是国家密码管理局,也称为国家商用密码管理办公室(对外),与中央密码工作领导小组办公室(中办机要局),实际上是一个机构两块牌子,列入中共中央直属机关的下属机构。
我国在信息安全行业管理上把安全和密码分为两类,而密码产品和从事密码产品生产的企业又分为三类,即核密、普密和商密。
这三类密码产品都由国家主管部门控制,算法都由专用硬件实现,强度都足够,不同之处只在于三类产品的管理不同,即主管单位不同、使用场合不同和管理办法不同。