预测控制MPC_3
mpc控制律

mpc控制律
MPC控制律是指模型预测控制,是一种先进的控制方法。
该方法在控制系统中运用广泛,其主要思想是利用数学模型对未来的系统动态进行预测,以便为控制器提供更准确的指令。
MPC控制律是一种优秀的控制方法,具有以下几个优点:
1.可以控制多变量系统。
与传统的PID控制器仅能控制单变量系统相比,MPC控制律能在多变量环境下完美运作,确保了系统的稳定运行。
2.能够考虑未来的状态。
在控制设计中,MPC会预测未来的系统状态,因此其控制输入不仅仅是针对当前的状态,还需要考虑未来的状态。
3.有效的约束功能。
MPC控制律通过添加约束条件实现了对系统行为的统一管控,保证系统行为的合理和稳定,从而使得系统能够更加稳定地实现控制。
4.更好的性能和效果。
与传统PID控制器相比,MPC控制律有更好的优化控制性能,可以更快、更精确地实现对系统环境的控制。
MPC控制律应用广泛。
主要应用在化工、食品、医药、航空航天、汽车、轮船、电力、环保等领域,在各种工业过程控制和机器人控制中发挥着重要的作用。
关于MPC控制律的应用,以炼油过程为例,利用MPC控制律可以控制例如质量、温度、压力等一系列变量,该控制方法可以有效地提高炼油厂的生产效率和产品质量。
总之,MPC控制律是一种先进的控制方法,它不仅能够对多变量系统进行全面控制,还可以保证系统的稳定性和合理性,更好地实现对系统环境的控制。
它具有广泛的应用前景,将是工业控制技术发展的重要方向。
模型预测控制mpc基本知识

模型预测控制mpc基本知识
模型预测控制(Model Predictive Control,MPC)是一种先进的控制方法,它通过将系统建模为数学模型,利用模型进行预测,并根据预测结果进行控制决策。
它采用一个预测模型来表示控制对象的动态行为,并基于当前时刻的测量值和控制变量的限制条件,预测未来一段时间内的控制变量和系统输出,并优化这些变量的选择,从而在控制满足性能指标的前提下,实现对系统的优化控制。
MPC的基本流程如下:
1. 建立系统数学模型,包括状态方程和输出方程等。
2. 对系统进行预测,根据当前时刻的控制输入和系统输出,预测未来一段时间内的系统状态和输出。
3. 设定控制目标和约束条件,将控制目标转化成数学优化问题,以当前状态为初始状态,求解出最优的控制输入。
4. 实施控制,将求解得到的最优控制输入应用于系统中。
5. 不断重复以上步骤,实现对系统的优化控制。
MPC的主要特点是:
1. 能够充分考虑系统的动态特性,适用于高度非线性、多变量、耦合的复杂过程控制。
2. 能够通过设定约束和权重等条件,实现对控制过程中各种限制的有效处理。
3. 能够对未来一段时间内的控制输入进行优化,从而实现远期
优化控制。
MPC适用于化工、制造业、交通运输、能源等领域的自动控制和过程优化。
它在国际上已经得到广泛应用,在我国也有越来越多的应用实例。
mpc控制算法

mpc控制算法模型预测控制(MPC)是一种可以用来控制复杂过程的算法。
它可以根据设定的控制参数来实时地调整过程参数,从而最大限度地达到控制系统预期的输出目标。
MPC算法是一种智能控制系统,它综合考虑影响现实系统的动态变化参数,而不仅仅是考虑其瞬时量。
MPC控制算法是一种能够预测未来状态的控制方法,它可以根据不同的模型参数和控制策略,模拟出影响系统性能的多种变量,并可以在这些变量的影响下实时调整系统状态,从而达到系统性能最优化的目的。
MPC控制算法是一种智能控制,其中包括优化技术(像线性规划)、数学建模、系统参数调节等多种技术。
MPC控制算法既可以应用于离散系统,也可以应用于持续系统。
它以模型预测为基础,通过计算来预测和控制系统的输出,从而达到最佳控制系统性能的目的。
MPC控制算法的主要步骤包括:建立模型、分析调节器的特性,定义控制变量;其次,根据前面步骤构建模型,并通过数值求解来测试模型准确性;最后,根据求解结果,调整调节器参数,实现系统的控制目标。
MPC控制算法的应用领域很广,主要包括机械系统控制、电力系统控制、运距控制、航迹跟踪控制、位置跟踪控制、多机协调控制、空间结构控制等。
例如,MPC控制算法可以用于电力系统的有功功率调节;也可以用于航迹跟踪控制,实现无人机根据预设路径自动跟踪;还可以应用于多机协调、空间结构控制等领域,从而达到最大效果。
由于MPC控制算法可以模拟不同的过程参数,实时调整系统状态,因此具有杰出的优势。
首先,MPC控制算法有效的降低了模型的不确定性,使得模型的性能更稳定;其次,MPC控制算法可以有效地处理参数模糊性和运算误差;第三,MPC控制算法具有良好的自动调节能力,可以有效地抵抗环境和过程中的变化;最后,MPC控制算法可以控制复杂并发过程,有效地实现最优化控制。
可以看出,MPC控制算法在智能控制领域具有重要的作用。
它无需过多的参数设置,能够根据不断变化的状态实现自动调节,而且可以有效地降低参数不确定性,有效地抵抗外部和过程变化,实现性能最优化。
一文读懂:MPC模型预测控制器设计原理

1.1MPC模型预测控制原理
模型预测控制(MPC)是指:在每一个采样时刻通过求解一个有限时域的开环最优控制策略,过程的当前状态作为最优控制问题的初始状态,解得的最优控制序列只实施于下一时刻。
预测控制算法的三要素:内部预测模型,滚动优化,反馈校正。
预测模型:根据被控对象的历史信息和未来输入信息,预测系统的未来输出响应;
滚动优化:通过某一性能指标的最优化求解未来有限时刻的最优控制率;
反馈校正:首先检验对象的实际输出,再通过实际输出对基于模型的预测输出进行修正并进行新的优化。
基于非参数模型的预测控制代表性算法:
模型算法控制MAC
目的:使系统的输出沿着预先给定的参考轨迹逐渐到达设定值。
预测模型输出由两部分组成:
过去已知控制量产生的预测模型输出、由现在和未来控制量产生的预测模型输出。
MAC算法原理图
MAC在线计算程序流程图
动态矩阵控制DMC
算法组成:阶跃响应模型预测、反馈校正、滚动优化
预测模型输出由两部分组成:
待求解的未知控制增量产生的输出值、过去控制量产生的已知输出初值。
DMC算法原理图
DMC在线计算程序流程图
MPC缺点:
不能描述不稳定系统,不适用于不稳定对象在线模型辨识比较困难
基于滑动平均模型代表算法:
广义预测控制GPC
缺点:对于多变量系统,算法实现比较困难。
mpcc模型预测控制原理

mpcc模型预测控制原理MPCC模型预测控制原理概述模型预测控制(Model Predictive Control, MPC)是一种基于模型的控制策略,广泛应用于工业过程控制、机器人控制、交通流量控制等领域。
MPCC模型预测控制是MPC的一种改进形式,通过引入约束条件来优化系统的控制性能。
本文将介绍MPCC模型预测控制的原理、优势以及应用领域。
一、MPCC模型预测控制原理MPCC模型预测控制的基本原理是通过建立系统的数学模型,预测未来一段时间内的系统行为,并根据优化目标函数和约束条件确定最优控制输入。
其主要步骤包括以下几个方面:1. 建立系统模型:根据实际系统的特性,建立数学模型,通常采用离散时间状态空间模型或差分方程模型。
模型的准确性对于MPCC 的控制性能至关重要。
2. 预测未来状态:根据系统模型,使用当前状态和控制输入,预测未来一段时间内系统的状态。
这可以通过迭代计算系统模型的状态转移方程来实现。
3. 优化控制输入:通过优化目标函数和约束条件来确定最优控制输入。
目标函数通常包括系统的性能指标,如控制偏差的最小化、能耗的最小化等。
约束条件可以包括系统状态的约束、输入变量的约束等。
4. 执行控制输入:根据优化结果,执行最优控制输入。
在实际应用中,由于存在执行延迟和测量误差等因素,通常需要进行反馈校正,以实现精确的控制。
二、MPCC模型预测控制的优势MPCC模型预测控制相比传统的控制方法具有以下几个优势:1. 多变量控制能力:MPCC模型预测控制可以处理多变量系统,并考虑变量之间的相互影响,从而实现更精确的控制。
这在工业过程控制等领域尤为重要。
2. 鲁棒性:MPCC模型预测控制可以通过引入约束条件来确保系统在不确定性和扰动的情况下仍能保持稳定性。
这使得MPCC对于工业系统的鲁棒性要求更高。
3. 非线性控制能力:MPCC模型预测控制可以处理非线性系统,并通过在线优化来实现对非线性系统的精确控制。
这在机器人控制等领域尤为重要。
模型预测控制

,得最优控制率:
根据滚动优化原理,只实施目前控制量u2(k):
式中:
多步优化MAC旳特点: 优点: (i)控制效果和鲁棒性优于单步MAC算法简朴;
(ii)合用于有时滞或非最小相位对象。 缺陷: (i)算法较单步MAC复杂;
(ii)因为以u作为控制量, 造成MAC算法不可防止地出现稳态误差.
第5章 模型预测控制
5.3.1.2 反馈校正 为了在模型失配时有效地消除静差,能够在模型预测值ym旳基础上 附加一误差项e,即构成反馈校正(闭环预测)。
详细做法:将第k时刻旳实际对象旳输出测量值与预测模型输出之间 旳误差附加到模型旳预测输出ym(k+i)上,得到闭环预测模型,用 yp(k+i)表达:
第5章 模型预测控制
5.1 引言
一 什么是模型预测控制(MPC)?
模型预测控制(Model Predictive Control)是一种基于模型旳闭环 优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程中得到 了广泛旳应用。
其算法关键是:可预测过程将来行为旳动态模型,在线反复优化计
算并滚动实施旳控制作用和模型误差旳反馈校正。
2. 动态矩阵控制(DMC)旳产生:
动态矩阵控制(DMC, Dynamic Matrix Control)于1974年应用在美国壳牌石 油企业旳生产装置上,并于1980年由Culter等在美国化工年会上公开刊登,
3. 广义预测控制(GPC)旳产生:
1987年,Clarke等人在保持最小方差自校正控制旳在线辨识、输出预测、 最小方差控制旳基础上,吸收了DMC和MAC中旳滚动优化策略,基于参数 模型提出了兼具自适应控制和预测控制性能旳广义预测控制算法。
预测控制模型结构

预测控制模型结构预测模型预测模型是预测控制模型的核心部分,它用于描述系统的动态行为,基于历史观测数据来预测未来的系统状态。
常见的预测模型有以下几种:1.线性模型:基于线性系统的假设,使用线性状态空间模型或ARMA模型等进行预测。
2.非线性模型:考虑非线性系统的特性,使用非线性回归模型、神经网络模型等进行预测。
3.神经网络模型:通过训练神经网络来拟合系统的输入输出关系,进行预测。
4.ARIMA模型:自回归滑动平均模型,用于描述时间序列数据的动态变化。
5.状态空间模型:将系统的状态和观测变量表示为状态方程和观测方程,通过状态估计和观测估计来进行预测。
控制器控制器是预测控制模型的另一个重要组成部分,它用于根据预测模型的输出进行控制决策。
常见的控制器有以下几种:1.模型预测控制器(MPC):基于预测模型的输出,通过优化控制问题得到最优控制系列,实现对系统的控制。
2.比例积分微分(PID)控制器:通过比例、积分和微分操作来实现对系统的控制,可以根据误差信号调整控制输出。
3.神经网络控制器:使用神经网络来估计系统的输出,然后根据估计值进行控制决策。
4.最优控制器:通过求解最优化问题,得到最优控制输入,实现对系统的控制。
模型结构预测控制模型的结构是指预测模型和控制器的组合方式。
一般来说,预测模型和控制器之间存在以下两种结构:1.串级结构:预测模型和控制器按照串联的方式连接,预测模型先进行预测,然后将预测结果传递给控制器进行控制决策。
输入数据>预测模型>预测结果>控制器>控制输入2.并行结构:预测模型和控制器同时运行,预测模型负责预测系统状态,控制器负责根据预测结果进行控制决策。
输入数据>预测模型>预测结果|V控制器>控制输入。
mpc控制算法

mpc控制算法MPC(模型预测控制)控制算法是一种新型的控制技术,它采用数学模型预测来控制系统的输入,从而获得输出的期望值。
在这种情况下,系统的输入是控制变量,它可以帮助控制系统的行为,调节系统以实现预期的输出。
MPC控制算法是一种融合模型预测控制(MPC)算法和优化算法的计算机模型,它可以同时兼顾局部性和长时间性的控制性能。
它结合了传统控制技术和现代技术,并采用最优控制策略,从而在获得最佳性能的同时,还能够考虑到局部环境变化带来的影响。
MPC控制算法可以根据系统的状态和输入的变化,实时更新模型以获取最佳输出。
它利用数学模型来预测未来状态,通过模型预测控制(MPC)算法来优化控制,从而实现期望的输出结果,有效提高系统的性能。
MPC控制算法的灵活性和鲁棒性使它成为一种最受欢迎的控制技术。
MPC控制算法最初是由H.W.Brock实现的。
他将传统控制理论和数学统计学结合起来,开发出一种有效的控制技术,从而实现期望的结果。
随后,Brock的MPC算法被用于工业控制,并得到了广泛的应用。
然而,由于系统中各种多种复杂因素的影响,MPC控制算法在实际应用中仍面临许多挑战。
首先,复杂的控制算法会导致系统受到模型失准、误差扩散和系统不稳定等影响,因此,使用MPC控制算法时,需要提前构建准确的系统模型,以便于精确地捕捉系统参数变化情况,使控制变量精确控制。
其次,MPC控制算法会产生延期的影响。
系统的输出会受到测量延迟和控制变量延迟的影响,这会导致系统不稳定,损害系统的性能。
最后,由于要求输入变量最优,MPC控制算法的计算量比较大,在实际应用中,当系统变量变化较快时,计算时间会很长,其控制性能也会受到影响。
MPC控制算法集控制理论、优化理论及模型预测技术于一体,结合模型预测控制算法提供的优化性能,可以有效提高系统的控制性能,同时考虑周边环境的变化,提高系统的稳定性和鲁棒性。
同时,MPC控制算法还可以实现自动学习和迭代,从而更好地满足系统特定的需求,有效提高系统性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Kmpc 1 0
0 ySu T ySu u T u 1 ySu T y
显式控制律、可离线计算
19
3.3 滚动时域与闭环控制
_ +_
+ u(k)
• 加权因子iy 越大,则输出越接近参考轨迹 • 在整个预测过程中,iy 是可以变化的
7
3.1 问题描述
目标函数,如果我们不希望控制动作变化太大
J
p
iy y(k i | k) r(k i)
2
m
ui u(k i 1) 2
i1
i1
• 加权因子ui 越大,则控制动作变化越小
•
在整个预测过程中,
,
y p
),
u
diag(1u , u2,
, um )
Rp (k 1) r(k 1) r(k 2)
r(k p)T
Um (k) u(k) u(k 1)
u(k m 1)T 11
3.2 开环优化问题
定义
y
Yp (k 1| k) Rp (k 1)
uUm (k)
Ax b
其中Yp (k 1| k) MssY (k) SuUm(k) Sdd(k)
i 1
i 1
s.t.
Yp (k 1| k) M ssY (k) SuUm (k) Sd d (k )
其中
iy ,i 1, 2,..., p 为输出加权因子 ui ,i 1, 2,..., m为控制增量加权因子
开环优化
9
第3章 无约束预测控制
3.1 问题描述 3.2 开环优化问题 3.3 滚动时域与闭环控制 3.4 无约束预测控制性能分析 3.5 基于状态空间模型的无约束预测控制
u i
是可以变化的
• ui 0对控制动作的约束是软约束(无约束MPC) • umin u(k i) umax为硬约束(约束MPC)
8
3.1 问题描述
优化问题:
Find
min
J
u (k ),u (k 1), ,u (k m1)
无约束预测控 制器设计问题
with J p iy y(k i | k) r(k i) 2 m iuu(k i 1) 2
Um (k) u(k) u(k 1)
u(k m 1)T
k时刻实际施加到系统中的控制增量: u(k) k+1时刻,新的测量值 y(k 1),重新计算u(k 1)
18
3.3 滚动时域与闭环控制
k时刻作用于系统的控制增量:
u(k) KmpcEp (k 1)
Kmpc Rp (k 1) M ssY (k) Sd d (k)
则
J y Yp (k 1| k) Rp (k 1)
2
uUm (k)
2
J T
12
3.2 开环优化问题
开环优化问题的等价形式:
其中
Find min T , s.t. Ax b x
A
y u
Su
x Um (k)
b
y
E
p
(k
1)
0
Ep (k 1) Rp (k 1) MssY (k) Sd d(k)
13
3.2 开环优化问题
对于优化问题:
Find min T , s.t. Ax b x
极小值存在的条件
d2 T dx2 0
对向量的求导:
dX TY dX T dY T Y+
XT T
dx dx dx
14
3.2 开环优化问题
极小值存在条小值:
d T 2(d )T 2AT ( Ax b) 0 x ( AT A)1 ATb
dx
dx
A
y u
Su
b
y
E
p
(k
1)
0
15
3.2 开环优化问题
开环优化问题的解(k时刻的最优控制序列): d T
0 dx
Um (k) ySu T ySu u T u 1 ySu T yEp (k 1)
其中 Ep (k 1) Rp (k 1) MssY (k) Sdd(k)
误差项
16
第3章 无约束预测控制
3.1 问题描述 3.2 开环优化问题 3.3 滚动时域与闭环控制 3.4 无约束预测控制性能分析 3.5 基于状态空间模型的无约束预测控制
17
3.3 滚动时域与闭环控制
k时刻的最优控制序列:
Um (k) ySu T ySu u T u 1 ySu T yEp (k 1)
Predictive Control 预测控制
第3章 无约束预测控制
控制科学与工程 2016年3月
内容回顾
第2章所讲的主要内容:
阶跃响应模型 脉冲响应模型 CARIMA模型 状态空间模型 状态估计(利用最新测量信息获得系统状态) 预测(预测系统未来输出) 数据驱动建模与预测
2
内容回顾
10
3.2 开环优化问题
开环优化问题(矩阵向量形式):
Find min J Um (k )
with J y
Yp (k 1| k) Rp (k 1)
2
uUm (k)
2
s.t.
Yp (k 1| k) M ssY (k) SuUm (k) Sd d (k)
其中
y diag(1y , 2y ,
非线性系统 准无限时域非线性预测控制器设计----第7章
4
第3章 无约束预测控制
3.1 问题描述 3.2 开环优化问题 3.3 滚动时域与闭环控制 3.4 无约束预测控制性能分析 3.5 基于状态空间模型的无约束预测控制
5
3.1 问题描述
问题描述 对于用阶跃响应状态空间模型描述的线性系统:
Y (k) MssY (k 1) Su(k 1) y(k) CY (k)
设计预测控制器,使系统输出跟踪给定的参考输出
优化问题
6
3.1 问题描述
目标函数,例:希望系统输出接近参考输出
p
J y(k i | k) r(k i) 2 i 1
其中r(k i),i 1, 2,..., p为参考输出序列。
多个输出,还可对输出加权
J p iy y(k i | k) r(k i) 2 i1
预测控制:
建模:获得预测模型 预测:获得对系统未来输出的预测值 设计:将预测控制器的设计问题转化为求解一个优化问题,
从而获得控制律/控制序列 分析:稳定性、跟踪性能
介绍不同系统的预测控制器设计与性能分析方法
3
内容回顾
接下来:
无约束线性系统 预测控制器设计与性能分析 ----第3章
约束线性系统 预测控制器设计 ----第4章 稳定性分析 ----第5章 显式预测控制 ----第6章