高速激光熔覆加工参数

合集下载

高速激光熔覆技术介绍

高速激光熔覆技术介绍

高速激光熔覆技术介绍高速激光熔覆技术是一种通过高功率激光束对材料表面进行加工的现代先进技术。

该技术可以获得较高的熔覆效率和良好的成形质量,因此在制造行业中得到了广泛应用,例如汽车、航空航天等领域。

下面将从几个方面介绍高速激光熔覆技术的特点和应用。

1. 工作原理在高速激光熔覆技术中,激光束将被聚焦在待加工材料的表面上,使材料表面瞬间达到高温状态,并快速熔化。

同时,高温下的材料同时与粉末喷射器喷出的粉末形成液态态。

随着激光束移动,形成的液态材料被迅速凝固,由此形成一层高品质的熔覆层。

2. 特点高速激光熔覆技术具有多项明显特点。

首先,它可以处理多种各样的材料,例如金属、陶瓷、复合材料等。

其次,技术具有很高的加工效率,一般以mm/min为单位计算熔覆速度。

另外,该技术制作出来的熔覆层厚度可以达到几百至几千微米,质量精度和表面质量也非常高。

最后,与传统热处理技术相比,高速激光熔覆技术对原材料的热影响区域较小,可以避免热变形等问题,从而获得更好的几何精度。

3. 应用领域高速激光熔覆技术在制造行业中应用广泛。

在汽车制造领域,该技术可以制造出高强度、高硬度、高粘附性的汽车零部件,例如活塞、凸轮轴、齿轮等。

在航空航天领域,技术可用于制造航空发动机的涡轮齿轮、叶片等部件。

此外,高速激光熔覆技术还可以制造散热器和管道、液压和气动元件、刀具等。

总的来说,高速激光熔覆技术已成为现代先进制造技术中的一项重要技术。

随着科技的发展,它将持续发展和创新,为制造业的进一步发展注入新的活力。

简述工艺参数对激光熔覆的影响

简述工艺参数对激光熔覆的影响

简述工艺参数对激光熔覆的影响激光熔覆技术是一种先进的表面强化工艺,可以有效地提高金属表面的硬度、耐磨性和耐腐蚀性。

工艺参数作为激光熔覆过程中的重要因素,对最终的熔覆质量和性能有着重要的影响。

本文将对工艺参数对激光熔覆的影响进行简要描述。

激光熔覆技术是一种利用高能密度激光束对金属表面进行加热熔化,并在凝固过程中与基体金属混合的技术。

通过控制激光熔覆过程中的工艺参数,可以实现对熔覆层的组织结构、成分和性能的调控,从而满足不同工件的表面强化要求。

激光功率是影响激光熔覆过程的重要参数之一。

激光功率的大小直接影响着熔池的温度和深度,过高或过低的激光功率都会导致熔覆层的质量不理想。

过高的激光功率会导致熔池过热,容易产生裂纹和气孔,过低的激光功率则无法完全熔化添加材料和基体金属,影响熔覆层的结合强度。

合理选择激光功率对于保证熔覆层的质量至关重要。

激光扫描速度也是影响激光熔覆过程的重要参数之一。

激光扫描速度的快慢直接影响着熔池的凝固速度和熔覆层的组织结构。

通常情况下,较快的激光扫描速度会导致熔池的凝固速度加快,晶粒尺寸变小,组织更加细密,硬度更高,但是会降低熔覆层的厚度;而较慢的激光扫描速度则会导致熔池的凝固速度减慢,晶粒尺寸变大,组织较粗,硬度较低,但是可以保证熔覆层的厚度。

根据具体的工件和表面强化要求,合理选择激光扫描速度是非常重要的。

激光熔覆过程中的激光焦点位置也是影响熔覆质量的重要参数。

激光焦点位置与添加材料的进料位置、基体金属的表面形貌等因素密切相关,不同的焦点位置会导致熔池的形状和尺寸不同,影响熔覆层的成形性能和质量。

激光熔覆过程中的激光束直径、激光束形状、激光束的成形方式、激光束与工件表面的角度等参数也会对熔覆质量产生一定的影响。

合理选择和控制这些工艺参数,可以有效地提高激光熔覆的加工效率和加工质量。

工艺参数对激光熔覆的影响是十分显著的。

通过合理选择和控制激光功率、扫描速度、焦点位置等工艺参数,可以实现对熔覆层的微观组织、成分和性能的调控,从而满足不同工件的表面强化要求。

超高速激光熔覆Ni625

超高速激光熔覆Ni625

第52卷第11期表面技术2023年11月SURFACE TECHNOLOGY·237·超高速激光熔覆Ni625/WC复合涂层的耐磨性能李宝程1,崔洪芝1,2*,宋晓杰1,殷泽亮1,朱于铭1(1.山东科技大学 材料科学与工程学院,山东 青岛 266590;2.中国海洋大学 材料科学与工程学院,山东 青岛 266100)摘要:目的提高高铁制动盘用24CrNiMo铸钢的耐磨性和高温性能。

方法在24CrNiMo铸钢表面,通过超高速激光熔覆技术,制备Ni625/碳化钨(WC)复合涂层,并设计多层梯度熔覆,使得WC颗粒在涂层中呈均匀分布。

通过X 射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析涂层的物相组成、微观组织结构和元素分布。

分别采用显微硬度计、摩擦磨损试验机、三维形貌仪等测试涂层的硬度、室温及600 ℃的摩擦系数和耐磨性,分析涂层的摩擦磨损机理。

通过同步热分析仪(TGA-DSC)测试涂层的抗高温氧化性能和组织的高温稳定性能。

结果涂层主要由γ-Ni固溶体、WC以及含W增强相W2C和M23C6等组成。

WC分布较为均匀,涂层平均显微硬度达440HV0.2~610HV0.2,是基体硬度的1.25~1.7 倍。

在室温条件下,体积磨损率仅为基体24CrNiMo铸钢的 4.2%~20.8%,摩擦系数略低于基体;在600 ℃条件下,体积磨损率为基体24CrNiMo铸钢的 80.1%~180.8%,摩擦系数高于基体,且稳定性好,熔覆涂层显著提高了24CrNiMo铸钢基体的耐磨性。

磨痕分析表明,涂层在室温下主要为磨粒磨损,600 ℃下除了磨粒磨损之外,并还伴随着轻微的氧化磨损,其中复合涂层S3的性能最佳。

结论在以高速强力磨损为主的工况下,Ni625/WC复合涂层具有优异的耐磨性能和抗高温氧化性能,球形WC颗粒在提高涂层耐磨方面发挥了重要作用。

关键词:高铁制动盘;超高速激光熔覆;摩擦磨损,Ni基涂层中图分类号:TH117 文献标识码:A 文章编号:1001-3660(2023)11-0237-11DOI:10.16490/ki.issn.1001-3660.2023.11.018Wear Resistance of Ultra-high Speed Laser CladdingNi625/WC Composite CoatingsLI Bao-cheng1, CUI Hong-zhi1,2*, SONG Xiao-jie1, YIN Ze-liang1, ZHU Yu-ming1(1. School of Materials Science and Engineering, Shandong University of Science and Technology, Shandong Qingdao 266590,China; 2. School of Materials Science and Engineering, Ocean University of China, Shandong Qingdao 266100, China) ABSTRACT: High-speed train brake disc is one of the important components to ensure the safe and reliable operation of收稿日期:2022-10-30;修订日期:2023-03-08Received:2022-10-30;Revised:2023-03-08基金项目:国家自然科学基金(51971121,U2106216);山东省重大创新工程项目(2019JZZY010303,2019JZZY010360)Fund:The National Natural Science Foundation of China (51971121, U2106216); Major-special Science and Technology Projects in Shandong Province (2019JZZY010303, 2019JZZY010360)引文格式:李宝程, 崔洪芝, 宋晓杰, 等. 超高速激光熔覆Ni625/WC复合涂层的耐磨性能[J]. 表面技术, 2023, 52(11): 237-247.LI Bao-cheng, CUI Hong-zhi, SONG Xiao-jie, et al. Wear Resistance of Ultra-high Speed Laser Cladding Ni625/WC Composite Coatings[J]. Surface Technology, 2023, 52(11): 237-247.*通信作者(Corresponding author)·238·表面技术 2023年11月high-speed trains. Its main failure form is thermal damage and wear that occurs on or near the friction surface. The use of ultra-high-speed laser melting and other surface strengthening technologies to improve the wear resistance and high-temperature performance of brake discs and other key components is an effective way to ensure the safe operation of high-speed trains. At present, there are many studies on the wear performance of Ni-based WC coatings, but there are relatively few studies on the application of key parts such as brake discs in high-speed trains.In this paper, Ni625/WC composite coatings was prepared on the surface of 24CrNiMo cast steel for high-speed train brake discs using ultra-high-speed laser melting technology. Since the high specific gravity of WC affected the quality and wear resistance of the coatings, a three-layer gradient coating design was used to improve the distribution of WC particles in the coatings.The phase composition, microstructure and element distribution of the coatings were analyzed by an X-ray diffractometer (XRD), a transmission electron microscope (TEM) and a scanning electron microscope (SEM). The hardness, coefficient of friction and wear resistance of the coatings at room temperature and 600 ℃were tested with a microhardness tester, a friction and wear tester and a 3D morphology tester, respectively, and the friction and wear mechanisms of the coatings were analyzed. The high-temperature oxidation resistance and tissue stability of the coatings were investigated with a TGA-DSC simultaneous thermal analyzer.The results showed that the coatings are well bonded to the substrate, metallurgically, and the total thickness of the coatings was about 300 μm. The coatings were mainly composed of γ-Ni solid solution, WC, W2C and M23C6 phases. The partial melting and decomposition of WC particles generated different types and multi-scale secondary carbide phases distributed in the intergranular region of the γ-Ni solid solution. In addition, there were lamellar fine eutectic tissues composed of γ-Ni and secondary carbides generated. The hardness distribution of the coatings were relatively uniform, and the average microhardness reached 440HV0.2~610HV0.2, which was 1.25~1.7 times of the matrix hardness (360HV0.2), and the thickness of the heat-affected zone was about 200 μm with a hardness of 410HV0.2. With the increase of WC content, the main wear mechanism at room temperature was abrasive wear, and the volume of wear decreased to 20.8%, 6.8%, 4.4% and 4.2% of the matrix, and the corresponding coefficients of friction were slightly lower than that of the matrix. At 600 ℃, it was mainly abrasive wear and slight oxidation wear, and the coefficients of friction were higher than that of the matrix. The high toughness γ-Ni was firmly combined with WC, diffusely distributed secondary carbides and other reinforcing phases, which played the role of wrapping and supporting WC particles, and the multi-scale carbides, mainly WC particles, could effectively resist the indentation of grinding balls, thus reducing plastic deformation and wear. The coatings have good oxidation resistance and tissue stability, which are beneficial to the stability of frictional wear at high temperature. The spherical WC particles play an important role in improving the wear resistance of the coatings.KEY WORDS: brake discs of high-speed trains; ultra-high-speed laser cladding; frictional wear; Ni-based coating高铁制动盘是保证高速列车安全可靠运行的重要部件之一。

机器人高精度激光焊接与激光熔覆系统技术参数

机器人高精度激光焊接与激光熔覆系统技术参数
3.提供设备出厂精度检验证书、性能检测报告或记录。
4.设备终身免费提供系统应用软件的升级更新服务。
5.自设备安装调试验收合格后,十二个月内免费保修;12小时内响应;24小时内到达现场为用户解决维修问题。
6.在保修期外,只收取设备零部件的成本费,不得收取任何附加费用。
交货期限
在签订技术协议后1周内,提供机器人的外形与安装尺寸、安装说明文件。签订合同后一个月内在本地交货。
5.预留远程服务功能
6.示教编程,并配备离线编程软件
机器人设备安装空间
≤4m×4m×4m
机器人设备总重量
≤800KG(机器手臂+示教器+控制系统)
机器人操作模式
机器手可用控制器进行手动控制也可通过软件进行自动控制
★机器人应用扩展性
适应机械加工、弧焊、激光焊、激光3D打印的应用场景对负载(≥50KG)﹑位置重复精度(≥+/-0.05mm)﹑轨迹精度(≥+/-0.15mm)﹑工作空间半径(≥1500mm)以及电气控制方面的需求,需要提供详细的解决方案,以便后期对机器人进行应用扩展。
备注:标记★项目为必须满足的技术指标
3.数字输入输出通道≥12,模拟输出通道≥2
4.单套同步控制轴的数量:≥10
5.程序可方便进行备份及恢复,随时进行系统的更新,长期存储相关操作和系统日志。
6.噪音等级:50-67dB(根据DIN 45635-1)
7.环境温度:0℃- 45℃,最大湿度95%
8.保护等级:IP54
9.具有开放的二次开发接口,便于需方自行开发定制必要的功能及用户界面。
机器人高精度激光焊接与激光熔覆系统技术参数
参数指标
数值
★机器人手臂
1.负载:≥50KG

超高速激光熔覆工艺参数对熔覆层组织和性能的影响

超高速激光熔覆工艺参数对熔覆层组织和性能的影响

超高速激光熔覆工艺参数对熔覆层组织和性能的影响,郑红彬X王淼辉2,葛学元2,王欣2(1.机械科学研究总院,北京100083$.北京机科国创轻量化科学研究院有限公司,北京100083)摘要:超高速激光熔覆技术与传统激光熔覆有所不同,可大幅提高熔覆效率,制备无缺陷的均匀薄涂层。

为研究超高速激光熔覆主要工艺参数对熔覆层组织与性能的影响,采用超高速激光熔覆技术,分别 以不同激光功率、熔覆速度、熔覆道间距在9Cr2Mo钢基体表面制备M2高速钢涂层,对熔覆层微观组织及力学性能进行表征。

结果表明:熔覆层以细小等轴晶为主,晶间存在网状碳化物;熔覆层主要由crFe、2-Fe以及少部分的MC和M2C碳化物组成;随着激光功率的增大、熔覆速度的减小、熔覆道间距的减小,激光束对熔覆层输入的能量密度随之增大,熔覆层平均晶粒尺寸呈现增大趋势;改变超高速激光熔覆工艺参数,提高对熔覆层的输入能量密度,熔覆层的显微硬度也更加均匀,平均硬度明显提高。

关键词:激光技术;超高速激光熔覆;工艺参数;涂层;微观组织;显微硬度中图分类号:TG174.4文献标志码:AInfluence of Ultra-high-speed Laser Cladding Process Parameters on the Structure and Propertiesof the Cladding LayerZHENG Hongbin1,WANG Miaohui,GE Xueyuan2,WANG Xin2(1.China Academy of Machinery Science and Technology Group Co.,Ltd.,Beijing100083,China;2.Beijing National Innovation Institute of Lightweight Co.,Ltd.,Beijing100083,China)Abstract:Ultra-high-speed laser cladding technology was different from traditional laser cladding,which could greatly improve the cladding efficiency and prepare a uniform thin coating without defects.In order to study the influence of the mainprocessparameGersofulGra-high-speedlasercladdingonGhesGrucGureandperformanceofGhecladdinglayer ulGra-high-speedlasercladdingGechnology wasusedGoprepare M2high-speedsGeelcoaingonGhesurfaceof9Cr2MosGeelsubsGraGe wihdi f erenGlaserpower claddingspeed andcladdingchannelspacing.The microsGrucGureand mechanicalproperGiesof the cladding layer were represented.The results showed that the cladding layer was mainly composed of small equiaxed crys­tals andtherewerenetworkEarbidesbetweentheErystals.TheEladdinglayerwas mainlyEomposedof1-Fe2-Feanda sma l partofMCand M2CEarbides withtheinEreaseoflaserpower EladdingspeeddeEreased andEladdingEhannelspaE-ing also decreased,the energy density of laser beam input to the cladding layer would increase ,and the average grain size of thecladdinglayerincreased;changingtheultra-high-speedlasercladdingprocessparameterscouldincreasetheinputenergy densitytothecladdinglayer themicrohardnessofthecladdinglayerwasalso moreuniform andtheaveragehardnesswas significantlyimproved.Key words:laser technology ,ultra-high-speed laser cladding,process parameters,coating,microstructure ,microhard-激光熔覆是指将熔覆材料以不同方式添加到熔覆基体表面,并以激光束作为热源,将熔覆材料熔化凝固到基体表面制备与基体具有冶金结合的表面涂层,从而实现材料的表面改性以及产品的表面修复等的工艺方法%13&。

激光深熔焊接的主要工艺参数(精)

激光深熔焊接的主要工艺参数(精)

(一)激光深熔焊接的主要工艺参数1)激光功率。

激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。

只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。

如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。

而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊接过程,导致熔深波动很大。

激光深熔焊时,激光功率同时控制熔透深度和焊接速度。

焊接的熔深直接与光束功率密度有关,且是入射光束功率和光束焦斑的函数。

一般来说,对一定直径的激光束,熔深随着光束功率提高而增加。

2)光束焦斑。

光束斑点大小是激光焊接的最重要变量之一,因为它决定功率密度。

但对高功率激光来说,对它的测量是一个难题,尽管已经有很多间接测量技术。

光束焦点衍射极限光斑尺寸可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑要比计算值偏大。

最简单的实测方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿孔直径。

这种方法要通过测量实践,掌握好激光功率大小和光束作用的时间。

3)材料吸收值。

材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。

影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数,经过对材料抛光表面的吸收率测量发现,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化;其次,材料的表面状态(或者光洁度)对光束吸收率有较重要影响,从而对焊接效果产生明显作用。

CO2激光器的输出波长通常为10.6μm,陶瓷、玻璃、橡胶、塑料等非金属对它的吸收率在室温就很高,而金属材料在室温时对它的吸收很差,直到材料一旦熔化乃至气化,它的吸收才急剧增加。

采用表面涂层或表面生成氧化膜的方法,提高材料对光束的吸收很有效。

4)焊接速度。

焊接速度对熔深影响较大,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。

合金钢超高速激光熔覆铁基涂层工艺

合金钢超高速激光熔覆铁基涂层工艺

合金钢超高速激光熔覆铁基涂层工艺一、实验材料及方法(一)实验材料本试验采用27SiMn辊作为基体材料,直径为53mm、长度为800mm。

釆用的熔覆粉末为含Cr量很高的431不锈钢粉末,粉末通过等离子旋转极法制备,粉末颗粒度在25~45um之间。

(二)实验方法与步骤1.材料准备采用磨床将辊表面锈迹磨光,为了提高不锈钢粉末与基体的冶金效果,所以基体表面尽可能光滑。

熔覆前用酒精对基体试样进行擦拭,以除去表面的油污。

熔覆材料采用431不锈钢粉末。

试验前将粉末放在烘干炉中干燥,除去其中的水分且保温温度为110℃,保温時间为2小时。

2.试样处理将激光熔覆试验后的27SiMn辊,用线切割将改钢板切成大约8mm8mm12mm的立方钢块,利用金相镶嵌机对试样进行镶嵌。

采用金相磨抛机分别使用400目、600目、800目、1000目的水砂纸对试样进行处理,最后通过抛光和腐蚀之后对试样进行金相观察等分析。

本试验采用的腐蚀液为4%硝酸酒精溶液。

3.试样分析(1)微观组织分析:利用电子显微镜观察分析试样横截面的显微组织和表面形貌,并观察其有无缺陷。

(2)性能分析:采用HVS-100型显微硬度计。

对涂层、热影响区、基体进行硬度测试;应用盐雾试验箱测定涂层的耐蚀性,试验溶液配置为:溶解试剂氯化钠于水中,调配成浓度为5%的盐水液,盐水液的PH值应在6-7之间。

并以冰醋酸调整溶液的酸碱值,使其腐蚀液的PH值为3.0-3.2。

二、工艺参数对涂层样貌的影响(一)激光功率对涂层样貌的影响激光功率是影响激光熔覆层质量的最关键的因素,也是发挥激光熔覆的优势所在。

对于一定厚度的涂层,功率过小,会造成涂层熔化不完全、表面不平整,功率过大则会造成合金粉末过烧、有气孔、表面褶皱、熔覆深度深、稀释率大等问题。

采用控制变量的方法,线速度20m/min、送粉速度4r、搭接率50%为保持不变,激光功率分别为2500W、3000以及3500W,通过实验发现功率为2500W时功率明显不足,粉末未完全融化,功率为3000W时粉末完全融化,成型平整,无缺陷,当功率增加至3500W时,粉末过烧,造成熔覆层表面褶皱。

超高速激光熔覆技术介绍

超高速激光熔覆技术介绍

超高速熔覆是可实现不同厚度、冶金结合、大面积涂层的快速制备,它以经济、环保的方式克服了其他涂层制备方法的缺点,这种新的方法也可以用于异种材料之间的结合,如在铝合金或铸铁表面制备耐磨和防腐涂层等,在增材制造行业内应用广泛。

超高速率熔覆技术是通过同步送粉添料方式,利用高能密度的束流使添加材料与高速率运动的基体材料表面同时熔化,待快速凝固后形成稀释,与基体呈冶金结合的熔覆层,大大提高熔覆速率,从而显著改善基体材料表面的耐磨、耐蚀、耐热、抗氧化等工艺特性的工艺方法。

超高速激光熔覆是一种快速激光表面处理技术,主要涉及技术参数分为两个方面,一是激光熔覆过程中,设备的设置参数,称为加工参数;二是熔覆完成后,对熔覆效果质量的测评衡量参数,称为检测参数。

与此同时,激光熔覆是指以不同的添料方式在被熔覆基体表面上放置被选择的涂层材料经激光辐照使之和基体表面一薄层同时熔化,并快速凝固后形成稀释度极低,与基体成冶金结合的表面涂层,达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。

该产品与堆焊、喷涂、电镀和气相沉积相比,激光熔覆具有稀释度小、组织致密、涂层与基体结合好、适合熔覆材料多以及粒度及含量变化大等特点,因此激光熔覆技术应用前景很广阔。

以上即是南京中科煜宸激光技术有限公司为大家带来的内容介绍,希望对大家能够有所帮助,中科煜宸已成功研发超高速激光熔覆装备,装备配备超高速熔覆专用送粉器、高可靠性送粉喷嘴等核心器件,与煤机、冶金、汽车、航空航天等行业深入合作,与众多企业建立了良好的合作关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速激光熔覆相关技术参数介绍
高速激光熔覆是一种快速激光表面处理技术,主要涉及技术参数分为两个方面,一是激光熔覆过程中,设备的调试设置参数,称为加工参数;二是熔覆完成后,对熔覆效果质量的测评衡量参数,称为检测参数。

加工参数主要包括激光功率、光斑形状、光斑尺寸、加工距离、搭接率、熔覆速度、送粉方式、保护气气压共8项关键参数。

(1)激光功率,激光器单位时间内输出的能量。

高速激光熔覆一般用KW级激光器,如ZKZM-2KW和ZKZM-4KW在市场上推广应用较多,可满足大部分的领域使用需求。

(2)光斑形状,常见的光斑形状分圆形和矩形两种,用户根据加工对象特点选择使用。

(3)光斑尺寸,光斑尺寸主要影响光功率密度,即单位面积的光能量大小,同等功率条件下,光斑尺寸越小,光功率密度越大,高功率密度光斑适宜熔覆高熔点的金属粉末。

(4)加工距离,指激光出光口距基体表面的距离。

加工距离过远,金属粉末容易发散,粉末利用率低;加工距离近,激光熔覆头受激光辐射表面温度过高,严重造成粉末堵塞。

(5)搭接率,搭接率是影响熔覆层表面粗糙度的主要因素,搭接率提高,熔覆层表面粗糙度降低。

但搭接部分的均匀性很难得到保证。

每道熔覆层之间相互搭接区域的深度与每道熔覆层正中的深度有所不同,从而影响了整个熔覆层。

高速熔覆的搭接率高达70%-80%(普通熔覆的搭接率为30%-50%)。

(6)熔覆速度,熔覆线速度和熔覆面积速率均可表示熔覆速度大小。

中科中美高速激光熔覆实测线速度为30m/min-100m/min,在熔覆厚度0.2-0.5mm时,熔覆效率每小时0.7-1.2平方米。

(7)送粉方式,高速激光熔覆送粉方式主要有环形送粉和中心送粉两种方式,中心送粉较环形送粉粉末利用率高,但设计难度较大,光束需呈环形围绕送粉管一周,目前市场上环形送粉应用较多。

(8)保护气气压,保护气压力大小加工时可调。

保护气一般使用氮气或氩气,主要用于送粉以及在激光熔覆熔池周围形成保护区域,减少氧化。

检测参数是在高速熔覆完成后,对熔覆层质量好坏的衡量参数,主要包括孔隙率、硬度、结合强度、稀释率、冷热疲劳性能、表面粗糙度等。

(1)孔隙率,高速激光熔覆在熔覆过程中不可避免存在着孔隙,孔隙度的大小与金属粉末温度和速度以及粉末运动角度有关,一般来说粉末运动速度慢熔覆层的孔隙率会大。

(2)硬度,由于高速激光熔覆层在形成时的激冷和高速撞击,熔覆层晶粒细化以及晶格产生畸变,使涂层得到强化,因此,激光熔覆层的硬度比一般材料的硬度要高。

ZKZM高速熔覆激光设备熔覆粉末,熔覆层表面硬度可达 HRC。

(3)结合强度,高速激光熔覆层与基体为冶金结合,即熔覆层和基体的界面间原子相互扩散而形成结合,这种结合是在激光作用基体和金属粉末产生高温以及粉末高速运动的状态下形成的。

中科中美高速激光熔覆层与基体结合强度可高达360MPa。

(4)稀释率,指熔敷金属被稀释的程度,用基材在熔覆层中所占的百分比来表示。

稀释率对熔覆层性能有较大的影响,高速熔覆工艺中,可通过金属粉末流量、光功率密度、熔覆速率调节来控制稀释大小。

中科中美高速激光熔覆的稀释率极低,约为1%左右。

(5)冷热疲劳性能,是指熔覆层的抗冷热疲劳或热震性能。

熔覆层的抗热震性能不好,会在使用中开裂形成裂纹。

熔覆层的抗热震性能的好坏主要取决于金属粉末与基体的热膨胀系数差异的大小和熔覆层与基体结合强度。

(6)表面粗糙度,熔覆层表面的平整程度,工艺测试中,激光光能量密度、送粉量大小和载气流压力均会影响表面粗燥度,三者都存在一个最佳参数值区间,数值设置过高或过低均会导致表面平整程度降低。

实际对基材进行高速激光熔覆加工时,需根据粉末基材特性,进行合适的加工参数设置从而使各项检测参数达标,满足应用需求。

相关文档
最新文档