求函数零点的几种方法

合集下载

二次函数零点问题题类型方法总结

二次函数零点问题题类型方法总结

二次函数零点问题题类型方法总结二次函数是高中数学中的重要内容,求其零点是常见的题目类型之一。

本文将对二次函数零点问题的题型和解题方法进行总结。

题型总结在求解二次函数零点的过程中,常见的题型可以归纳为以下几种:1. 一元二次方程的解法:给定一个一元二次方程,要求求解方程的解。

2. 零点的个数:给定一个二次函数,要求计算其零点的个数。

3. 零点的坐标:给定一个二次函数,要求计算其零点的坐标。

4. 求参数:已知一个二次函数的零点和另外一个点的坐标,要求求解该二次函数的参数。

解题方法总结对于不同的题型,可以采用不同的解题方法来求解二次函数零点问题。

以下是常见的解题方法总结:1. 完全平方公式:对于一元二次方程,可以使用完全平方公式进行求解,即 $$x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$$。

通过代入方程中的系数,即可得到方程的解。

2. 判别式法:通过计算方程的判别式来判断二次函数的零点个数。

若判别式 $$\Delta=b^2-4ac$$ 大于0,则方程有两个不相等的实数根;若判别式等于0,则方程有两个相等的实数根;若判别式小于0,则方程没有实数根。

3. 坐标法:对于求零点坐标的问题,可以通过将二次函数表示为顶点形式,然后根据顶点坐标和其他给定的坐标求解未知参数,进而得到零点的坐标。

4. 求参数法:对于求参数的问题,可以利用已知的零点坐标和另一点的坐标,构建方程组,然后通过解方程组求解未知参数。

总结通过以上的总结,我们可以了解到二次函数零点问题的常见题型和解题方法。

在实际解题中,根据题目要求选择合适的方法,并根据具体情况灵活运用,以获得正确的解答。

希望本文对您理解和解决二次函数零点问题有所帮助。

求函数零点问题的基本方法

求函数零点问题的基本方法

[]2012.250【数理化研究】关注新课改使高中课程发生很大的变化,减少和增加了很多内容,其中增加了函数零点问题。

函数零点涉及到很多方法:如等价转化、函数方程、数形结合等思想方法,还有近似求函数零点方法———二分法这些成为求函数零点的基本策略。

一、求函数的零点例1求函数y=x 2-(x<0)2x-1(x 0){的零点。

解:令x 2-1=0(x<0),解得x=1,2x-1=0(x≥0),解得x=12。

所以原函数的零点为和-1和12。

点评:求函数f (x )的零点,转化为方程f (x )=0,通过因式分解把方程转化为一(二)次方程求解。

二、判断函数零点个数例2求f (x )=x-4x 的零点个数。

解:函数的定义域(-∞,0)∪(0,+∞)。

令f (x )=0即x-4x =0,解得:x=2或x=-2。

所以原函数有2个零点。

点评:转化为方程直接求出函数零点,注意函数的定义域。

三、根据函数零点反求参数例3若方程a x -x-a=0有两个解,求a 的取值范围。

析:方程a x -x-a=0转化为a x =x+a。

由题知,方程a x -x-a=0有两个不同的实数解,即函数y=a x 与y=a+x 有两个不同的交点,如图所示。

(1)0<a<1。

此种情况不符合题意。

(2)a>1。

直线y=x+a 在y 轴上的截距大于1时,函数y=a x 与函数y=a+x 有两个不同的交点。

所以a<0与0<a<1均不符合题意,故答案为(1,+∞)。

点评:采用分类讨论与用数形结合的思想。

四、用二分法近似求解零点例4求函数f (x )=x 3+x 2-2x-2的一个正数零点(精确到0.1)。

解:(1)第一步确定零点所在的大致区间(a,b ),可利用函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定一个长度为1的区间。

(2)列表如下:零点所在区间中点函数值区间长度(1,2)f (1.5)>01(1,1.5)f (1.25)<00.5(1.25,1.5)f (1.375)<00.25(1.375,1.5)f (1.438)>00.125(1.375,1.438)f (1.4065)>00.0625可知区间(1.375,1.438)长度小于0.1,故可在(1.375,1.438)内取1.4065作为函数f (x )正数的零点的近似值。

函数零点问题

函数零点问题

函数零点问题
函数零点问题,又称为函数根搜索问题,是求解一元函数或多元函数的实根的方法。

即在给定的一个区间[a,b]内求解f(x)=0的根,其中f(x)是一个连续函数。

该问题的求解最常用的方法是二分法和牛顿迭代法。

二分法是一种简单而有效的求解函数零点的方法,它的基本思想是将定义域划分为两个子区间,如果函数在两个子区间的符号不同,则说明该区间存在函数零点,然后再把该区间一分为二,得到新的两个子区间,重复上述步骤,直至找到函数零点的精确位置。

牛顿迭代法是一种根据函数的导数来求函数零点的一种方法,它的基本思想是:令函数f(x)在某点x0上的切线与X轴相交于点P,然后选择P作为下一个迭代点,重复该过程,直至收敛到函数零点。

matlab找零点函数

matlab找零点函数

matlab找零点函数在MATLAB中,要寻找函数的零点,可以使用几种不同的方法,包括二分法、牛顿法、割线法和方程迭代法等。

下面将介绍这些方法的原理和MATLAB中的实现。

1. 二分法(Bisection Method):对于一个已知的连续函数 f(x),如果在区间 [a, b] 内 f(a) 和 f(b) 异号,则函数在该区间内至少存在一个零点。

二分法的基本思想是不断将区间二分,直到找到零点的近似解。

可以使用MATLAB内置函数 fzero 来实现二分法。

例如,对于函数 f(x)= x^2 - 4,在区间 [1, 3] 内寻找零点的代码如下:```matlabx = fzero(f, [1, 3]);disp(x);```2. 牛顿法(Newton's Method):牛顿法基于函数的泰勒级数近似,通过迭代逼近函数的零点。

其基本思想是在当前估计值 x0 处,通过函数f(x) 的导数 f'(x) 来计算下一个估计值 x1、可以使用MATLAB内置函数fzero 来实现牛顿法。

例如,对于函数 f(x) = x^2 - 4,在初始估计值x0 = 2 处寻找零点的代码如下:```matlabx0=2;x = fzero(f, x0);disp(x);```3. 割线法(Secant Method):割线法是在牛顿法的基础上做了改进,使用两个初始估计值 x0 和 x1 来逼近函数的零点。

割线法的迭代公式为x(n+1) = x(n) - f(x(n)) * (x(n) - x(n-1)) / (f(x(n)) - f(x(n-1)))。

同样,可以使用MATLAB内置函数 fzero 来实现割线法。

例如,对于函数 f(x) = x^2 - 4,在初始估计值 x0 = 1 和 x1 = 2 处寻找零点的代码如下:```matlabx0=1;x1=2;x = fzero(f, [x0, x1]);disp(x);```4. 方程迭代法(Fixed-Point Iteration Method):方程迭代法是将原方程 f(x) = 0 转化为等价的迭代方程 x = g(x),通过不断迭代g(x) 来逼近函数的零点。

求函数零点所在区间方法

求函数零点所在区间方法

求函数零点所在区间方法
牛顿迭代法和二分法是求函数零点所在区间上常用的两种方法。

牛顿迭代法是一种属于非线性迭代的方法。

该方法以拟合函数的二次函数进行局部逼近,因此也称为牛顿二次插值法,其核心是基于变分法的单点迭代方法,利用函数的前缀
函数在某点处的导数及势函数在此点处的值,迭代求解函数零点的近似值。

牛顿迭代法的
关键是计算函数的非线性的导数,根据变分法的思想,每次迭代过后,利用两点的差商求
函数的一次近似值。

如果函数是二次函数,则可以利用牛顿迭代法,转换为一次导数等于
0就可以获得最终精确零点。

牛顿迭代法的特点是速度快,收敛性良好,在数值计算中经
常用来求函数零点所在区间,不过,该方法仅能求连续函数的零点,也就是说可以求出连
续函数在某个区间内的零点。

二分法也称为折半法、折半搜索法,与牛顿迭代法很相似,属于单点迭代,效率较低,适用于求函数单调区间上的零点。

其核心思想是:在某个函数区间上,选取点,判断函数
图像在该点是上升或下降,从而在不断缩小范围的基础上,找到函数零点所在的区间,最
终得到函数零点。

牛顿迭代和二分法都是求函数零点的基本方法,牛顿迭代法收敛速度较快,但是只适合连续函数;而二分法使用简单,可以求不连续而且是单调的函数的零点,
是比较常用的求函数零点的方法,但是它的收敛速度相较于牛顿迭代来慢一些。

求函数零点的方法

求函数零点的方法

求函数零点的方法
1. 图像法:将函数的图像画出来,零点即为函数与x轴交点。

2. 代数法:将函数化简并解方程,使函数等于0,求出解即为零点。

3. 迭代法:根据函数的单调性不断逼近零点,直至满足精度要求。

4. 数值逼近法:利用数值计算方法,对函数进行逼近,求出函数的近似零点。

5. 正交多项式法:将函数展开成正交多项式的形式,利用正交多项式的性质求出函数的零点。

6. 差分法:利用函数在不同点上的取值差别,逼近求出函数的零点。

7. 导数法:利用导数的定义和性质,求出函数的导数,并找出导数为0的点,即为函数的零点。

快速判断复变函数零点和极点的几种方法

快速判断复变函数零点和极点的几种方法

快速判断复变函数零点和极点的几种方法要快速判断复变函数的零点和极点,可以使用以下几种方法:
1.零点的判断方法:
(1)方程求解法:将复变函数的表达式置为零,求解方程得到零点。

(2)图形法:将复变函数表达式代入计算机软件绘制图形,找出所有
与x轴相交的点即为零点。

(3)求导法:对复变函数进行求导,零点出现在函数图像的极小值和
极大值处。

(4)复数取模法:将复变函数的表达式进行复数取模,求解模为零的
解即为零点。

2.极点的判断方法:
(1)方程求解法:将复变函数的分母置为零,求解方程得到极点。

(2)求导法:对复变函数进行求导,极点出现在导函数无定义的点处。

(3)裂项法:将复变函数的表达式进行裂项,对每一个裂项进行求解,求得不可简化的分母即为极点。

(4)复数取模法:将复变函数的表达式进行复数取模,求解模趋近于
无穷大的解即为极点。

需要注意的是,以上方法仅仅是初步判断复变函数的零点和极点,并
不能保证找到所有的零点和极点。

对于更复杂的函数表达式,可能需要借
助计算机软件进行辅助计算。

此外,还有一些特殊的复变函数可以直接得到它的零点和极点:
-幂函数:复变函数形如f(z)=z^n,其中n为正整数。

这种函数的零
点就是原点z=0,而没有极点。

-指数函数:复变函数形如f(z)=e^z,其中e为自然对数的底数。


种函数的零点不存在,而它的极点在虚轴上的所有点。

总之,判断复变函数的零点和极点需要综合运用方程求解、函数图像、导数和复数的性质等方法,具体情况需要具体分析。

二次函数的零点求解

二次函数的零点求解

二次函数的零点求解二次函数是高中数学中常见的一种函数形式,其表达式为y=ax^2+bx+c,其中a、b、c为常数。

在解决实际问题或求函数图像时,经常需要求解二次函数的零点,也即函数的解。

一、二次函数零点的定义二次函数的零点即函数图像与x轴交点的横坐标值。

换句话说,就是使函数值等于零的x值。

二、求解二次函数零点的方法1. 因式分解法:当二次函数可以因式分解为两个一次因式相乘的形式时,我们可以通过将每个因式等于零来求解零点。

例如:y=x^2-9,可以分解为y=(x+3)(x-3),通过(x+3)=0和(x-3)=0,我们可以得到x=-3和x=3,即二次函数的零点为x=-3和x=3。

2. 公式法:当二次函数无法因式分解时,我们可以利用二次函数的根公式来求解零点。

根公式为:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}其中,a、b、c为二次函数的系数,注意判别式b^2-4ac的值决定了根的情况。

a. 当判别式大于0时,方程有两个不相等的实根;b. 当判别式等于0时,方程有两个相等的实根;c. 当判别式小于0时,方程无实根。

例如:y=x^2-5x+6,根据根公式,我们可以计算出判别式为(-5)^2-4\times1\times6=1,判别式大于0,因此方程有两个不相等的实根。

使用根公式计算可得:x=\frac{5\pm\sqrt{1}}{2},化简后得到x=3和x=2,即二次函数的零点为x=3和x=2。

三、求解二次函数零点的示例以一个具体的例子来说明二次函数零点的求解过程。

例题:求解二次函数y=2x^2-5x+3的零点。

解:根据公式法,我们可以计算出判别式为(-5)^2-4\times2\times3=1,判别式大于0,因此方程有两个不相等的实根。

使用根公式计算可得:x=\frac{5\pm\sqrt{1}}{4},化简后得到x=3和x=\frac{1}{2},即二次函数的零点为x=3和x=\frac{1}{2}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求函数零点的几种方法(总
2页)
本页仅作为文档页封面,使用时可以删除
This document is for reference only-rar21year.March
函数零点
一、知识点回顾
1、函数零点的定义:对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点。

注意:(1)零点不是点;
(2)方程根与函数零点的关系:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.
2、零点存在性定理:如果函数)(x f y =在闭区间[a, b]上的图象是连续曲线,并且有0)()(<⋅b f a f , 那么, 函数)(x f y =在区间(a, b)内至少有一个零点.
3、一个重要结论:若函数)(x f y =在其定义域内的某个区间上是单调的,则)(x f 在这个区间上至多有一个零点。

4、等价关系:函数)()()(x g x f x F -=有零点⇔方程0)()()(=-=x g x f x F 有实根⇔方程组⎩⎨⎧==)()(2
1x g y x f y 有实数根⇔函数)(1x f y =与)(2x g y =的图像有交点。

二、求函数)(x f y =零点的方法
1、解方程0)(=x f 的根;
2、利用零点存在性定理和函数单调性:
3、转化成两个函数图像的交点问题。

三、典例分析
例1二次函数c bx ax y ++=2的部分对应值如下表:则不等式02>++c bx ax 的解集是
例2 若函数2()2f x x x a =-+有两个零点,且一个在(-2,0)内,另一个在(1,3)内,求a 的取值范围.
变式
1、已知关于x 的方程2350x x a -+=的两根12x x ,满足1(20)x ∈-,
,2(13)x ∈,,求实数a 的取值范围.
2、已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( )
A .a b αβ<<<
B .a b αβ<<<
C .a b αβ<<<
D .a b αβ<<<
3.函数012)(≠++=a a ax x f ,,若在11≤≤-x 上,)(x f 存在一个零点,则实数a 的取值范围是
例3 函数2
6
x y =和2log y x =的图象的交点有 (A )1个 (B )2个 (C )3个 (D )4个
变式:
1、若方程x x b =+有两个不相等的实数根,求b 的取值范围.
2、已知函数221,0,()2,x x f x x x x ⎧->⎪=⎨--⎪⎩≤0.
若函数()()g x f x m =-有3个零点,则实数m m 的取值范围是 .
练习
1.已知函数)(x f 为奇函数,且该函数有三个零点,则三个零点之和等于________.
2.函数2()1,()|1|f x x g x a x =-=-.若关于x 的方程|()|()f x g x =只有一个实数解,求a 的取值范围;
3.方程lgx+x=3的解所在区间为( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,+∞)
4.x
x x f 1lg )(-=零点所在区间是( ).
A. ]1,0(
B. ]10,1(
C. ]100,10(
D. ),100(+∞
5.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--两个零点分别位于区间
(A )(,)a b 和(,)b c 内 (B )(,)a -∞和(,)a b 内 (C )(,)b c 和(,)c +∞内 (D )(,)a -∞和(,)c +∞内。

相关文档
最新文档