《化工分离工程》教案

合集下载

《化工分离工程》课程教学大纲(本科)

《化工分离工程》课程教学大纲(本科)

《化工分离工程》课程教学大纲英文名称:Chemical Separation Engineering课程类型:学科基础课课程要求:任选学时/学分:32/2适用专业:高分子材料与工程一、课程性质与任务化工分离工程是研究过程工业中物质分离和纯化的工程技术学科。

本课程讲授传质与分离工程的原理和应用,利用前期课程中介绍的有关相平衡、热力学、传热、传质等理论来研究化工生产实际中一些主要的传质单元操作,从分离过程的共性出发,讨论各种分离方法的特征,强调将工程与工艺相结合的观点,理论联系实际,以提高解决实际问题的能力以及设计和分析计算能力。

通过本课程的学习,学生应掌握各种常用分离过程的基本理论,操作特点,简捷和严格的计算方法和强化改进操作的途径,对一些新分离技术有一定的了解。

二、课程与其他课程的联系本课程是高等学校化学工程与工艺专业的一门主干课程,是学生在具备了物理化学、化工原理等技术基础知识后的一门学科基础课。

课程内容的基础概念和基本定律在化工原理课程中已经学过,是化工原理课程的延伸,主要讲授传质与分离工程的原理及在多组分物系中的应用,为后续的化工工艺设计课程、化工过程开发课程及毕业设计等环节奠定理论基础。

三、课程教学目标本课程着重基本概念的理解,为分离过程的选择、特性分析和计算奠定基础。

从分离过程的共性出发,讨论各种分离方法的特征。

强调将工程与工艺相结合的观点,以及设计与分析能力的训练;强调理论联系实际,以提高解决工程实际问题的能力。

1.了解分离操作在化工生产中的重要性,掌握传质分离过程的分类和特征;2.掌握相平衡及相平衡常数的计算方法,掌握多组分物系的泡点和露点计算;3.理解多组分精馏过程的原理、流程,掌握简捷法计算精馏过程;4.了解特殊精馏原理及流程,熟悉萃取精馏、共沸精馏的简单计算;5.了解多组分吸收和解吸过程原理及流程,掌握平均吸收因子法、有效吸收因子法计算多组分吸收过程;熟悉解吸方法;通过课程学习,要求学生能掌握各种常用分离过程的基本理论,操作特点,简捷和严格计算方法及强化改进操作的途径,掌握较为前沿的新分离技术。

天津大学姜忠义_化工分离工程教案

天津大学姜忠义_化工分离工程教案

超临界流体具有低粘度、高密度、扩散系数大、超强 的溶解能力等特性。
4.2 超临界流体萃取
超临界流体萃取是一种以超临界流体作为萃取剂,从固体或液体中提 取出待分离的高沸点或热敏性物质的新型萃取技术。
超临界流体(SCF)是状态处在高于临界温度、压力条件下的流体, 它具有低粘度、高密度、扩散系数大、超强的溶解能力等特性。
典型的萃取流程
4.2.3 超临界流体萃取的应用
超临界流体萃取已深入应用到医药﹑食品 ﹑生物﹑化学工业等领域。
案例: 案例:超临界流体萃取的在化学工业应用实例
①烃的分离 ②有机溶剂水溶剂的脱水(醇﹑甲乙醇等) ③有机合成原料的精制(己二酸﹑己内酰胺等) ④共沸化合物的分离 ⑤反应的稀释溶剂(聚合反应﹑烷烃异构化反应) ⑥反应原料回收(从低级脂肪酸盐的水溶液中回收脂肪酸)
l N = l0 + vN +1 − v1
各式可用质量单位或摩尔单位。由于在绝热萃取塔中温度变化一般都不 大,因此一般不需要焓平衡方程,只有当原料与溶剂有较大温差或混和 热很大时才需考虑。
4.1.3 分馏萃取
通常采用塔中部进料的分馏萃取流程。
洗涤液 溶剂 脱溶剂的 SR 萃取相 溶剂 脱溶剂的 SR 产品A 溶剂 T 溶剂 S
— —
+ +
— — — — — —
— — + + 0
— 0
案例
苯中分离链烃。苯在罗宾斯表中属于第11组,而所选的链烃—庚烷属于 第12组。由罗宾斯表可见,第8组(伯胺、氨、无取代基的氨基化合 物)与芳烃形成的物系对拉乌尔定律产生负偏差,与链烃形成的物系 产生正偏差。 尽管胺或氨基化合物在分离该混合物上很可能是有效的,没有迹象表明 是否一定分层。罗宾斯表也指出,第4组(具有活性氢原子的多环链 烃)、第7组(仲胺)和第9组(醚、氧化物、亚砜)均与链烃形成正 偏差物系,与芳烃形成理想物系。这类溶剂同样可认为是可行的溶剂。 但没有表明形成的液相数目。

《化工分离工程》PPT课件大学课件

《化工分离工程》PPT课件大学课件

化工分离工程第一讲绪论主要内容化学工业与化工过程分离过程在化工生产中作用分离过程的分类及特征本课程的教学目的及要求化工分离技术发展简述化工分离技术是随着化学工业的发展而逐渐形成和发展的。

现代化学工业开始于18世纪。

当时,纯碱、硫酸等无机化学工业成为现代化学工业的开端。

19世纪以煤为基础原料的有机化工发展起来。

开始涉及分离问题,如苯、甲苯、酚等化学品提纯应用了吸收、蒸馏、过滤、干燥等分离操作。

19世纪末,20世纪初石油炼制的发展促进了化工分离技术的成熟与完善。

进入20世纪70年代以后,化工分离技术更加高级化,应用也更加广泛。

同时,化工分离技术与其它科学技术相互交叉渗透产生一些更新的边缘分离技术,如生物分离技术、膜分离技术、环境化学分离技术、纳米分离技术、超临界流体萃取技术等等。

化学工业对原料〔如石油,煤等〕原料进行化学或物理加工加工,改变物质的结构或组成,或合成新物质获得各种有用产品的制造工业.化工过程Industry Chemical Processes Chemical process is is achemical engineering units inwhich raw materials are changedor separated into usefullproducts 化学反应过程化工生产核心化工过程原料的预处理物理处理过程(单元操作)产品的加工分离过程(Separation Processes The separationprocess is a chemicalengineering units toSeparate chemicalmixtures into theirconstituents 分离过程(Separation Processes 两种或多种物质的混合过程是一个自发过程,而将混合物分离须采用分离手段并消耗一定的能量或分离剂,分离技术系指利用物理,化学或物理化学等基本原理与方法将某种混合物分离成两个或多个组成彼此不同的产物的一种单元过程.混合物产品1 分离过程产品2 (气、液、固)产品n 能量分离剂ESA 物质分离剂MSA 借助一定的分离剂,实现混合物中的组分分级(Fractionalization)、浓缩(Concentration)、富集(Enrichment)、纯化(Purification)、精制(Refining)与隔离(Isolation)等的过程称为分离过程。

华东理工大学《化工分离工程》教学大纲

华东理工大学《化工分离工程》教学大纲

华东理工大学《化工分离工程》教学大纲教学重点与难点1. 绪论讲解分离过程的特征,区分分离因子和固有分离因子,讲解用其判断一个分离过程分离的难易程度。

讲解平衡分离的的原理和处理的手段。

本章重点:掌握分离过程的特征,分离因子和固有分离因子的区别,平衡分离和速率分离的原理。

本章难点:用分离因子判断一个分离过程进行的难易程度,分离因子与板效率之间的关系。

2. 单级平衡过程熟练掌握多组分非理想体系平衡常数计算方法;重点讲解汽液相平衡关系常用的两种形式;会用相平衡常数和相对挥发度表示相平衡关系;至少会一种求算活度系数和逸度系数;泡点和露点计算要教会学生会查阅P-T-K 列线图,求算烃类物质的K值,讲解例题2-3;2-4 说明泡、露点的计算方法;了解平衡常数与组成有关的泡、露点计算。

本章重点:多组分物系的相平衡条件;平衡常数;分离因子。

多组分物系的泡点方程、露点方程;计算方法。

等温闪蒸过程和部分冷凝过程。

闪蒸方程;闪蒸过程的计算。

本章难点:多组分非理想体系平衡常数计算。

多组分物系的泡点温度和泡点压力、露点温度和露点压力的计算。

等温闪蒸过程和部分冷凝过程的计算。

3. 多组分多级分离过程分析与简捷计算掌握多组分或复杂物系设计变量的确定方法,多组分精馏、共沸和萃取精馏、吸收和蒸出等过程的基本原理、流程及其简捷计算方法,以及塔内的流率、浓度和温度分布特点,熟练掌握多组分多级分离工程的简捷计算方法。

通过例3-2 说明关键组分等概念和总结清晰分割的两种计算方法;会推导芬思克公式,了解不清晰分割物料衡算的计算思路。

熟悉简捷法求算精馏过程理论板数的步骤。

从萃取剂作用说明其如何改变关键组分间的相对挥发度,推导萃取剂的选择性的计算公式,总结其在萃取剂选择中所其的作用;了解图解法求算萃取精馏过程理论板数的过程。

从共沸剂作用说明其如何改变关键组分间的相对挥发度,会用三角相图计算共沸剂的用量。

与精馏过程比较说明精馏为双向传质过程而吸收为单向传质过程,推导平均吸收因子法的公式,通过例3-8 说明多组分吸收简捷计算的方法,蒸出因子的公式与吸收过程一起学习。

《化工分离工程》教案

《化工分离工程》教案

@@@@大学《化工分离工程》教案~ 学年第学期课程学时65学院化学工程课程名称化工分离工程专业化工工艺主讲教师课时安排:5学时教学课型:理论课√实验课□习题课□实践课□其它□题目(教学章、节或主题):第一章绪论教学目的要求(分掌握、熟悉、了解三个层次):了解分离工程在工业生产中的重要性,分离过程的分类以及常用的化工分离操作过程。

了解工业上常用的分离单元操作的基本原理,了解一些典型应用实例。

理解分离操作理论的形成和特性,分离过程的开发方法和发展趋势。

掌握分离因子的定义和应用,了解传质分离过程的分类和特征。

识记分离剂的类型及分离过程的选择方法。

教学目的要求:识记:分离剂的类型,分离因子概念,分离过程的选择方法。

领会:分离过程的特征与分类。

应用:分离过程的研究内容与研究方法。

本章重点:掌握分离过程的特征与分类,分离因子与固有分离因子的区别,平衡分离和速率分离的原理。

本章难点:用分离因子判断分离过程的难易程度,分离因子与级效率之间的关系。

教学内容(注明:* 重点# 难点?疑点):分离操作在化工生产中的重要性;传质分离过程的分类和特征;本课程的任务和内容。

第一节分离操作在化工生产中的重要性第二节传质分离过程的分类和特征1.2.1平衡分离过程1.2.2速率分离过程第三节本课程的任务和内容教学方式、手段、媒介:以多媒体为主黑板设计:左边幻灯,右边板书讨论、思考题、作业:课时安排:15学时教学课型:理论课√实验课□习题课□实践课□其它□题目(教学章、节或主题):第二章多组分分离基础教学目的要求(分掌握、熟悉、了解三个层次):教学目的要求:1. 掌握相平衡各种关系式及计算;2. 掌握多组分物系的泡点和露点温度和压力的计算;3. 掌握等温闪蒸和部分冷凝过程的计算。

本章主要讨论:设计变量;相平衡关系;泡点和露点的计算;闪蒸过程计算。

本章重点:多组分物系的相平衡条件;平衡常数;分离因子;泡点方程和露点方程法;等温闪蒸过程和部分冷凝过程;闪蒸方程。

化工分离工程教学设计

化工分离工程教学设计

化工分离工程教学设计前言化工分离工程是化学工程中的重要组成部分,用于将混合物中的成分分离提取,是化学生产和制造中的关键技术。

化工分离工程的教学内容繁杂,需要通过设计体现出重点和难点,以便帮助学生更好地掌握相关的知识和技能。

本文将从教学目的、教学内容、教学方法和教学效果等方面进行探讨,以期为化工分离工程教学提供一些借鉴和参考。

教学目的化工分离工程的教学目的主要有以下几个方面:1.帮助学生了解化工分离工程的基本原理及相关的理论知识;2.培养学生的分析问题和解决问题的能力,提高学生的实践能力;3.培养学生的合作精神和创新能力,培养学生的团队合作意识;4.建立健全的评价体系,评价学生的学习成果和实践能力。

教学内容化工分离工程的教学内容主要包括以下几个方面:1.分离过程的基本流程和原理;2.分离过程的热力学基础和热工过程控制;3.分离工艺的基本设备和操作;4.分离技术的综合应用。

从教学内容的角度来看,化工分离工程的教学内容内容涉及广泛,教师需要通过教学设计和课堂讲授把握重点和难点,使学生能够掌握分离工程的基本知识和技能。

教学方法化工分离工程的教学方法应包括以下几个方面:1.理论授课:采用课堂讲解和形象化的教学手段,帮助学生快速了解分离工程的基本理论原理;2.实践教学:在教学过程中,应该注重搭建实验平台,通过实验操作,让学生更好地理解理论知识;3.个人作业:通过PPT报告、论文撰写等形式,让学生自主学习和探究,加强学生的独立思考能力;4.团队项目:通过开展团队作业、课程综合设计等形式,培养学生的团队合作意识,提高学生的创新能力。

教学效果化工分离工程的教学效果可以通过以下几个方面来体现:1.知识掌握程度:学生在课堂上和课外的学习任务上所达到的知识掌握程度;2.实践能力:学生在实验操作、质量控制、工艺设计等实践性任务中的表现;3.学习曲线:学生在整个学习和教学过程中所达到的学习曲线和效果;4.团队精神:学生在团队作业和课程设计等任务中所表现出的团队精神和合作意识。

《化工分离工程》教案

《化工分离工程》教案

《化工分离工程》教案一、课程概述《化工分离工程》是化工工程专业的一门专业课程,旨在培养学生具备化工分离工程设计与操作的基本理论、技术和方法。

通过本课程的学习,学生将掌握分离工程的基本概念、原理和设计方法,了解分离工程在化工生产中的重要性和应用领域,培养学生分析和解决分离工程问题的能力。

二、教学目标1.培养学生对分离工程的基本概念和原理的理解;2.培养学生运用分离工程原理和方法进行设计和操作的能力;3.培养学生对不同分离工程方法和设备的选择和应用的能力;4.培养学生分析和解决分离工程问题的能力。

三、教学内容1.分离过程的基本概念和原理1.1分离工程的定义和分类1.2相平衡和相平衡原理1.3蒸馏、萃取、吸附和结晶等分离过程的基本原理1.4区域平衡和传输过程的分离效率2.蒸馏工艺和设备2.1简单蒸馏和精馏的原理和应用2.2多组份混合物的蒸馏2.3塔式蒸馏和装置选型3.萃取工艺和设备3.1萃取的基本概念和分类3.2搅拌萃取和萃取塔的原理和应用3.3萃取剂的选择和回收4.吸附工艺和设备4.1吸附的基本概念和原理4.2固定床吸附和流动床吸附的原理和应用4.3吸附剂的选择和再生5.结晶工艺和设备5.1结晶的基本概念和原理5.2溶解度曲线和结晶过程的控制5.3结晶设备的选型和操作四、教学方法1.理论授课:通过课堂讲解,系统介绍分离工程的基本概念和原理,引导学生深入理解课程内容。

2.实践教学:组织实验操作,让学生亲自进行分离工程的实验操作,理解设备的操作原理和优化方法。

3.讨论研究:结合工程实例和案例分析,组织学生进行小组讨论,引导学生分析和解决分离工程问题。

4.课程设计:引导学生进行小型分离工程设计,培养学生的设计和操作能力。

五、教学评价1.课堂测试:每个章节结束后进行课堂测试,检查学生对知识掌握的程度。

2.实验报告:要求学生在实验后提交实验报告,针对实验过程和结果进行分析和总结。

3.课程设计报告:要求学生进行小型分离工程设计,并提交设计报告,评价学生的设计和操作能力。

化工分离工程

化工分离工程

教材:面向21世纪课程教材:
刘家祺 分离过程:化学工业出版社, 2002
主要参考书: 陈洪钫,刘家祺化工分离过程:化学工业
出版社, 1995 吴俊生;邓修 等编著,分离工程,华东
化工学院出版社,1992。 郁浩然 主编,化工分离工程,中国石
油出版社,1992。
返回
第一章 绪 论
实例1:糖的溶解与结晶 糖溶于水 形成均匀溶液混合过程 过程是自发的熵增加 从水中取出糖 对体系做功如蒸馏法 分离过程 过程不能自发进行熵减少
●加氢重整后得到:轻油 非芳烃 苯 甲苯 二甲苯 高级芳烃
目的产物为 对二甲苯
● 特点:
邻二甲苯 间二甲苯 对二甲苯
沸点℃ 熔点℃
144411 ﹣25173
139104 ﹣47872
138351 13263
● 涉及到分离过程:精馏:4 7、8 萃取:5、6 结晶:10
目的产 物
总 结:
● 原料的净化与粗分
实例3:Fe3+和Ti4+的分离实验二
Fe3+ Ti4+ 6mol/L HCl 乙醚
乙醚;Fe3+ 抽掉隔板
6mol/L HCl,Ti4+
结果:乙醚和水为互不相溶的两相 Fe3+与乙醚生成离子缔合物:
C2H5O C2H5 + H+ C2H52OH+ Fe3+ + 4 Cl FeCl4 (C2H5)2OH+ + FeCl4 (C2H5)2OH+[FeCl4]
分离过程
Separation Processes
教师:李保华
本课程的任务和内容
■地位:专业基础课 ■前期课程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

@@@@大学《化工分离工程》教案~ 学年第学期课程学时65学院化学工程课程名称化工分离工程专业化工工艺主讲教师课时安排:5学时教学课型:理论课√实验课□习题课□实践课□其它□题目(教学章、节或主题):第一章绪论教学目的要求(分掌握、熟悉、了解三个层次):了解分离工程在工业生产中的重要性,分离过程的分类以及常用的化工分离操作过程。

了解工业上常用的分离单元操作的基本原理,了解一些典型应用实例。

理解分离操作理论的形成和特性,分离过程的开发方法和发展趋势。

掌握分离因子的定义和应用,了解传质分离过程的分类和特征。

识记分离剂的类型及分离过程的选择方法。

教学目的要求:识记:分离剂的类型,分离因子概念,分离过程的选择方法。

领会:分离过程的特征与分类。

应用:分离过程的研究内容与研究方法。

本章重点:掌握分离过程的特征与分类,分离因子与固有分离因子的区别,平衡分离和速率分离的原理。

本章难点:用分离因子判断分离过程的难易程度,分离因子与级效率之间的关系。

教学内容(注明:* 重点# 难点?疑点):分离操作在化工生产中的重要性;传质分离过程的分类和特征;本课程的任务和内容。

第一节分离操作在化工生产中的重要性第二节传质分离过程的分类和特征1.2.1平衡分离过程1.2.2速率分离过程第三节本课程的任务和内容教学方式、手段、媒介:以多媒体为主黑板设计:左边幻灯,右边板书讨论、思考题、作业:课时安排:15学时教学课型:理论课√实验课□习题课□实践课□其它□题目(教学章、节或主题):第二章多组分分离基础教学目的要求(分掌握、熟悉、了解三个层次):教学目的要求:1. 掌握相平衡各种关系式及计算;2. 掌握多组分物系的泡点和露点温度和压力的计算;3. 掌握等温闪蒸和部分冷凝过程的计算。

本章主要讨论:设计变量;相平衡关系;泡点和露点的计算;闪蒸过程计算。

本章重点:多组分物系的相平衡条件;平衡常数;分离因子;泡点方程和露点方程法;等温闪蒸过程和部分冷凝过程;闪蒸方程。

本章难点:平衡常数计算;泡点压力和露点温度的计算;等温闪蒸过程的计算。

教学内容(注明:* 重点# 难点?疑点):相平衡;多组分物系的泡点和露点计算;闪蒸计算。

教学内容:在“化工热力学”课程基础上,全面了解化工过程中经常遇到的多组分物系的汽液平衡。

通过本章的学习要求深刻理解并掌握:设计变量的确定;相平衡关系的计算;多组分的泡点和露点的计算;单级平衡分离过程计算。

本章主要讨论:设计变量;相平衡关系;泡点和露点的计算;闪蒸过程计算。

第一节相平衡132.1.1相平衡关系2.1.2相平衡常数的计算第二节多组分物系的泡点和露点计算2.2.1泡点温度和压力的计算2.2.2露点温度和压力的计算第三节闪蒸过程的计算2.3.1等温闪蒸和部分冷凝过程2.3.2绝热闪蒸过程本章内容应作为本课程的重点之一。

教学方式、手段、媒介:以多媒体为主黑板设计:左边幻灯,右边板书讨论、思考题、作业:课时安排:15学时教学课型:理论课√实验课□习题课□实践课□其它□题目(教学章、节或主题):第三章多组分精馏和特殊精馏教学目的要求(分掌握、熟悉、了解三个层次):教学目的要求:1.掌握单元的设计变量N i e、装置的设计变量N i u;2.了解多组分精馏过程分析,掌握最小回流比、最少理论板数和组分分配、实际回流比和理论板;3. 掌握萃取精馏的基本原理,过程分析与计算;掌握共沸物的特性和共沸组成的计算,二元非均相共沸物的精馏;了解多元共沸精馏过程;识记:关键组分,清晰分割和非清晰分割,分配组分和非分配组分得含义,全回流,最少平衡级数的含义;恒沸精馏、萃取精馏的含义,均相恒沸物和非均相恒沸物的特征;恒沸精馏与萃取精馏的区别及各自使用情况,领会:多组分精馏塔内流量、液相浓度和温度分布特点,最小回流比下不同情况时恒浓区的部位,芬斯克公式求最少平衡级数的几种形式,影响精馏操作压力的因素的讨论及操作压力的选择;恒沸过程的特点,恒沸剂的选择原则及加入量分析;萃取精馏过程溶剂作用原理,溶剂选择原则,萃取精馏流程特点。

应用:多组分精馏的清晰分割的物料衡算,恩德伍德法最小回流比的计算,最少平衡级数及塔顶和塔釜组分分配的计算,实际回流比、平衡(理论)级数、适宜进料位置的确定,影响精馏操作的压力的因素的讨论及操作压力的选择;分离恒沸物的双压精馏过程分析;萃取精馏过程特点,萃取精馏的原理。

本章重点:多组分精馏过程分析和简捷计算方法,特殊精馏过程、流程。

本章难点:普通多组分精馏过程的物料衡算;非关键组分的分配;复杂精馏过程的简捷计算。

教学内容(注明:* 重点# 难点?疑点):教学内容:相平衡;多组分物系的泡点和露点计算;闪蒸计算。

本章主要讨论:多组分精馏、恒沸精馏、萃取精馏、加盐萃取精馏的分离原理,分析了各自分离过程的特点。

通过本章的学习要求学生应用化工分离过程的基本理论、概念和知识,掌握各种常用分离过程,如精馏、恒沸精馏、萃取精馏过程的基本理论,操作特点,流程及其简捷计算方法,以及塔内的流率、浓度和温度分布特点。

第一节设计变量3.1.1单元的设计变量3.1.2装置的设计变量第二节多组分精馏过程3.2.1多组分精馏过程分析3.2.2最小回流比3.2.3最少理论塔板数和组分分配实际回流比和理论板数第三节萃取精馏和共沸精馏3.3.1萃取精馏3.3.2共沸精馏第四节吸收和蒸出过程3.4.1吸收和蒸出过程流程3.4.2多组分吸收和蒸出过程分析3.4.3多组分吸收和蒸出的简捷计算法3.4.4化学吸收第五节萃取过程3.5.1萃取流程3.5.2逆流萃取计算的集团法教学方式、手段、媒介:以多媒体为主黑板设计:左边幻灯,右边板书讨论、思考题、作业:课时安排:10学时教学课型:理论课√实验课□习题课□实践课□其它□题目(教学章、节或主题):第四章气体吸收和解吸教学目的要求(分掌握、熟悉、了解三个层次):通过本章的学习,使学生掌握吸收和解吸过程的基本原理,概念和知识,操作特点,流程及其简捷计算方法,以及塔内的流率、浓度和温度分布特点。

了解吸收过程的特点及分类,掌握多组分吸收简捷计算法、吸收因子法。

识记:化学吸收的相平衡;吸收和解吸过程的热效应和温度分布的分析;平均有效因子法和平均有效解吸因子法计算平衡级;化学吸收的有关计算。

领会:吸收和精馏的异同,亨利定律的使用条件;吸收和解吸过程设计变量和关键组分的确定;吸收因子和解吸因子定义,多组分吸收和解吸的简捷计算方法和应用;化学吸收的类型和增强因子的定义。

应用:吸收的工业应用,物理吸收过程的平衡;吸收和解吸过程的流程特点及其分类,塔内单向传质和浓度分布的讨论;吸收过程的平衡级,平均吸收因子和平均解吸因子、吸收率和解吸率;一级不可逆反应和拟一级不可逆反应的化学吸收的类型和增强因子和吸收速率的计算。

本章重点:多组分吸收和解吸过程分析,简捷计算方法。

本章难点:多组分吸收和解吸过程计算的平均吸收因子和有效因子法。

教学内容(注明:* 重点# 难点?疑点):第4章气体吸收和解吸4.1多组分吸收和解吸过程分析一、吸收和解吸二、工业生产中的吸收过程三、吸收过程的分类四、吸收过程的特点一、吸收和解吸吸收是利用液体处理气体混合物,根据气体混合物中各组分在液体中溶解度的不同,而达到分离目的传质过程吸收是一个分离过程,且分离的是气体混合物,分离的介质是某一种液体溶剂称为吸收剂被吸收的气体混合物称为溶质当吸收过程用于中间产物分离时,离开吸收塔的吸收液需进行解吸操作,其作用是将溶质从吸收液中驱赶出来,并使吸收剂获得再生,所以解吸是吸收的逆过程。

二、工业生产中的吸收过程①净化或精制气体②分离气体混合物③将最终气态产品制成溶液或中间产品④废气治理三、吸收过程的分类⑴按组分的相对溶解度的大小①单组分吸收只有一个组分在吸收剂中具有显著的溶解度,其它组分的溶解度均小到可以忽略不计。

如制氢工业中,将空气进行深冷分离前,用碱液脱出其中的二氧化碳以净化空气,这时CO2仅在碱液中具有显著的溶解度,而空气中的氮、氧、氩等气体的溶解度均可忽略。

②多组分吸收气体混合物中具有显著溶解度的组分不止一个, 吸收目的产物的同时也吸收了其他组分。

如用油吸收法分离石油裂解气,除氩以外,其它组分都程度不同的从气相溶到吸收剂中。

⑵吸收过程有无化学反应①物理吸收所溶组分与吸收剂不起化学反应②化学吸收溶质与溶剂有显著的化学反应发生。

如用氢氧化钠或碳酸钠溶液吸收二氧化碳、用稀硫酸吸收氨等过程。

化学反应能大大提高单位体积液体所能吸收的气体量并加快吸收速率。

⑶吸收过程温度变化是否显著⑷按吸收量的多少⑸按汽液两相接触方式和采用的设备形式§4-2 吸收和解吸过程流程一、单纯吸收工艺流程二、吸收-解吸法三、吸收蒸出塔欲分离氨气+空气的混合物,可选择水做溶剂,因为氨水在水中的溶解度最大,而空气几乎不溶于水。

§4-3 多组分吸收和解吸过程简捷计算一、吸收过程工艺计算的基本概念二、吸收因子(吸收因素)三、吸收因子法的基本方程四、平均吸收因子法五、平均有效吸收因子法§4.4 化学吸收4.4.1 化学吸收的类型和增强因子4.4.2 化学吸收速率4.4.3 化学吸收的计算化学吸收通常指溶质气体A溶于溶液后,即与溶液中不挥发的反应剂B组分进行化学反应的过程;是一种传质与反应同时进行的过程。

由于在吸收的同时液相伴有化学变化,使其中的溶质转化为反应产物。

优点:①化学反应提高了吸收的选择性;②吸收速率快,设备投资费和能耗低;③反应增加了溶质在液相中的溶解度,吸收剂用量少;④反应降低了溶质在气相中的平衡分压,可较彻底地除去气相中很少量的有害气体。

缺点:解吸困难,解吸能耗。

若反应为不可逆,反应剂不能循环使用,用途大受限制。

化学吸收(Chemical absorption)溶质与吸收剂之间的化学反应对吸收过程具有显著影响。

主要特点:吸收过程中溶质进入液相后在扩散路径上不断被化学反应所消耗。

双膜理论由W.K.Lewis 和W.G.Whitman 在上世纪二十年代提出,是最早出现的传质理论。

双膜理论基本论点(1) 相互接触的两流体间存在着稳定的相界面,界面两侧各存在着一个很薄(等效厚度分别为 1 和2 )的流体膜层。

溶质以分子扩散方式通过此两膜层。

(2) 相界面没有传质阻力,即溶质在相界面处的浓度处于相平衡状态。

(3) 在膜层以外的两相主流区由于流体湍动剧烈,传质速率高,传质阻力可以忽略不计,相际的传质阻力集中在两个膜层内。

教学方式、手段、媒介:以多媒体为主黑板设计:左边幻灯,右边板书讨论、思考题、作业:课时安排:10学时教学课型:理论课√实验课□习题课□实践课□其它□题目(教学章、节或主题):第六章分离过程及设备的效率与节能教学目的要求(分掌握、熟悉、了解三个层次):教学目的要求:了解分离过程及设备的选择与放大的主要方法与影响因素通过本章学习要求学生掌握影响气液接触设备能力的因素;气液接触设备的级效率及其影响因素;掌握强化分离操作的途径和精馏过程的节能技术。

相关文档
最新文档