软开关的基本特性和类型(精)
第十九讲:软开关的基本概念及分类

S
L
u u i 0 P
i t
u i 0 P 0
i
u
Ui
VD
C
0
t
5
பைடு நூலகம்
硬开关过程中的电压和电流 a) 关断过程 b)开通过程
软开关与硬开关的概念
——软开关的概念:
在硬开关电路中增加很小的电感、电容等辅助元件,这一复合开关称 为软开关。
第十九讲:软开关的基本概念及分类 1、 软开关技术产生的背景
2、 软开关与硬开关的概念 3、 软开关的分类
4、 软开关电路的分类
重点掌握:2、3、4
1
软开关技术产生的背景
——现代电力电子装置(电路)的发展趋势是什么? 体积小型化、重量轻量化、效率高效化、电磁兼容性优良化
——体积小型化、重量轻量化的直接途径:
17
软开关电路的分类
——零转换PWM软开关电路 产生的背景: 为克服零开关PWM电路的缺陷 而产生的. 概念: 所含软开关为零转换PWM软开 关的电路. 零转换PWM软开关单元的分类: (1)零电压转换PWM(ZVT
PWM)软开关
18
软开关电路的分类
——零转换PWM电路 零转换PWM软开关单元的分类: (2)零电流转换PWM(ZVT
零转换PWM软开关电路: 软开关由零转换PWM开关单元来实现,采用调宽控制开关的开通
10
软开关电路的分类
——准谐振软开关电路
概念: 在硬开关单元上增加谐振电感和谐振电容,构造成谐振开关单元, 进而实现软开关功能。 分类:
(1)零电压开关准谐振电路(ZVS QRC); (2)零电流开关准谐振电路(ZCS QRC); (3)零电压开关多谐振电路(ZVS MRC)。 (4)用于逆变器的谐振直流环节电路RDCL
开关电源软开关技术原理简介

开关电源软开关技术原理简介开关电源是现代电子设备中常见的电源供应方式之一,具有高效率、小体积、轻便等优点。
而软开关技术作为一种先进的电源开关技术,被广泛应用于开关电源中,以提高其性能和可靠性。
本文将对软开关技术的原理进行简要介绍。
软开关技术是一种在开关电源中用于控制开关管导通和关断的技术。
传统的硬开关技术存在开关管开关速度慢、开关过程中会产生电压和电流的冲击等问题,而软开关技术则通过合理的控制开关管的导通和关断时机,以减小开关过程中的冲击,提高开关效率。
软开关技术主要包括零电压开关技术(ZVS)和零电流开关技术(ZCS)。
其中,ZVS技术是通过在开关管导通和关断时将电压降至零来实现的,而ZCS技术是通过在开关管导通和关断时将电流降至零来实现的。
在软开关技术中,ZVS技术是较为常见的一种。
其原理是利用谐振电路使得开关管在导通和关断时电压降至零,以减小开关过程中的电压冲击。
具体来说,当开关管导通时,谐振电路中的电容器充电,使得电压逐渐增加;而当开关管关断时,谐振电路中的电感器释放能量,使得电压逐渐降低,直至降至零。
通过合理设计谐振电路的参数和控制开关管的导通和关断时机,可以实现零电压开关,减小开关过程中的电压冲击。
与ZVS技术相比,ZCS技术在某些场合下更为适用。
ZCS技术的原理是利用谐振电路使得开关管在导通和关断时电流降至零,以减小开关过程中的电流冲击。
具体来说,当开关管导通时,谐振电路中的电感器储存能量,使得电流逐渐增加;而当开关管关断时,谐振电路中的电容器释放能量,使得电流逐渐降低,直至降至零。
通过合理设计谐振电路的参数和控制开关管的导通和关断时机,可以实现零电流开关,减小开关过程中的电流冲击。
总的来说,软开关技术通过合理控制开关管的导通和关断时机,以减小开关过程中的冲击,提高开关效率。
ZVS技术和ZCS技术是软开关技术中常用的两种实现方式。
在实际应用中,软开关技术可以提高开关电源的效率和可靠性,减小对其他电子元器件的损伤,同时也有利于降低电磁干扰和提高整体系统的抗干扰能力。
《软开关技术》课件

混合型软开关电路
结合电压型和电流型电路的特点,实现更高效的软开关。
控制策略
恒定电压控制
保持输出电压恒定,通过调节占空比或频率来实现软 开关。
恒定电流控制
保持输出电流恒定,通过调节占空比或频率来实现软 开关。
恒功率控制
保持输出功率恒定,通过调节占空比或频率来实现软 开关。
软开关技术
CATALOGUE
目 录
• 软开关技术概述 • 软开关技术的优点 • 软开关技术的应用领域 • 软开关技术的实现方式 • 软开关技术的发展趋势 • 软开关技术的前景展望
01
CATALOGUE
软开关技术概述
软开关技术的定义
软开关技术是指在电力电子变换器中 ,利用控制技术实现功率开关管的零 电压开通和零电流关断的一种新型开 关技术。
01
通过调节脉冲宽度来控制开关的导通和关断时间,实现软开关
。
脉冲频率调制(PFM)
02
通过调节脉冲频率来控制开关的导通和关断时间,实现软开关
。
脉冲相位调制(PPM)
03
通过调节脉冲相位来控制开关的导通和关断时间,实现软开关
。
电路拓扑结构
电压型软开关电路
通过在开关管两端并联电容来实现软开关。
电流型软开关电路
高效率的电源能够减小散热需求,降低散热成本,同时减小电源体积和重 量,提高电源的便携性和可靠性。
降低电磁干扰
01
软开关技术能够减小开关过程 中电压和电流的突变,从而降 低电磁干扰(EMI)。
02
降低电磁干扰有助于提高电子 设备的电磁兼容性(EMC),使 其在复杂电磁环境中稳定工作 。
03
降低电磁干扰还可以减小对周 围电子设备的干扰,提高整个 系统的稳定性。
软开关的基本概念

软开关的基本概念软开关的基本概念软开关是一种电子器件,它可以用来控制电路的开关。
与传统的机械式开关不同,软开关使用半导体材料作为其主要材料,并利用电场效应来控制电路的通断。
软开关具有许多优点,如可靠性高、功耗低、体积小等,因此被广泛应用于各种领域中。
一、软开关的基本原理1.1 半导体材料软开关主要由半导体材料制成。
半导体材料是指在温度较低时具有半导体性质的材料。
它们具有介于导体和绝缘体之间的电学特性,即在一定条件下既可以传导电流,又可以阻止电流的流动。
1.2 电场效应软开关利用了电场效应来控制电路的通断。
当一个外加电压施加到半导体上时,会在其内部形成一个强烈的电场。
这个电场会影响到半导体中自由载流子(即带负或正电荷的粒子)的运动状态,从而改变其导电性质。
1.3 MOSFET结构MOSFET(金属氧化物半导体场效应晶体管)是一种常用的软开关结构。
它由金属栅、氧化物和半导体材料组成。
当一个正电压施加到金属栅上时,会在氧化物和半导体之间形成一个电场,从而改变半导体中自由载流子的运动状态,控制电路的通断。
二、软开关的优点2.1 可靠性高软开关使用半导体材料作为其主要材料,没有机械部件,因此具有较高的可靠性。
与传统的机械式开关相比,软开关不容易出现接触不良等问题。
2.2 功耗低软开关具有低功耗的特点。
由于其内部没有机械部件,因此摩擦损耗、惯性负荷等都很小。
此外,在控制电路通断时也只需要很小的电流即可实现。
2.3 体积小软开关具有较小的体积和重量。
这使得它们在集成电路中得到广泛应用,并且可以大大节省空间。
三、软开关的应用领域3.1 电力系统在电力系统中,软开关被广泛应用于电力变压器、断路器、接触器等设备中。
它们可以提高系统的可靠性和效率,并且可以减少能源浪费。
3.2 电动汽车软开关在电动汽车中也得到了广泛应用。
它们可以控制电机的转速和方向,并且可以实现快速切换,提高车辆的性能和安全性。
3.3 通信设备软开关在通信设备中也是必不可少的组成部分。
软开关的基本概念

软开关的基本概念
软开关是一种电力电子器件,它能够根据控制信号断开或接通电路,从而实现电力系统的控制和保护。
与传统机械开关相比,软开关具有体积小、能耗低、寿命长、可靠性高和控制精度高等优点,因此被广泛应用于现代电力系统中。
软开关的基本结构包括一个功率半导体器件和一个控制电路。
其中功率半导体器件可以是晶闸管、二极管、MOSFET、IGBT等,用于负责电路上的开关操作。
而控制电路则负责产生指令信号,控制功率半导体器件的开关状态,从而实现电路的控制和保护。
软开关的最大特点是其控制方式。
它利用高频开关技术,将电路开关的操作频率提高到几千赫兹,从而实现电流的快速切换和控制。
与此同时,软开关还可以实现电流的平滑转移,降低电路中的电压和电流波动,从而提高了能量利用率和电路的稳定性。
软开关的应用范围非常广泛,包括但不限于变频器、UPS、电力电子变压器、电机驱动等。
其中,变频器是软开关应用最为广泛的领域之一。
在变频器中,软开关用于实现电机的调速控制,从而提高电机
的效率和运行质量。
此外,软开关还可以用于UPS中的输出电路控制,保证UPS的稳定输出电压和电流。
总之,软开关是一种电力电子新型器件,具有体积小、能耗低、
寿命长、可靠性高等优点,被广泛应用于现代电力系统中。
随着科技
的不断发展和进步,软开关技术也会越来越成熟和完善,为电力系统
的控制和保护提供更加先进的技术手段。
什么是软开关-软开关的分类

什么是软开关?软开关的分类凡用控制的方法使电子开关在其两端的电压为零时导通电流,或使流过电子开关的电流为零时关断,则此开关称为软开关。
它能克服传统的硬开关的开关损耗,理想的软开关的开关损耗为零,从而可提高功率变换器的传输效率。
一、软开关概述硬开关是在控制电路的开通和关断过程中,电压和电流的变化剧烈,产生较大的开关损耗和噪声,开关损耗随着开关频率的提高而增加,使电路效率下降;开关噪声给电路带来严重的电磁干扰,影响周边电子设备的工作。
软开关是在硬开关电路的根底上,增加了小电感、电容等谐振器件,构成辅助换流网络,在开关过程前后引入谐振过程,开关在其两端的电压为零时导通;或使流过开关的电流为零时关断,使开关条件得以改善,降低传统硬开关的开关损耗和开关噪声,从而提高了电路的效率。
软开关包括软开通和软关断。
理想的软开通过程是:电压先下降到零后,电流再缓慢上升到通态值,所以开通时不会产生损耗和噪声,软开通的开关称之为零电压开关。
理想的软关断过程是:电流先下降到零后,电压再缓慢上升软开关技术大体上分为零电压开关和零电流开关,到通态值,所以关断时不会产生损耗和噪声,软关断的开关称之为零电流开关。
二、软开关的分类根据开关元件开通和关断时电压电流状态,可分为零电压电路和零电流电路两大类。
根据软开关技术发展的历程可以将软开关电路分成准谐振电路、零开关PWM电路和零转换PWM电路。
1.零电压开关①零电压开通:开关开通前其两端电压为零开通时不会产生损耗和噪声。
②零电压关断:与开关并联的电容能延缓开关关断后电压上升的速率,从而降低关断损耗。
2.零电流开关①零电流关断:开关关断前其电流为零关断时不会产生损耗和噪声。
②零电流开通:与开关串联的电感能延缓开关开通后电流上升的速率,降低了开通损耗。
3.准谐振电路准谐振电路中电压或电流的波形为正弦半波,因此称之为准谐振。
是最早出现的软开关电路。
其电压峰值很高,要求器件耐压必须提高;谐振电流有效值很大,电路中存在大量无功功率的交换,电路导通损耗加大;谐振周期随输入电压、负载变化而改变,因此电路只能采用脉冲频率调制方式来控制。
开关电源 软开关技术

通过减小电压和电流的突变,软开关技术可以有效降低电 磁干扰,提高电源的电磁兼容性。
减小开关损耗
软开关技术可以减小开关过程中的电压和电流变化率,从 而降低开关损耗。
提高电源效率
开关损耗的减小可以提高电源效率,使得电源在转换效率 上有更好的表现。
软开关技术的应用与发展
应用
软开关技术广泛应用于各种开关电源领域,如通信电源、电 力电子、电动汽车等。通过采用软开关技术,可以提高电源 的性能和可靠性,满足各种高效率、高功率密度的应用需求 。
功率波形
分析软开关技术中功率波 形的变化规律,研究功率 波形与电路参数之间的关 系。
04 软开关技术的优势与挑战
软开关技术的优势
高效节能
软开关技术能够减少开 关损耗,提高电源效率,
从而降低能源消耗。
降低噪声
软开关技术可以降低电 源产生的电磁干扰和噪 声,提高电源的电磁兼
容性。
延长寿命
软开关技术能够减少开 关器件的应力,降低其 温度,从而延长其使用
脉冲频率调制(PFM)
通过调节脉冲频率,控制开关管导通和截止时间,实现电压和电流 的软切换。
混合调制
结合PWM和PFM的优点,通过优化控制方式,提高软开关技术的 性能。
软开关技术的波形分析
01
02
03
电压波形
分析软开关技术中电压波 形的变化规律,研究电压 波形与电路参数之间的关 系。
电流波形
分析软开关技术中电流波 形的变化规律,研究电流 波形与电路参数之间的关 系。
特点
高效节能、体积小、重量轻、可 靠性高、稳压范围宽等。
开关电源的应用与发展
应用
广泛应用于计算机、通信、家电、工 业控制等领域。
软开关

电
力
电
子
技
术
7.1.1 功率电路的开关过程
u i
在功率变换电路中,每只功率 管都要进行开通与关断控制。 功率管在开通时开关管的电压 不是瞬时下降到零,而是有一 个下降时间,同时它的电流也 不是瞬时上升到负载电流,也 有一个上升时间。 在这段时间里,电流和电压有 一个交叠区,产生损耗,通常 称之为开通损耗(Turn-on loss) ,如图7-1(a)所示。
与开关相串联的电感能使开关开通后电流上升延缓,降低了开通损耗 (零电流开通),但断态时功率管的电压应力增大;与开关并联的电容 能使开关关断后电压上升延缓,从而降低关断损耗(零电压关断), 但通态时功率管的电流应力增大。这样的开关过程一般给电路造成总 损耗增加、关断过电压增大等负面影响,是得不偿失的,因此常与零 电压开通和零电流关断配合应用。
IC i t t on
t off
UC u UC t t on
UC u t t off
关断过程: i I I C t C
电
力
电
子
技
术
7.1.1 功率电路的开关过程
一个开关周期的平均开通和关断损耗PS为:
toff 1 ton PS Pon Poff [ iudt iudt ] 0 T 0
电
力
电
子
技
术
7.1.2 软开关的特征及分类
软开关技术问世以来,经历了不断的发展和完善,前后出 现了许多种软开关电路,新型的软开关拓扑仍不断的出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软开关的基本特性和类型
基本特性
实现零电压开通的谐振变换器在实际主开关零电压开通的情况下也能实现软关断。
实现零电流关断的谐振变换器在实现零电流关断的情况下也能实现软关断。
在开关管两端并联缓冲电容以后可以显著的减小关断损耗,而采用串联电感对减小开通损耗则不是很显著(L不宜太大,L太大时关断过程管子两端的电压会过高),因此,谐振开关型变换器采用零电压开通比零电流关断更有意义。
软开关的类型
零电压开通谐振变换器和零电流关断谐振变换器。
脉冲宽度调制PWM谐振变换器和脉冲频率调制PFM谐振变换器。
零开关谐振变换器和零转换谐振变换器。
零开关谐振变换器(ZVS)或是(ZCS)PWM
零转换谐振变换器(ZVT)或是(ZCT)
LC谐振环节中有辅助开关管或无辅助开关管。
有LC复合缓冲的软开关电路。