位错理论(3)

合集下载

位错反应与层错理论

位错反应与层错理论

2
2
(a)
B
C
(d)
D B 1 [1 0 1 ] 2
BC DC DB 1 [110] 2
δ
D C 1 [0 1 1] 2
A C D C D A 1 [101] 2
D
γ
β
(c)
(b)
A
D
罗-罗向量就是fcc中全位错的12个可能的柏氏矢量
2、不对应的罗-希向量
由四面体顶点(罗马字母)和通过该顶点的外表面中心(不
(1 ,1 ,1 ) 366
(1 ,1 ,1 ) 333
(a) BDC (11 1)
(b) ADC (1 1 1)
(c) ABD (1 11)
(d ) ABC (111)
C
B
αδ
β Dγ
A
1、罗-罗向量
D
由四面体顶点A、B、C、D
(罗马字母)连成的向量:
α
D A 1 [1 1 0 ] A B D B D A 1 [0 11]
对应的希腊字母)连成的向量:
D
这些向量可以由三角形重心性质求得
B 1 [21 1 ] 6
D 1 [1 1 2 ] 6
B 1 [11 2 ] 6
D 1 [1 2 1 ]
6
B
A 1 [2 11] 6
B 1 [12 1 ] 6
C 1 [1 2 1 ] 6
D 1 [211] 6
α (a)
正常堆垛 ABCABC….
B位置到C位置: ABCACB….,层错
2) 扩展位错
由个全位错分解为两个不全位错,中间夹着个堆垛层错的整个位错组态. 面心立方晶体中,,能能量量最最低低的的全全位位错错是是处处在在(1(1111)1面)面上上的的柏柏氏氏矢矢量量为为 a 110

材料科学基础位错理论

材料科学基础位错理论

材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。

本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。

首先,位错是固体晶体结构中的一种缺陷。

当晶体晶格中发生断裂、错位或移动时,就会形成位错。

位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。

根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。

直线位错是沿晶体其中一方向上的错排,常用符号表示为b。

直线位错一般由滑移面和滑移方向两个参数来表征。

滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。

直线位错可以进一步分为边位错和螺位错。

边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。

面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。

面位错通常由面位错面和偏移量来描述。

面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。

体位错是沿体方向上的排列不规则导致的位错。

体位错通常是由滑移面间的晶体滑移产生的。

位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。

位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。

这一理论为后来的位错理论奠定了基础。

位错理论的应用非常广泛。

在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。

通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。

同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。

此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。

通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。

位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。

总结起来,位错理论是材料科学基础中的重要内容。

材料科学基础-§3-3 位错的运动

材料科学基础-§3-3 位错的运动
U m V Gb 1 V sin 3 1 r 3 4 1 GbR0 sin 3 1 r
O y R(r,θ) r θ
x
间隙溶质原子在刃型位错附近聚集形成偏聚——柯垂尔 (Cottrell,A.H.)气团,螺型位错——史氏(Snoeck,J.)气团。
分析位错应力场时,常设想把半径约为0.5~1nm的
中心区挖去,而在中心区以外的区域采用弹性连续介质 模型导出应力场公式。
xx、 yy、 zz、 xy、 yz、 zx
rr、 、 zz、 r、 z、 z
rr、 、 zz、 r、 z、 z
xx、 yy、 zz、 xy、 yz、 zx
Gb2 R WS ln 4 r0
☺对于刃型位错,单位长度的弹性应变能为:
Gb2 R WE ln 4 (1 ) r0
上述分析表明单位长度位错的位错的应变能可以表示为
W / L Gb2 (J / m)
其中是α与几何因素有关的系数,约为0.5~1.0。此式表 明由于应变能与柏氏矢量的平方成正比,故柏氏矢量越 小,位错能量越低。 五. 位错的线张力 为了降低能量,位错有由曲变直,由长变短的倾 向。线张力T表示增加单位长度位错线所需能量,在数 值上等于位错应变能。
Thanks
1. 刃型位错的滑移
刃位错的滑移
τ
滑移面
τ
滑移台阶
刃位错的滑移
刃型位错的滑移运动: 位错的运动在外加切应力的作用下发生;
位错移动的方向和位错线垂直;
运动位错扫过的区域晶体的两部分发生了柏氏矢量大 小的相对运动(滑移); 位错移出晶体表面将在晶体的表面上产生柏氏矢量大 小的台阶。
T K Gb2
( K 0.5 ~ 1)

位错理论——精选推荐

位错理论——精选推荐

位错理论《位错与位错强化机制》杨德庄编著哈尔滨⼯业⼤学出版社1991年8⽉第⼀版1-2 位错的⼏何性质与运动特性⼀、刃型位错2.运动特性滑移⾯:由位错线与柏⽒⽮量构成的平⾯叫做滑移⾯。

刃型位错运动时,有固定的滑移⾯,只能平⾯滑移,不能能交叉滑移(交滑移)。

刃型位错有较⼤的滑移可动性。

这是由于刃型位错使点阵畸变有⾯对称性所致。

⼆、螺型位错1. ⼏何性质螺型位错的滑移⾯可以改变,有不唯⼀性。

螺型位错能够在通过位错线的任意平⾯上滑移,表现出易于交滑移的特性。

同刃型位错相⽐,螺型位错的易动性较⼩。

、位于螺型位错中⼼区的原⼦都排列在⼀个螺旋线上,⽽不是⼀个原⼦列,使点阵畸变具有轴对称性。

2.混合位错曲线混合位错的结构具有不均⼀性。

混合位错的运动特性取决于两种位错分量的共同作⽤结果。

⼀般⽽⾔,混合位错的可动性介于刃型位错和螺型位错之间。

随着刃型位错分量增加,使混合位错的可动性提⾼。

混合位错的滑移⾯应由刃型位错分量所决定,具有固定滑移⾯。

四、位错环⼀条位错的两端不能终⽌于晶体内部,只能终⽌于晶界、相界或晶体的⾃由表⾯,所以位于晶体内部的位错必然趋向于以位错环的形式存在。

⼀般位错环有以下两种主要形式:1. 混合型位错环在外⼒作⽤下,由混合型位错环扩展使晶体变形的效果与⼀对刃型位错运动所造成的效果相同。

2. 棱柱型位错环填充型的棱柱位错环空位型棱柱位错环棱柱位错环只能以柏⽒⽮量为轴的棱柱⾯上滑移,⽽不易在其所在的平⾯上向四周扩展。

因为后者涉及到原⼦的扩散,因⽽在⼀般条件下(如温度较低时)很难实现。

1-3 位错的弹性性质位错是晶体中的⼀种内应⼒源。

——这种内应⼒分布就构成了位错的应⼒场。

——位错的弹性理论的基本问题是对位错周围的弹性应⼒场的计算,进⽽还可以推算位错所具有的能量,位错的线张⼒,位错间的作⽤⼒,以及位错与其他晶体缺陷之间的相互作⽤等⼀些特性。

——⼀般采⽤位错的连续介质模型(不能应⽤于位错中⼼区),把晶体作为各向同性的弹性体来处理,直接采⽤胡克定律和连续函数进⾏理论计算。

位错理论与应用试题

位错理论与应用试题

位错理论与应用试题学院:材料科学与工程学院学生:老师:日期:2011年5月2日位错理论与应用试题:1、解释:层错、扩展位错、位错束集、汤姆森四面体(20分)(1)、层错是一种晶体缺陷。

如已知FCC结构的晶体,密排面{111}堆堆垛顺序为ABCABC……以“Δ”表示AB、BC、CA……次序,用“▽”表示相反次序,即BA、CB、AC……,则FCC的正常堆垛顺序为ΔΔΔ……,HCP 密排面{0001}按照…ABAB…顺序堆垛,则表示为:Δ▽Δ▽……若在FCC 中抽走一层C,则 A B C A B ↓ A B C A B C ΔΔΔΔ▽ΔΔΔΔΔ;插入一层A,则A B C A B ↓A↓C A B C ΔΔΔΔ▽▽△△△,即在“↓”处堆垛顺序发生局部错乱,出现堆垛层错,前者为抽出型层错,后者为插入型层错,可见FCC晶体中的层错可看成是嵌入了薄层密排六方结构。

(2)、一个全位错分解为两个或多个不全位错,其间以层错带相联,这个过程称为位错的扩展,形成的缺陷体系称为扩展位错。

(3)、扩展位错有时在某些地点由于某种原因会发生局部的收缩,合并为原来的非扩展状态,这种过程称为扩展位错的束集。

(4)、1953年汤普森(N. Thompson)引入参考四面体和一套标记来描述FCC 金属中位错反应,如下图。

将四面体以ΔABC为底展开,各个线段的点阵矢量,即为汤普森记号,它把FCC金属中重要滑移面、滑移方向、柏氏矢量简单而清晰地表示出来。

2、位错的起源、增值机制及位错的分类?(15分)(1)、位错的起源主要有两个:第一个是位错本来就存在于籽晶或者其它导致晶体生长的壁面中,这些位错有一部分在晶体赖以生长的表面露头,就扩展到成长着的新晶体中;另一个是新晶体成长时的偶然性所造成的位错生核,其中包括:杂质颗粒等引起的内应力所产生的不均匀生核,成长中的不同部分的表面(如枝晶表面)之间的碰撞产生新的位错,空位片崩塌所造成的位错环。

(2)、位错的增值机制是被广泛引用的弗兰克–里德(Frank-Read,简称为F-R)源机制,如下图:这种理论认为新位错的产生是原有位错增殖的结果。

位错理论3-位错的弹性性质资料

位错理论3-位错的弹性性质资料

x2
x
y2
s xx s yy s zz s xy s yx 0
11
Stress field of screw dislocation ➢螺位错应力场特点:
只有切应力( sqz、szq分量),无正
应力分量 应力场对称于螺位错的位错线——轴
对称:切应力分量大小只与距位错线 中心的距离r有关,与q无关。
➢ 因为只有sqz和eqz:
➢ 所以:
W V
1 2
s
qz
e qz
1 Gb
2 2r
b
2r
Gb 2
8 2r 2
➢ 考虑位错微元:半径为r,厚度dr,长度L的管
状体元
dW
1 2
s
eqz qz
dV
1 2
Gb
2r
b
2r
d (2r dr L)
Gb 2L
4r
dr
➢ 设位错中心半径为r0,应力场范围半径为R,所
s ii s ij
Eeii Geij
G
E
2(1
)
6
目录
➢弹性理论基础 ➢位错的应力场 ➢位错的应变能 ➢位错所受的力 ➢位错的线张力 ➢位错间的相互作用力
7
Stress field of dislocation
➢ 位错晶格畸变应力场 ➢ 以位错中心的某点为定点,应力场描述为:
or
4
Basis of elasticity theory
➢应变分量(应变张量strain tensor):
➢只err,有eq6q个, e独zz, 立erq分, e量rz,:eqez;xx, eyy, ezz, exy, exz, eyz;

《材料成型金属学》教学资料:第一章位错理论基础

《材料成型金属学》教学资料:第一章位错理论基础

晶界特点
1) 晶界—畸变—晶界能—向低能量状态转化—晶粒长大、 晶界变直—晶界面积减小; 2) 阻碍位错运动— 流变应力↑ 细晶强化; 3) 位错、空位等缺陷多—晶界扩散速度高; 4) 晶界能量高、结构复杂—容易满足固态相变的条件— 固态相变首先发生地; 5) 化学稳定性差—晶界容易受腐蚀; 6) 微量元素、杂质富集。
1 位错理论基础
Fundamentals of dislocation theory
理想晶体 完全按照空间点阵有规则排列
实际晶体 不可能完全规则排列,存在晶格缺陷 lattice defect
1.1 晶体缺陷概述
晶体中的缺陷: 原子排列偏离完整性的区域
点缺陷-在三个方向上尺寸都很小 线缺陷-在二个方向上尺寸很小 面缺陷-在一个方向上尺寸很小
Ae-q / kT
空位迁移速度与绝对温度T和空位迁移能量q的关系 式中:A为常数,k为玻尔兹曼常数。
点缺陷对晶体性质的影响
晶格畸变:点缺陷引起晶格局部弹性变形。
空位缺陷
间隙粒子缺陷 杂质粒子缺陷
点缺陷引起的三种晶格畸变
点缺陷对材料性能的影响
点缺陷的存在会使其附近的原子稍微偏离原结点位置才能平 衡,即造成小区域的晶格畸变。
Low Angle Grain Boundary -小角晶界
(a)倾侧晶界模型;(b)扭转晶界模型
小角晶界可理解为位错墙 位向差θ<10°
亚结构
变形→位错密Leabharlann 增加→位错缠结 高位错密度区将位错密度低的区域隔开 → 晶粒内部出现“小晶粒” ,取向差不大→ 胞状亚结构
.
透射电镜 (TEM)
大角晶界
理想晶体原子 面堆积
含有刃型位错晶 体原子面堆积

金属位错理论

金属位错理论

⾦属位错理论⾦属位错理论位错的概念最早是在研究晶体滑移过程时提出来的。

当⾦属晶体受⼒发⽣塑性变形时,⼀般是通过滑移过程进⾏的,即晶体中相邻两部分在切应⼒作⽤下沿着⼀定的晶⾯晶向相对滑动,滑移的结果在晶体表⾯上出现明显的滑移痕迹——滑移线。

为了解释此现象,根据刚性相对滑动模型,对晶体的理论抗剪强度进⾏了理论计算,所估算出的使完整晶体产⽣塑性变形所需的临界切应⼒约等于G/30,其中G为切变模量。

但是,由实验测得的实际晶体的屈服强度要⽐这个理论值低3~4数量级。

为解释这个差异,1934年,Taylor,Orowan和Polanyi ⼏乎同时提出了晶体中位错的概念,他们认为:晶体实际滑移过程并不是滑移⾯两边的所有原⼦都同时做刚性滑动,⽽是通过在晶体存在着的称为位错的线缺陷来进⾏的,位错再较低应⼒的作⽤下就能开始移动,使滑移区逐渐扩⼤,直⾄整个滑移⾯上的原⼦都先后发⽣相对滑移。

按照这⼀模型进⾏理论计算,其理论屈服强度⽐较接近于实验值。

在此基础上,位错理论也有了很⼤发展,直⾄20世纪50年代后,随着电⼦显微镜分析技术的发展,位错模型才为实验所证实,位错理论也有了进⼀步的发展。

⽬前,位错理论不仅成为研究晶体⼒学性能的基础理论,⽽且还⼴泛地被⽤来研究固态相变,晶体的光、电、声、磁和热学性,以及催化和表⾯性质等。

⼀、位错的基本类型和特征位错指晶体中某处⼀列或若⼲列原⼦有规律的错排,是晶体原⼦排列的⼀种特殊组态。

从位错的⼏何结构来看,可将他们分为两种基本类型,即刃型位错和螺型位错。

1、刃型位错刃型位错的结构如图1.1所⽰。

设含位错的晶体为简单⽴⽅晶体,晶体在⼤于屈服值的切应⼒作⽤下,以ABCD⾯为滑移⾯发⽣滑移。

多余的半排原⼦⾯EFGH犹如⼀把⼑的⼑刃插⼊晶体中,使ABCD ⾯上下两部分晶体之间产⽣了原⼦错排,故称“刃型位错”。

晶体已滑移部分和未滑移部分的交线EF就称作刃型位错线。

图1.1 含有刃型位错的晶体结构刃型位错结构的特点:(1)刃型位错有⼀个额外的半原字⾯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.位错密度
位错密度是指单位体积内位错线的总长度。 其表达式为 LV L / V
式中:LV是体位错密度; L是位错线的总长度; V是晶体的体积。
经常用穿过单位面积的位错数目来表示位错密度。
A n / A
式中:是穿过截面的位错数;是截面面积。 位错密度的单位是cm-2。
5.3.2 位错的运动
位错线
正刃型位错
负刃型位错
透射电镜下观察到的位错线
2. 螺型位错 设想在简单立方晶体右端施加一切应力,使右端 ABCD滑移面上下两部分晶体发生一个原子间距的相对切 变,在已滑移区与未滑移区的交界处,AB线两侧的上下 两层原子发生了错排和不对齐现象,它们围绕着AB线连 成了一个螺旋线,而被AB线所贯穿的一组原来是平行的 晶面则变成了一个以AB线为轴的螺旋面。 此种晶格缺陷被称为螺型位错。螺旋位错分为左旋 和右旋。 以大拇指代表螺旋面前进方向,其他四指代表螺旋 面的旋转方向,符合右手法则的称右旋螺旋位错,符合 左手法则的称左旋螺旋位错。
刃型位错和螺型位错的特征。
柏氏矢量的确定。 理解滑移的过程及刃型位错和螺型位错滑移的 特点。 单位长度位错的应变能表示 U=αGb2。
(1)螺型位错的应力场
采用圆柱坐标系。在离开中心r处的切应变为 b Z Z 2r 其相应切应力
Z Z G Z
Gb 2r
式中,G为切变模量。由于圆柱只在Z方向有位移,X,Y方 向无位移,所以其余应力分量为零。 螺型位错应力场是径向对称的,即同一半径上的切 应力相等。且不存在正应力分量。
Gb 2 R WS ln 4 r0
对于刃型位错,单位长度的弹性应变能为
Gb 2 R WE ln 4 (1 ) r0
上述分析表明单位长度位错的位错的应变能可以表示为
W / L Gb ( J / m)
2
其中是α与几何因素有关的系数,约为0.5~1.0。此式 表明由于应变能与柏氏矢量的平方成正比,故柏氏矢量 越小,位错能量越低。
(2)
(3) (4)
位错的滑移面包含柏氏矢量和位错线。
对于一根位错线而言,柏氏矢量是固定不变的。 位错线不能终止于完整晶体之中。
练习1
如图,位错环的柏氏矢量正好处于滑移面上。(1)判断 各段位错线的性质。(2)在图中所示切应力的作用下, 位错线将如何移动。(3)该位错环运动出晶体后,晶体 的外形将发生怎样的改变。
位错的运动有两种基本形式:滑移和攀移。
在一定的切应力的作用下,位错在滑移面上受到垂 至于位错线的作用力。当此力足够大,足以克服位错运 动时受到的阻力时,位错便可以沿着滑移面移动,这种 沿着滑移面移动的位错运动称为滑移。
刃型位错的位错线还可以沿着垂直于滑移面的方向 移动,刃型位错的这种运动称为攀移。
1. 位错的滑移 刃型位错:对含刃型位错的晶体加切应力,切应力方 向平行于柏氏矢量,位错周围原子只要移动很小距离, 就使位错由位臵(a)移动到位臵(b)。 当位错运动到晶体表面时,整个上半部晶体相对 下半部移动了一个柏氏矢量晶体表面产生了高度为b 的台阶。 刃型位错的柏氏矢量b与位错线t互相垂直,故滑 移面为b与t 决定的平面,它是唯一确定的。刃型位 错移动的方向与b方向一致,和位错线垂直。
混合位错示意图
4. 柏氏矢量 (1)柏氏矢量的确定方法 先确定位错的方向(一般规定位错线垂直纸面时, 由纸面向外为正),按右手法则做柏氏回路,右手大拇 指指位错正方向,回路方向按右手螺旋方向确定。从实 际晶体中任一原子M 出发,避开位错附近的严重畸变区 作一闭合回路 MNOPQ,回路每一步连结相邻原子。按同 样方法在完整晶体中做同样回路,步数,方向与上述回 路一致,这时终点 Q 和起点 M 不重合,由终点Q 到起 点M 引一矢量QM 即为柏氏矢量b。柏氏矢量与起点的选 择无关,也与路径无关。
讨论和练习
位错应变能约为其总能量的90%。
反映了位错的能量与切变模量成正比,与柏氏矢量的模 的平方成反比。 练习3 已知铜晶体的切变模量G=4×1010Nm-2,位错的柏氏 矢量等于原子间距,b=2.5×10-10m,取α=0.75,计算 (1)单位长度位错线的应变能。(2)单位体积的严重 变形铜晶体内部存储的位错应变能。(设位错密度为 1010m/cm3)
小角度晶界
2.大角度晶界 每个相邻晶粒的位向不同,由晶界把各晶粒分开。 晶界是原子排列异常的狭窄区域,一般仅几个原子 间距。晶界处某些原子过于密集的区域为压应力,原子 过于松散的区域为拉应力区。 与小角度晶界相比,大角度晶界能较高,大致在 0.5~0.6J/m2,与相邻晶粒取向无关。
大角度晶界示意图
(2)刃型位错应力场
刃型位错周围的应力场
2. 位错的应变能 位错的存在引起点阵畸变,导致能量增高,此增量称为 位错的应变能,包括位错核心能与弹性应变能。其中弹 性应变能约占总能量90%。 由弹性理论可知:弹性体变形时,单位体积内的应变能 等于应力乘以其相应的应变的二分之一。 对于螺型位错,单位长度螺旋位错的弹性应变能为
1 小角度晶界
最简单的小角度晶界是对称倾侧晶界,由一系列柏 氏矢量互相平行的同号刃型位错垂直排列而成,晶界两 边对称,两晶粒的位相差为θ,柏氏矢量为b,当θ很小 时,求得晶界中位错间距为D=b/θ。
对称倾侧晶界中同号位错垂直排列,刃型位错产生 的压应力场与拉应力场可互相抵消,不产生长程应力场, 其能量最低。
晶体的理论切变强度:
G m 2
一般金属: τm=104~105MPa
实际金属单晶: 1~10MPa
Geoffrey Taylor爵士1934年提出位错的概念
τ
τ
τ
5.3.1 位错的基本类型 1. 刃型位错 设有一简单立方结构的晶体,在切应力的作用下发 生局部滑移,发生局部滑移后晶体内在垂直方向出现了 一个多余的半原子面,显然在晶格内产生了缺陷,这就 是位错,这种位错在晶体中有一个刀刃状的多余半原子 面,所以称为刃型位错。 通常称晶体上半部多出原子面的位错为正刃型位错,用 符号“┴”表示,反之为负刃型位错,用“┬”表示。
O
N
O
N
Q
Q
M
P
P
M
刃型位错柏氏矢量的确定 (a) 有位错的晶体 (b) 完整晶体
柏氏矢量
柏氏矢量
螺型位错柏氏矢量的确定 (a) 有位错的晶体 (b) 完整晶体
(2)柏氏矢量的物理意义及特征
柏氏矢量是描述位错实质的重要物理量。反映出柏 氏回路包含的位错所引起点阵畸变的总累计。通常将柏 氏矢量称为位错强度,它也表示出晶体滑移时原子移动 的大小和方向。 柏氏矢量具有守恒性。 推论:一根不可分叉的任何形状的位错只有一个柏 氏矢量。 利用柏氏矢量b与位错线t的关系,可判定位错类型。 若 b∥t 则为螺型位错。 若 b⊥t 为刃型位错。
练习2 晶面上有一位错环,确定其柏氏矢量,该位错环在切应 力作用下将如何运动?
5.3.3 位错的弹性性质
1. 位错的应力场 晶体中存在位错时,位错线附近的原子偏离了正常 位臵,引起点阵畸变,从而产生应力场。 在位错的中心部,原子排列特别紊乱,超出弹性变 形范围,虎克定律已不适用。中心区外,位错形成的弹 性应力场可用各向同性连续介质的弹性理论来处理。 分析位错应力场时,常设想把半径约为0.5~1nm的 中心区挖去,而在中心区以外的区域采用弹性连续介质 模型导出应力场公式。
5.4.2 晶界与亚晶界
多晶体由许多晶粒组成,每个晶粒组成是一个小单晶。 相邻的晶粒位向不同,其交界面叫晶粒界,简称晶界。
多晶体中,每个晶粒内部原子也并非十分整齐,会出现 位向差极小的亚结构,亚结构之间的交界为亚晶界。 晶界的结构与性质与相邻晶粒的取向差有关,当取向差 约小于10℃,叫小角度晶界,当取向差大于10℃以上时, 叫大角度晶界。 晶界处,原子排列紊乱,使能量增高,即产生晶界能。
刃型 位错
螺型 位错 混合 位错
⊥位错线
∥位错线
⊥位错线本身 与b一致
⊥位错线本身 与b一致
与b一致 唯一 确定 与b一致 多个 与b一致
成角度
⊥位错线本身 与b一致
(1) 可以通过柏氏矢量和位错线的关系来判断位错 特征。b⊥t时为刃型位错,b∥t为螺型位错,对于混合 型位错,b和t的角度在0°和90°。
天津大学材料学院
主要内容
位错:位错的基本类型、位错的运动、位错的弹 性性质、位错的来源和位错的增殖; 面缺陷:晶界与亚晶界。
重点内容
1.位错线、位错移动方向、滑移面、切应力方向、 柏氏矢量之间的关系。 2.柏氏矢量的确定。 3.位错的应变能。 4.位错的来源。
5.3 位错 Dislocation,位错是原子的一种特殊组态,是一种 具有特殊结构的晶格缺陷,也称为线缺陷。 位错概念的提出 用于解释晶体的塑性变形。
螺形位错的螺旋面
螺型位错示意图
3. 混合位错 如果局部滑移从晶体的一角开始,然后逐渐扩大滑 移范围,滑移区和未滑移区的交界为曲线AB在A处,位错 线和滑移方向平行,是纯螺型位错;在B处,位错线和滑 方向垂直,是纯刃型位错。其他AB上的各点,曲线和滑 移方向既不垂直又不平行,原子排列介于螺型和刃型位 错之间,所以称为混合型位错。
பைடு நூலகம்
(a)
(b) 刃型位错的滑移
(c)
τ
滑移面
τ
滑移台阶
位错滑移的比喻
螺型位错: 沿滑移面运动时,在切应力作用下,螺型位错使晶 体右半部沿滑移面上下相对低移动了一个沿原子间距。 这种位移随着螺型位错向左移动而逐渐扩展到晶体左半 部分的原子列。 螺型位错的移动方向与b垂直。此外因螺型位错b 与 t平行,故通过位错线并包含b的随所有晶面都可能成为 它的滑移面。当螺型位错在原滑移面运动受阻时,可转 移到与之相交的另一个滑移面上去,这样的过程叫交叉 滑移,简称交滑移。
螺型位错的滑移
相关文档
最新文档