位错理论、性质和相互作用
关于位错的理论与思考

关于位错的理论与思考任新凯1,什么是位错位错是晶体中最为常见的缺陷之一,它对晶体材料的各种性质都有程度不同的影响,很早就被人们关注和研究,有了比较成熟的理论和大量的实验研究成果。
晶体在结晶时受到杂质、温度变化或振动产生的应力作用,或由于晶体受到打击、切削、研磨等机械应力的作用,使晶体内部质点排列变形,原子行间相互滑移,而不再符合理想晶体的有秩序的排列,由此形成的缺陷称位错。
位错是原子的一种特殊组态,是一种具有特殊结构的晶格缺陷,因为它在一个方向上尺寸较长,所以被称为线状缺陷。
位错的假说是在30年代为了解释金属的塑性变形而提出来的,50年代得到证实。
位错的存在对晶体的生长、相变、扩散、形变、断裂、以及其他许多物理化学性质都有重要影响,了解位错的结构及性质,对研究和了解金属尤为重要,对了解陶瓷等多晶体中晶界的性质和烧结机理,也是不可缺少的。
最初为解释的塑性变形而提出的一种排列缺陷模型.晶体滑移时,已滑移部分与未滑移部分在滑移面上的分界,称为"位错",又可称为差排。
它是一种"线缺陷".基本型式有两种:滑移方向与位错线垂直的称为"刃型位错";滑移方向与位错线平行的称为"螺型位错".位错的存在已经为等观察所证实.实际晶体在生长,变形等过程中都会产生位错.它对晶体的塑性变形,相变,扩散,强度等都有很大影响.刃型位错设有一简单立方结构的晶体,在切应力的作用下发生局部滑移,发生局部滑移后晶体内在垂直方向出现了一个多余的半原子面,显然在晶格内产生了缺陷,这就是位错,这种位错在晶体中有一个刀刃状的多余半原子面,所以称为刃型位错。
位错线的上部邻近范围受到压应力,而下部邻近范围受到拉应力,离位错线较远处原子排列正常。
通常称晶体上半部多出原子面的位错为正刃型位错,用符号“┴”表示,反之为负刃型位错,用“┬”表示。
当然这种规定都是相对的。
螺型位错又称螺旋位错。
一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
位错理论(3)

5.位错密度
位错密度是指单位体积内位错线的总长度。 其表达式为 LV L / V
式中:LV是体位错密度; L是位错线的总长度; V是晶体的体积。
经常用穿过单位面积的位错数目来表示位错密度。
A n / A
式中:是穿过截面的位错数;是截面面积。 位错密度的单位是cm-2。
5.3.2 位错的运动
位错线
正刃型位错
负刃型位错
透射电镜下观察到的位错线
2. 螺型位错 设想在简单立方晶体右端施加一切应力,使右端 ABCD滑移面上下两部分晶体发生一个原子间距的相对切 变,在已滑移区与未滑移区的交界处,AB线两侧的上下 两层原子发生了错排和不对齐现象,它们围绕着AB线连 成了一个螺旋线,而被AB线所贯穿的一组原来是平行的 晶面则变成了一个以AB线为轴的螺旋面。 此种晶格缺陷被称为螺型位错。螺旋位错分为左旋 和右旋。 以大拇指代表螺旋面前进方向,其他四指代表螺旋 面的旋转方向,符合右手法则的称右旋螺旋位错,符合 左手法则的称左旋螺旋位错。
刃型位错和螺型位错的特征。
柏氏矢量的确定。 理解滑移的过程及刃型位错和螺型位错滑移的 特点。 单位长度位错的应变能表示 U=αGb2。
(1)螺型位错的应力场
采用圆柱坐标系。在离开中心r处的切应变为 b Z Z 2r 其相应切应力
Z Z G Z
Gb 2r
式中,G为切变模量。由于圆柱只在Z方向有位移,X,Y方 向无位移,所以其余应力分量为零。 螺型位错应力场是径向对称的,即同一半径上的切 应力相等。且不存在正应力分量。
Gb 2 R WS ln 4 r0
对于刃型位错,单位长度的弹性应变能为
Gb 2 R WE ln 4 (1 ) r0
材料科学基础位错理论

材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。
本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。
首先,位错是固体晶体结构中的一种缺陷。
当晶体晶格中发生断裂、错位或移动时,就会形成位错。
位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。
根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。
直线位错是沿晶体其中一方向上的错排,常用符号表示为b。
直线位错一般由滑移面和滑移方向两个参数来表征。
滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。
直线位错可以进一步分为边位错和螺位错。
边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。
面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。
面位错通常由面位错面和偏移量来描述。
面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。
体位错是沿体方向上的排列不规则导致的位错。
体位错通常是由滑移面间的晶体滑移产生的。
位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。
位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。
这一理论为后来的位错理论奠定了基础。
位错理论的应用非常广泛。
在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。
通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。
同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。
此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。
通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。
位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。
总结起来,位错理论是材料科学基础中的重要内容。
位错的名词解释

位错的名词解释位错,是指晶体中原子排列发生偏移或者交换,形成错位的现象。
它是晶体结构中常见的缺陷之一,对材料的机械性能和导电性能等起到重要影响。
细致观察位错的性质及其影响,对于材料科学和工程领域具有重要意义。
一、位错的形成和分类1. 形成位错的原因位错的形成通常是由晶体生长过程中的应力、温度变化以及机械变形等因素所引起。
例如,在晶体生长过程中,由于生长速度的不均匀或晶体材料的不完美,就会出现位错。
同样地,在材料的机械变形过程中,如弯曲、拉伸或压缩等,也会导致晶体中位错的产生。
2. 位错的分类根据原子重新排列的方式和排列结构的不同,位错可以分为线性位错、平面位错和体位错。
线性位错是指位错线与晶体的某一晶面交线的直线排列,具有一维特征。
最常见的线性位错有位错线、螺旋位错和阶梯位错等。
平面位错是指位错线与晶体的某一晶面交线上有无限个交点,呈现出平面性的特点。
常见的平面位错有位错环、晶界以及孪晶等。
体位错是指位错线在晶体内没有终点,具有三维特征。
体位错通常有位错蠕变和位错多晶等。
二、位错的性质与作用1. 位错的性质位错对晶体的特性和行为有着重要影响。
它能够改变晶体的原子排列方式,导致晶体局部微结构的变化。
位错可以促进晶体的固溶体形成以及离子扩散等过程。
此外,位错还会影响晶体的力学性能,如硬度、韧性和弹性等。
因此,位错常常被用来研究晶体的性质和行为。
2. 位错的作用位错在材料科学和工程领域具有广泛的应用价值。
首先,位错可以增加晶体的强度和韧性,提高材料的抗变形能力。
这在制备金属材料和合金中起到重要作用。
此外,位错也可以影响材料的导电性能,例如半导体中的位错可以改变电子迁移的路径和速率,从而影响整个电子器件的性能。
除此之外,位错还可以用于晶体的生长和材料的表面改性等过程。
三、位错的观察和表征方法1. 传统观察方法传统的位错观察方法包括透射电镜、扫描电镜和X射线衍射等技术。
透射电镜可以通过对物质的薄片进行观察,获得高分辨率的位错图像。
1 位错理论(复习1)

▲ 交滑移
主滑移面
刃型
交滑移面
b b b
1.6 位错在应力场中的受力
外力使晶体变形做的功=位错在F力 作用下移动dS距离所作的功。
1.7 位错间的相互作用
位错的弹性应力场间发生的 干涉和相互作用,将影响到位错 的分布和运动 。
两平行的螺型位错间的相互作用(滑移):
作用是中心力,位错同号相斥,异号相吸,大小与位错间 距成反比,和两条带电导线的相互作用相似。
(4)当y=0时,σxx=σyy=σzz=0,说明在滑移面上,没有正应力, 只有切应力,而且切应力τxy 达到极大值
(5)y>0时,σxx<0;而y<0时,σxx>0。这说明正刃型位错的位错滑移 面上侧为压应力,滑移面下侧为拉应力。
(6)在应力场的任意位置处, 。 (7)x=±y时,σyy,τxy均为零,说明在直角坐标的两条对角线处,只有 σxx,而且在每条对角线的两侧,τxy(τyx)及σyy的符号相反。
扩展位错:一个位错分解成两个半位错和它们中间夹的层错带 构成的位错。
面心立方晶体的滑移
1 1 1 如: a 1 10 a 1 2 1 a 2 11 2 6 6
1 a 1 10 2
1 a 121 6
1 a 2 11 6
式中
;
G为切变模量;ν为泊松比; 为b柏氏矢量。
刃型位错应力场的特点: (1)同时存在正应力分量与切应力分量,而且各应力分量的大小 与G和b成正比,与r成反比,即随着与位错距离的增大,应力的 绝对值减小。 (2)各应力分量都是x,y的函数,而与z无关。这表明在平行 与位错的直线上,任一点的应力均相同。 (3)刃型位错的应力场对称于多余半原子面(y-z面),即对称于 y轴。
位错理论——精选推荐

位错理论《位错与位错强化机制》杨德庄编著哈尔滨⼯业⼤学出版社1991年8⽉第⼀版1-2 位错的⼏何性质与运动特性⼀、刃型位错2.运动特性滑移⾯:由位错线与柏⽒⽮量构成的平⾯叫做滑移⾯。
刃型位错运动时,有固定的滑移⾯,只能平⾯滑移,不能能交叉滑移(交滑移)。
刃型位错有较⼤的滑移可动性。
这是由于刃型位错使点阵畸变有⾯对称性所致。
⼆、螺型位错1. ⼏何性质螺型位错的滑移⾯可以改变,有不唯⼀性。
螺型位错能够在通过位错线的任意平⾯上滑移,表现出易于交滑移的特性。
同刃型位错相⽐,螺型位错的易动性较⼩。
、位于螺型位错中⼼区的原⼦都排列在⼀个螺旋线上,⽽不是⼀个原⼦列,使点阵畸变具有轴对称性。
2.混合位错曲线混合位错的结构具有不均⼀性。
混合位错的运动特性取决于两种位错分量的共同作⽤结果。
⼀般⽽⾔,混合位错的可动性介于刃型位错和螺型位错之间。
随着刃型位错分量增加,使混合位错的可动性提⾼。
混合位错的滑移⾯应由刃型位错分量所决定,具有固定滑移⾯。
四、位错环⼀条位错的两端不能终⽌于晶体内部,只能终⽌于晶界、相界或晶体的⾃由表⾯,所以位于晶体内部的位错必然趋向于以位错环的形式存在。
⼀般位错环有以下两种主要形式:1. 混合型位错环在外⼒作⽤下,由混合型位错环扩展使晶体变形的效果与⼀对刃型位错运动所造成的效果相同。
2. 棱柱型位错环填充型的棱柱位错环空位型棱柱位错环棱柱位错环只能以柏⽒⽮量为轴的棱柱⾯上滑移,⽽不易在其所在的平⾯上向四周扩展。
因为后者涉及到原⼦的扩散,因⽽在⼀般条件下(如温度较低时)很难实现。
1-3 位错的弹性性质位错是晶体中的⼀种内应⼒源。
——这种内应⼒分布就构成了位错的应⼒场。
——位错的弹性理论的基本问题是对位错周围的弹性应⼒场的计算,进⽽还可以推算位错所具有的能量,位错的线张⼒,位错间的作⽤⼒,以及位错与其他晶体缺陷之间的相互作⽤等⼀些特性。
——⼀般采⽤位错的连续介质模型(不能应⽤于位错中⼼区),把晶体作为各向同性的弹性体来处理,直接采⽤胡克定律和连续函数进⾏理论计算。
6第六节课-位错运动和交互作用和实际晶体中的位错

时,在晶体表面产生一个宽度为 柏氏矢量大小的台阶。
图2-8 刃型位错滑移过程
21:05:49
1
西安石油大学材料科学与工程学院
b)螺型位错的滑移
材料科学基础
图2-9 螺型位错的滑移 螺型位错运动特征:位错移动方向与位错线垂直,也与柏氏矢量垂直。
rr==zz=r=r=rz=zr=0 若采用直角坐标:
XZ
ZX
Gb
2
y (x2 y2)
yZ
Zy
Gb
2
(x2
x
y2)
xx yy zz xy yx 0
21:05:49
螺型位错的连续介质模型
9
材料科学基础
21:05:49
5
西安石油大学材料科学与工程学院
材料科学基础
2.位错的攀移(dislocation climb):刃型位错在垂直于滑移面方向上的运动。 多余半原子面向上运动称为正攀移,向下运动称为负攀移。 刃型位错的攀移实际上就是多余半原子面扩大和缩小的过程,可以通过物质迁移
即原子或者空位的扩散进行。
21:05:49
22
西安石油大学材料科学与工程学院
材料科学基础
2、堆垛层错(层错):密排面的正常堆垛顺序遭到破坏和错排的缺陷。 形成层错时几乎不产生点阵畸变,但它破坏了晶体的完整性和正常的周
期性,使电子发生反常的衍射效应,故使晶体的能量有所增加,这部分增加 的能量称“堆垛层错能(J/m2)”。
3、不全位错 若堆垛层错不是发生在晶体的整个原子面上而只是部分区域存在,那么,
材料科学基础
位错的弹性性质(考试重要)

2.4位错的弹性性质位错的弹性性质是位错理论的核心与基础。
它考虑的是位错在晶体中引起的畸变的分布及其能量变化。
处理位错的弹性性质有若干种方法,主要的有:连续介质方法、点阵离散方法等。
从理论发展和取得的效果来看,连续介质模型发展得比较成熟。
我们仅介绍位错连续介质模型考虑问题的方法和计算结果,详细的数学推导不作介绍,有兴趣的同学可进一步阅读教学参考书。
一、位错的连续介质模型早在1907年,伏特拉(Volterra)等在研究弹性体形变时,提出了连续介质模型。
位错理论提出来后,人们借用它来处理位错的长程弹性性质问题。
1.位错的连续介质模型基本思想将位错分为位错心和位错心以外两部分。
在位错中心附近,因为畸变严重,要直接考虑晶体结构和原子间的相互作用。
问题变得非常复杂,因而,在处理位错的能量分布时,将这一部分忽略。
在远离位错中心的区域,畸变较小,可视作弹性变形区,简化为连续介质。
用线性弹性理论处理。
即位错畸变能可以通过弹性应力场和应变的形式表达出来。
对此,我们仅作一般性的了解。
2.应力与应变的表示方法(1)应力分量如图1所示。
物体中任意一点可以抽象为一个小立方体,其应力状态可用9个应力分量描述。
它们是:图1物体中一受力单元的应力分析σxx σxy σxz σyx σyy σyz σzx σzy σzz其中,角标的第一个符号表示应力作用面的外法线方向,第二个下标符号表示该应力的指向。
如σxy 表示作用在与yoz 坐标面平行的小平面上,而指向y 方向的力,显而易见,它表示的是切应力分量。
同样的分析可以知道:σxx ,σyy ,σzz 3个分量表示正应力分量,而其余6个分量全部是切应力分量。
平衡状态时,为了保持受力物体的刚性,作用力分量中只有6个是独立的,它们是:σxx ,σyy ,σzz ,σxy ,σxz 和σyz ,而σxy =σyx ,σxz =σzx ,σyz =σzy 。
同样在柱面坐标系中,也有6个独立的应力分量:σrr ,σθθ,σzz ,σrθ,σrz ,σθz 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
2.5 位错的动力学性质
位错的动力学是研究位错运动的动力、阻力、 速度以及增殖。 一、位错的萌生 二、位错的增殖 三、滑移的动力学 四、攀移的动力学
解决这些问题是理解晶体中位错的来 源、范性变形的实际过程以及许多受位错 影响的物理性质的必要前提。
➢ 以上讨论表明,位错萌生是一个相当困难的过 程,实际晶体往往借助应力集中产生位错的非 均匀萌生。
11
(三)位错的不均匀形核
在370℃均匀保温,去除与包裹体相关的内应变,最后冷至 20℃,形成棱柱位错环(图中为其侧面),它们显然是被玻璃包 裹体挤压出来的。位错环轴向平行于<110>。
12
一种常见的非均匀位错设在某一驱动力F作用下形成半径为R的位错圈: 形成能=位错圈自身的能量-驱动力所作的功
10
➢ 假设,在无能量涨落时,晶体中要能自发萌生 位错圈,则有τc≈μ/10 ,这是一个很高的值, 接近晶体的理论强度;
➢ 实际屈服应力τ≈μ/1000,取ε=2b,则 Rc≈500b,临界形核功Uc≈650μb3,典型金属大 约是3KeV。而热涨落的能量大约是1/40eV,故 屈服应力下均匀形核显然是不可能的;
➢ What is the force on the curved segment causing it to bow out?
➢ Line tension T can be equated to energy/unit length.
➢ \ T ~ 1/2 Gb2
24
➢ For curved segment ➢ Total normal force on segment
➢ If in equilibrium with applied stress,
\
or
i.e equilibrium radius of curvature is controlled by stress.
25
➢ The Frank Read source expands under the stress, pinned at both ends.
位错理论、性质和相 互作用
1
2.1 位错理论的产生 2.2 位错的几何性质 2.3 位错的弹性性质 2.4 位错与晶体缺陷的相互作用 2.5 位错的动力学性质 2.6 实际晶体中的位错
2
2.1 位错理论的产生
一、晶体的塑性变形方式 二、单晶体的塑性变形 三、多晶体的塑性变形 四、晶体的理论切变强度 五、位错理论的产生 六、位错的基本知识
3
2.2 位错的几何性质
一、位错的几何模型 二、柏格斯矢量 三、位错的运动 四、位错环及其运动 五、位错与晶体的塑性变形 六、割阶
4
2.3 位错的弹性性质
一、弹性连续介质、应力和应变 二、刃型位错的应力场 三、螺型位错的应力场 四、位错的应变能 五、位错的受力 六、向错 七、位错的半点阵模型
5
2.4 位错与晶体缺陷的相互作用
13
14
15
16
(四)晶体中形成位错的三种途径
17
18
19
20
21
22
二、位错的增殖
(一)弗兰克-瑞德源(F-R滑移源) (二)双交滑移位错源 (三)攀移位错源(Bardeen-Herring)
23
Production of Dislocations
➢ Example: Frank Read Source – dislocation pinned at both ends.
(一)弗兰克-瑞德源(F-R源)
➢ 双轴F-R源(U形源) ➢ 单轴F-R源(L形源)
27
➢双轴F-R源(U形源)
28
Generation of dislocations
➢ Whereas we now learned a little bit about the complications that may occur when dislocations move, we first must have some dislocations before plastic deformation can happen. In other words: We need mechanisms that generate dislocations in the first place!
➢ 棱柱挤压:当压头很有力地压在晶体的表面时,可以萌生一系 列棱柱位错圈而生成压痕。
➢ 如图高度为nb的坑对应于n个伯格斯矢量为b的棱柱圈,此过程 的能量关系为作用于压头的力P所作的功=生产棱柱圈的能量 +增加的表面能,即
其中D为压头直径,若D很小,则局部正应力可很大,因而在一 般的P值,即可达到萌生位错圈所需要的应力。
➢ When the bowed dislocation line reaches a semicircle it can continue to expand under a diminishing force.
➢ There are other sources of dislocation lines: ➢ \ single Frank-Read sources, where the line is
7
一、位错的萌生
(一)位错是热力学不稳定的晶体缺陷 (二)位错的均匀形核 (三)位错的不均匀形核 (四)晶体中形成位错的三种途径
8
(一)位错是热力学不稳定的晶体缺陷
➢ 前人曾计算过,对于单位长度位错线: 熵S≈﹣2kT/b, 应变能E≈Gb2,由于Gb3的典型值为5eV,
而kT在300K时为1/40eV,因此位错引起的自由能G>0。 所以,无应力晶体中热力学稳定的位错密度应为0。 ➢ 然而,除晶须以及精心制备的硅等较大晶体材料等个别 例子外,所有晶体中都存在位错。 ➢ 退火晶体中的位错密度约为104mm﹣2,经大量范性变形 后增至108﹣9mm﹣2。 ➢ 形变初期,位错运动倾向于在单一相互平行的滑移面内 进行,其后在其它滑移系统中继发滑移,不同系统中运 动的位错会相互作用,快速增殖导致加工硬化。
pinned only at a single source. ➢ \ Intersections with other dislocations – jogs
increase the length of the line , and may act as Frank Read sources.
26