抽样原方法和样本量
统计学中的样本量确定方法

统计学中的样本量确定方法统计学中,样本量的确定对于研究的可靠性和准确性至关重要。
合理确定样本量可以保证研究结果的有效性,避免结果偏差,并且可以减少资源浪费。
本文将介绍统计学中的样本量确定方法。
一、样本量的重要性在进行统计研究时,我们通常无法对所有感兴趣的个体进行调查或实验。
相反,研究者将从整个群体中选取一部分个体,即样本进行研究。
因此,样本量的大小直接影响到研究结果的可靠性和推广性。
二、简单随机抽样方法简单随机抽样是最常用的样本抽取方法之一,它要求每个个体具有相同的被抽取概率。
在确定样本量时,我们需要考虑一些因素,如总体的大小、总体的方差、误差容忍度和置信水平等。
三、基于假设检验的样本量确定方法在某些情况下,我们需要根据假设检验的需求来确定样本量。
假设检验是统计学中用来检测两个或多个群体差异的方法。
样本量的确定可以通过根据所需的效应大小和显著性水平来选择。
四、基于置信区间的样本量确定方法当我们希望估计总体的某个参数,并且给出一个置信区间时,可以使用基于置信区间的样本量确定方法。
这种方法旨在控制估计的精确性,以便使置信区间的宽度在可接受的范围内。
五、借助统计软件进行样本量计算在实际研究中,我们可以使用各种统计软件来计算样本量。
这些软件提供了各种样本量确定方法的计算工具,使我们能够根据具体情况快速准确地确定样本量。
六、样本量确定的注意事项确定样本量时,还需要注意以下几个方面:1. 确定研究目标和问题,明确需要估计或推断的参数;2. 考虑资源和时间限制,合理平衡研究目的和可行性;3. 在确定样本量时,选择合适的统计方法和分析技术;4. 根据所选方法和技术,选取适当的效应大小、显著性水平和置信水平。
结论样本量的确定是统计学研究中的重要环节。
合理确定样本量可以保证研究结果的可靠性和准确性。
本文介绍了统计学中常用的样本量确定方法,包括简单随机抽样方法、基于假设检验的样本量确定方法、基于置信区间的样本量确定方法以及借助统计软件进行样本量计算等。
抽样技术及样本计算方法

随机抽样—分层随机抽样
分层抽样的特点是先将总体按照某种特征 或指标分成几个排斥的又是穷尽的子总体, 或层,然后在每个层内按照随机的方法抽 取元素。其原则是子总体内元素间差异可 能小,而不同子总体间差异大。
例:你调查了100个人,询问他们是否应该早办奥运会,其中 66%的人说“是”。如果你的调查精确度为3%,这也就 是说,如果你对不同的样本展开同样的调查,最后结果 中选“是”的比例会在63%-69%之间。
抽
样
误
抽样误差与样本量关系曲线
差
样本量
抽样误差随着样本量的增加而减少,但当样本 量增加到一定程度之后,样本量的增加对抽样 误差几乎没有影响了。
ห้องสมุดไป่ตู้点:
完成一项普查需要的时间长,可能影响最终得到数据的可 比性;
可能导致高的非抽样误差;
什么是误差
在CSI中,由于各方面因素的作用,调查 结果总会存在误差。通常,调查误差分为 两种主要类型:
抽样误差 非抽样误差
误差=抽样误差+非抽样误差
总的来说,普查不存在抽样误差,但可能 存在较大的非抽样误差;而抽样调查会产 生抽样误差和非抽样误差。
① 由调研人员引起的 ② 由访问员引起的 ③ 由被访者引起的
非抽样误差与样本量的关系
非 抽 样 误 差
样本量
误 差
样本量
抽样方法
随机抽样
1. 简单随机抽样 2. 等距抽样(系统抽样) 3. 分层随机抽样 4. 整群抽样 5. 多级抽样
非随机抽样
1、方便取样;2、判断取样;3、配额取样
误 差
第10章 抽样估计与样本量确定

19
10.4 参数估计
参数估计就是根据从样本中收集的信息对总体参数进行推 断的过程。根据中心极限定理等推断理论所阐明的抽样分 布与总体分布之间的关系,由样本统计量的具体值(估计 值)估计总体参数。 点估计 区间估计
20
点估计
用样本的估计量直接作为总体参数的估计量。 存在抽样误差。 在点估计的基础上,对总体参数的区间或范围 进行估计(样本统计量加减抽样误差),点估计 值落在该区间范围内的概率为置信度或置信系 数或置信水平。
26
举例P227
已知:n 36,1 95%, 2 0.025,1 2 0.975. 根据样本计算得: x 39.5, s 2 60.37.
2 查 2分布表得知: , 12 2 n 1 20.6120 . 2 n 1 53.1604
课后思考与训练题 P237-238 第4、5、7题
28
10.5 样本量的确定
样本量的确定问题,首先涉及对总体参数估计值的精度要 求,同时也涉及与各种运作限制(如可获得的预算、资源 和时间)之间的平衡问题。 抽样调查估计值的精度是对抽样误差大小的度量。因此确 定样本量是为控制抽样误差,而不是非抽样误差。
该银行信用卡年龄方差 2在95%置信度下的置信区间为 : 53.1604 20.6120 即, 39.75 2 102.51
36 -1 60.37 2 36 -1 60.37
结论是:在95%的置信度下,信用卡用 户年龄标准差为 6.3 ~ 10.1岁.
27
练习题
12
10.3 抽样分布与抽样误差
总体分布:总体各单位的观测值所形成的频数分布。 样本分布:一个样本中各个观测值形成的频数分布。 抽样分布:样本统计量的抽样分布是一种理论分布,是指 在重复抽取容量为n的样本时,由该统计量的所有可能取 值形成的相对频数分布。
抽样样本量的确定

SSI
精品
第33页
7.回答率
所有的调查都会遇到无回答的困扰即: 由于某些原因,不能获得被抽中样本单位的信息
当一个被调查单位的所有或几乎所有的数据都缺 失时,我们就称之为完全无回答(或称单位无回答)
培训访员,等等),这样做可能更有效率
SSI
精品
第21页
4.总体的变异程度
调查总体中,我们所研究的项目或指标,对于不 同的个人、住户或企业,得到的估计结果可能会有很 大的不同。虽然我们不能控制这种变异性,但它的大 小却影响到了给定精度水平下,研究项目所必需的样 本容量。
SSI
精品
第22页
我们来看假设有一个首次开展的调查,试图估 计对某企业提供的服务持满意态度的顾客比例。对 “顾客满意”这一指标,设置两个可能的值:满意 或者不满意。
❖ 整群抽样得到的估计值,其精度通常低于使用同一估 计量进行估计时的简单随机抽样的估计值的精度
SSI
精品
第32页
设计效果因子
一般来说,当样本容量的计算公式假定为简单随机抽样SRS, 但使用的是更复杂的选样方式时,达到既定精度所需的样本容量应
该乘以设计效果因子。
设计效果=对于同样规模的样本容量,给定样本设计下 估计量的抽样方差对简单随机抽样估计量的 抽样方差的比率。
其中,总体方差S2是最不容易得到的,通常需要根 据过去对类似总体所做的研究作近似计算。
SSI
精品
第39页
求比例样本容量的确定
下面用一个例子,说明估计比例问题时样本容量的确定过程。
在这一例子中,所需的精度是根据误差界限确定的,所研究的指标 取两个值,即P和1-P。 在这种情况下,对于大总体,且估计量服从正态分布时, P的总体方差为:
如何确定抽样方法与样本量

如何确定抽样方法与样本量在设计一个抽样调查时,我们通常需要做的工作是:定义总体及抽样单元、确定或构置抽样杠、选择样本量的大小、制定实施细节并实施。
在这本小册子中我们着重介绍一下定量研究的抽样和样本量这两个技术环节。
最基本的定量研究的抽样方法分为两类,一类为非概率抽样,一类为概率抽样。
一.非概率抽样非概率抽样是不能计算抽样误差的,因为它是靠调研者个人的判断来进行的抽样。
它包括偶遇抽样或者方便抽样、判断抽样、配额抽样、雪球抽样等。
偶遇抽样(方便抽样)常见的未经许可的街头随方或拦截式访问、邮寄式调查、杂志内问卷调查等都属于偶遇抽样的方式。
偶遇抽样是所有抽样技术中花费最小的(包括经费和时间)。
抽样单元是可以接近的、容易测量的、并且是合作的。
但尽管有许多优点,这种形式的抽样还是有严重的局限性。
许多可能的选择偏差都会存在,如被调查者的自我选择、抽样的主观性偏差等。
这种抽样不能代表总体的推断总体。
因此,当我们在进行街头访问或邮寄调查时,一定要谨慎对待调查结果。
判断抽样判思抽亲是基于调研者对总体的了解和经验,从总体中抽选“有代表性的”“曲型的”单位作为样本,例如从全体企业作为样本,来考察全体企业的经营状况。
如果判断准,这种方法有呆取得具有较好代表性的样本,但这种方法受主观因素影响较大。
配额抽样配额抽样是根据总体的结构特征来给调查员分派定额,以取得一个与总体结构特征大体相似的样本,例如根据人口的性别、年龄构成来给调查员规定不同性别、年龄的调查人数。
配额保证了在这些特征上样本的组成与总体的组成是一致的。
一旦配额分配好了,选择样本元素的自由度就很大了。
唯一的要求闵是所选取的元素要适合所控制的特性。
这种抽样方法的目的是使样本对总体具有更好的代表性,但仍不一定能保证样本就是有代表性的。
如果与问题相关联的某个特征是十分困难的。
另外,用这种方法进行选择严格控制调查员和调查过度程的条件下,可使配额抽样获得与某些概率抽样非常接近的结果。
抽样方法与样本量估计ppt课件

x
Nn
n
率的标准 ) :误 Sp(( 1N n)有 p(n 1 1 p 限 ) 总 无 限 体 总 体 p(1n p)
ppt课件完整
31
4 . 1
例1 欲调查某农村小学学生的蛔虫感染率,该校有学生2000人,若取样本例数 100人,试作单纯随机抽样设计。
解:先将全校学生编号:0,1,2,3,…,1999;再用附表17随机数字表,任意 指定某行某列,比如第5行第9列,由此处开始,向右依次抄录随机数字100组,每 组4个数字,凡后面出现与前面相同的数字弃去,如得0873,3732,0405,6930, 1609,0588,…。凡首字≥8者减8,≥6者减6,≥4减4,≥2减2,依次得873,1732, 405,930,1609,588,…。
ppt课件完整
5
抽样调查的特点
特点1:抽取的样本作为一个“代表团”来代表总体。而不是随意 挑选的个别单位代表总体。
特点2:调查样本一般按随机的原则抽取,在总体中每个单位被抽 取的机会相等。因此被抽中的单位在总体中是均匀分布的,不致出 现倾向性误差,代表性强。
特点3:所抽取的调查样本数量是根据误差的要求并经过科学的计 算确定,在调查样本的数量上有可靠保证。
ppt课件完整
18
滚雪球抽样
通常是先选出一组最初的调查对象,通常是随机选出的, 在访谈之后,要求这些被访者推荐一些属于目标总体的其他 人,根据这些推选出后面的被访者。与随机的方式相比,被 推举的人将具备与推荐人更为翔实的人口及心理特征。 优点是:主要目的是估计总体中非常稀少的某些特征。 缺点是:这种方式非常耗时。
ppt课件完整
10
对抽样误差认识与使用的误区
一些研究者甚至部分官员不愿意或不习惯接受数据的误差 范围,一谈到误差,惟恐别人说数据不准,将数据误差绝对。 由于对数据误差的认识存在着误区,在如何使用数据上也存在 着误区。抽样调查的数据拿来就用,不谈抽样误差和调查误差, 认为调查数据就是总体的真值。在进行工作政绩考核或进行地 区间的数据对比时,调查指标数据的高低变成了地区之间排队、 政绩评比的依据,忽视了对数据误差的评估。现有的调查数据 不仅没有正确地使用,反而还带来地区之间数据高低的相互攀 比,同时也影响了以后抽样调查的数据质量。
抽样估计与样本量确定

4
調查分析預測
步骤1:各层的设计权数为: 城市层 wd,1=N1/n1==5 农村层 wd,2=N2/n2==2 步骤2:调整以弥补无回答。各层的无回答调整因子计算如下: 城市层:n1 / nr,1==200/150==1.33 农村层:n2 / nr,2==50/40==1.25 步骤3:无回答的调整权数等于设计权数与无回答调整因子的乘积:
城市层:
农村层:
w nr,1 w d,1
w nr,2
n1 5 1.33 6.67 n r,1 n w d,2 2 2 1.25 2.5 n r,2
8
調查分析預測
MRAF
使用辅助信息调整权数
• 为什么要使用辅助信息来调整权数呢?
– 首先,使调查的估计值与已知总体总值相匹配。例如, 使用最新的人口普查数据来调整估计值,以确保这些 估计值(如年龄、性别分布等)的一致性。 – 二是为了提高估计值的精度。将辅助信息与抽样设计 相结合,将有助于提高估计的精度。
[例10.5] 计算过程
步骤 1:设计权数是入样概率的倒数,设计权数计算如下: wd=N/n=780/100=7.8 步骤 2:利用设计权数,计算得到调查估计值,如表10-4所示。 估计公司男女性职员各有429名和351名,且吸烟比例不同。 假定调查完成后,得到如下辅助信息:该公司实际共有360名男 性职员和420名女性职员。如何利用这个辅助信息呢? 步骤 3:对样本分层,计算事后分层权数用于估计。 事后分层权数W pst是事后层的辅助变量总和除以该层回答单元的 数量。 N 男性 360 w 6.55 其中,男性的事后分层权数为: pst ,男性 n r,男性 55 女性的事后分层权数为:w pst ,女性
林业调查样圆计算公式

林业调查样圆计算公式样圆:是一种抽样方法,按照地理规则格网或随机抽样规则确定一个点,再以此点为圆心以一定半径画一个圆,然后调查该圆圈范围内的乔木、灌木、草类、土壤、生物等等信息。
样群:由于小样圆所覆盖的面积有限,其覆盖范围内有时候很难反映样圆周围的真实情况,而扩大样圆半径设计大样圆,又由于林地内行走与调查都比较艰难。
所以,为了扩大调查面积,又方便调查,就设计了用周围连续多个小样圆来代替一个大样圆的抽样方法。
角规测量:一种林木调查方法。
是根据几何学原理设计的一个小工具,将其置于离眼睛一定距离上,由此豁口观察周围的数目。
当树干宽度与角规的宽度相比出现下列三种情况时,分别树种计数,然后再运通特定的计算方法,计算该测量点的林木蓄积量,进而推算整个林班的森林蓄积量等林分因子。
一种角规计数规定:1、当林木胸径大于角规豁口宽度时,记录为1;2、当林木胸径宽度正好与角规豁口宽度相等时,记录为0.5;3、当林木胸径比角规豁口宽度小时,不计数。
如果角规离眼睛的距离不等,统计方法不同,则计数方法也会不同。
1.简单随机抽样确定样本量主要有两种类型:(1)对于平均数类型的变量对于已知数据为绝对数,我们一般根据下列步骤来计算所需要的样本量.已知期望调查结果的精度(E), 期望调查结果的置信度(L),以及总体的标准差估计值σ的具体数据,总体单位数N.计算公式为:n=σ2/(e2/Z2+σ2/N)特殊情况下,如果是很大总体,计算公式变为:n= Z2σ2/e2例如希望平均收入的误差在正负人民币30元之间,调查结果在95%的置信范围以内,其95%的置信度要求Z的统计量为1.96.根据估计总体的标准差为150元,总体单位数为1000.样本量:n=150*150/(30*30/(1.96*1.96))+150*150/1000)=88(2)于百分比类型的变量对于已知数据为百分比,一般根据下列步骤计算样本量.已知调查结果的精度值百分比(E),以及置信度(L),比例估计(P)的精度,即样本变异程度,总体数为N.则计算公式为:n=P(1-P)/(e2/Z2+ P(1-P)/N)同样,特殊情况下如果不考虑总体,公式为:n= Z2P(1-P)/e2一般情况下,我们不知道P的取值,取其样本变异程度最大时的值为0.5.例如:希望平均收入的误差在正负0.05之间,调查结果在95%的置信范围以内,其95%的置信度要求Z的统计量为1.96,估计P为0.5,总体单位数为1000.样本量为:n=0.5*0.5/(0.05*0.05/(1.96*1.96)+0.5*0.5/1000)=278。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几乎所有调查和试验都可以采用随机抽样法进行抽 样
二、整群抽样和多层次抽样法
从总体中抽取数个样本单位群,对单位群内的全部
个体作全面调查,或用整个单位群进行试验
样本单位群的抽取既可以用随机抽样法得到,也可
以有选择地取得
在整群抽样的基础上,对抽得的样本单位群不作全 面调查,或不是整个样本单位群进入试验,而是 在样本单位中继续抽取一定量的个体(数据)组 成样本,这就是二级抽样
而较大的样本在调查或试验中仅测 xi 性状,并将这
一样本中所有被测个体的 xi 代入上述回归方程中
以求得相应的 y 估计值
这样获得的大样本的 y 估计值,能达到一定的精度 这一抽样方法即为双重抽样法 双重抽样法的优点是: 对于复杂性状的调查或试验仅需破坏较小的样本即 能获得较大样本的精确性 当目标性状为破坏性性状时,这是唯一行之有效的 方法
误差,就是求标准误的大小
标准误既与标准差有关,也与样本容量有关
样本不同,所得到的误差不同
抽样方法不同,所得到的抽样误差也不同
由于抽样误差表示的是样本平均数与总体平均数之
间的差异,因此,为了使总体平均数的估计更可
靠、更精确,应当使用合适的抽样方法
标准误求得以后,应计算总体平均值的置信区间
(*)
试验设计原理
多层次抽样时,有一个每个层次样本量的比例的问 题,这里需要考虑每一层次的变异情况及各层次 的抽样成本,以便对每一层次内单位数进行合理 的分配
*在不知道总体的大小和情况时,可以从试验要求的
精确性来考虑样本容量:
根据参考文献、他人或自己的经验、专业知识等人
为地定出一个样本平均值与总体平均值的离差, 即允许误差L: L x 而
当样本容量大到一定程度时,再增大样本容量, 试验或调查其精确性的提高就渐趋缓慢: 当标准差一定时,标准误的大小与样本容量的平方 根成反比,样本容量较小时,随着样本容量的增 大,标准误会急剧减小,但当样本容量大到一定 程度后再增大样本容量,标准误的减小将会变得
越来越慢,即继续增大样本容量,试验精确性的
试验所得到的数据越整齐,误差就越小,所需样本 也就可以越小
误差来源于以下三个方面
试验材料遗传物质的不同一(或样本的本质不同)
试验动物的基因或遗传物质不可能纯合,越是高 等的动物其基因越是复杂,所造成的误差也就越 大。这是造成误差的最根本原因 试验过程中操作与管理技术的不一致 操作人员的技术、管理水平不可能一致,不同的 时间段内操作人员的体力、精神、情绪不可能一 致,操作人员的责任心也不可能一致
供试数可适当少一些
试验时,考虑的因子数越多,每一组合内的供试动
物数可少一些,单因子试验则每一水平内的供试 动物数应多一些
*不同的抽样方法,所需样本量还应当根据具体的抽
样方法来确定:
整群抽样时,既要考虑群体单位的大小,又要考虑
作为样本的群体的多少
原则上,应采取小群体、多群体的抽样方法,因为
这样可以更全面地了解总体的情况
暂设 t0.05 1.96 2 则
4 15.92 n 10 2 10
由于 n 较小(<30),故应重求 n 值
查 t 值表,得 t0.05,9 2.262
2.2622 15.92 n 12.93 13 继续试算,t 2 0.05,12 2.179 10 2.1792 15.92 n 12.00 12 继续试算,t0.05,11 2.201 2 10 2.2012 15.92 n 12.25 12 2 10
抽样认真、抽样方法正确、客观,样本就具有代表 性;反之,抽样马虎、草率、武断、主观、弄虚 作假,样本就差,就不具有代表性
抽样方法
试验、调查的目的不同,试验、调查的方法不同、
抽样的方法也不同 这里仅介绍几个抽样方法
一、随机抽样法
总体比较整齐、变异程度小、群体分布均匀,可用
随机抽样法
随机抽样法的原则是:
抽样方法和样本量
前面已经介绍,总体在很多情况下,往往是很大的,
有时是无限的,因此,对总体的研究往往是不可
行的
而生物统计学的特点之一是其概率归纳原理,即通 过对某一特定的、具体的样本进行分析,在一定 概率保证下进行总体的推断 例如,对水体污染进行检查,对空气质量检查,不
需要也不可能对整个水体、整个空气逐一进行检
L t sx t
s n
t 一般初次总取1.96(置信度为95%) 其中,
因此:
s 4s n t 2 2 L L
2
2
2
显然,人为定出的允许误差越大,所需样本量就小
反之,人为定出的允许误差越小(即对试验的要求
的精确度越高),所需的样本量就越大
一般来讲,当所需要的样本量不大时(n<30),应
总体内每一个体(数据)都有同等的机会进入样本 样本中每一个体(数据)进入任何一个组的机会也 是相等的
随机抽样法可以完全排除个人的主观性
随机抽样法是最简单、最常用的抽样方法
随机抽样法有以下几种方法:
抓阄法 随机数字法 伪随机数字法 通过随机抽样法得到样本后,一般需计算样本的特 征值,用以估计总体参数
算公式为:
2 t0.01 s 2 2.582 s 2 6.66s 2 n 2 2 L L L2
运用这一公式所得到的 n 值一般不应小于 30,当所
得样本量小于 30 时,应作进一步的试运算,直 至所得样本量 n 稳定时为止
又例:一总体其标准差为 15.9,试验允许误差为L
= 10,求试验所需最小样本量
本可占总体的千分之一到百分之一
总体不很大时,样本占总体的百分之五
率的计算和估计,一般要求大样本
在试验中,同一水平或同一组合的变异情况越严重,
所需样本越大,同一组合的供试动物越整齐,可
适当减少动物数
试验越规范,试验结束后使用的统计方法越严格,
所需动物数可适当减少
小家畜的供试数应多一些(如鸡、猪),大家畜的
查,只需要抽取一小部分的水、空气进行分析 被抽取的这一小部分水、空气就是样本 抽取水和空气的这一过程就是抽样的过程
如何抽样?
抽样应当遵循什么原则?
什么样的样本才能认为符合标准?
这是本章要讨论的问题 抽样的总原则是: 样本必须来自于所研究的总体 样本必须能代表所研究的总体
抽样方法必须与抽样目的相一致
成败 因此允许误差的确定是试验或调查前需要慎重考虑 的问题 从前面所介绍的公式和例题中我们已经看出,当总 体方差(标准差)基本确定后,样本容量(即试 验规模)与允许误差的大小是有直接的关系的
而总体方差的大小可以根据前人的结果所得到
允许误差如何确定?
一是需要查阅大量的文献,从类似的试验或调查中
确定本次试验或调查的规模
二是根据自身试验或规模的大小来确定,这里需要
考虑的一个主要问题是试验或调查的资金来源和
经费的充裕程度
三是需要考虑试验或调查的精确程度:允许误差实 际就是样本平均值与总体平均值的差距最大不超 过的某一界限,因此它决定了试验或调查的精确 程度
一旦确定了允许误差,就可以用试验或调查结束后
得到的样本平均值来告诉人们总体平均值在哪一
个可能的范围里面,这一个结论就有了理论依据,
不致被人所诘难或质疑
因此确定允许误差得到的样本容量不宜太小(样本 容量太小试验或调查的结果比较粗糙,也易引起 别人的质疑),但也不需要太大(太大需要大量 的经费和人力、物力、时间)
由于求率、成数等所需要的样本容量还是尽可能大
一些为好
*抽样误差的估计
抽样误差,一般用标准误来表示,因此,估计抽样
提高其效能将逐步下降
而随着样本容量的增大,试验或调查所需成本、时
间、人力、物力等则可能会成倍地增长
因此确定一个合宜的样本容量,使得试验或调查既
有一个较好的精确度,又能最大限度地节省人力 和时间、财力、物力,是试验或调查必须要考虑 的问题
样本容量的确定原则和确定方法
总体有限、且很大时,同时注意抽样的代表性,样
调查百分率性状时,样本量不能太小(n>100)
百分率一类的性状求样本容量时,应注意允许误差
的取值应小于百分率,特别是当该百分率趋于两
端(<0.3 或 >0.7)时,更应注意 L 的取值
*关于允许误差 L 的取值
允许误差 L 即为置信半径,如何确定允许误差,这
关系到样本容量的大小,也决定了试验或调查的
试验外界条件的不统一
试验动物不可能安排在绝对一致的环境内,对同 一组内每一个供试动物的试验措施也不可能绝对 一致
误差的控制
针对造成误差的三大原因,采取的控制措施:
选择基因型较为纯合的近交系
基因纯合的程度依次为: 同卵双生个体、自交系、高度近交的近交系、 近交系、全同胞、半同胞、家系、纯种 其中,后三种是动物试验中可以实际使用的试验 群体 两个纯种的杂交后代F1代在某些情况下可以考虑 使用
如果二级抽样得到的不是个体(数据),而是更小
的单位群,再从中进行抽样,这就是三级抽样
以此类推
二级及二级以上的抽样就称为多层次抽样 多层次抽样方法适合于资源调查、遗传学试验、育 种学试验、传染病(寄生虫病)调查、流行病学 调查、经济学调查,等
*三、双重抽样法
当所研究的性状比较复杂,或所需经费较多,或须
将试验动物宰杀后才能测定,因而不大可能进行
重复性试验,或采用直接抽样试验时有较大的难 度,可采用双重抽样法 采用双重抽样法,首先将所需要进行研究的性状定 为目标性状(或称为靶性状),用 y 表示,然后 根据文献或其他方法确定一个或几个简单易测、 不具破坏性、与靶性状相关性比较紧密的性状,
这些性状称为辅助性状,用 xi 表示
对于百分率一类性状的调查或试验所需要的样本量,