初二下期一元一次不等式组与一次函数应用题专项练习
初二下期一元一次不等式组与一次函数应用题专项练习汇编

初二下期一元一次不等式组与一次函数应用题专项练习例:光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.1、某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80元的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。
2、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?3、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.4、今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,一种货车可装荔枝香蕉各2吨;(1)该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来(6分)(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案?使运费最少?最少运费是多少元?(4分)5、某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)。
初二数学一元一次不等式与一元一次方程一次函数试题

初二数学一元一次不等式与一元一次方程一次函数试题1.已知函数y=8x-11,要使y>0,那么x应取 ( )A.x>B.x<C.x>0D.x<0【答案】A【解析】由题意知,要使y>0,则8x-11>0,解不等式即可.函数y=8x-11,要使y>0,则8x-11>0,解得x>,故选A.【考点】本题考查的是一元一次不等式与一次函数点评:根据函数值的正负,把本题转化为不等式的问题,是解决本题的关键.2.已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是()A.y>0B.y<0C.-2<y<0D.y<-2【答案】D【解析】通过观察图象得到x<0时,图象在y轴的左边,即可得到对应的y的取值范围.当x<0时,图象在y轴的左边,所以对应的y的取值范围为y<-2,故选D.【考点】本题考查了一次函数的图象点评:解答本题的关键是熟记x<0时,图象在y轴的左边,x>0时,图象在y轴的右边.3.已知一次函数的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0B.-4<y<0C.y<-2D.y<-4【答案】C【解析】根据一次函数过(2,0),(0,-4)求出k的值,得到一次函数解析式,然后用y表示x,再解关于x的不等式即可.一次函数y=kx+b的图象与y轴交于点(0,-4),∴b=-4,与x轴点(2,0),∴0=2k-4,∴k=2,∴y=kx+b=2x-4,∴x=(y+4)÷2<1,∴y<-2.故选C.【考点】本题考查了一次函数的图象点评:解答本题的关键是利用一次函数与x轴y轴的交点坐标用待定系数法求出k、b的值.4.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1)B.(-1,0)C.(0,-1)D.(1,0)【答案】D【解析】由于关于x的不等式ax+1>0(a≠0)的解集是x<1,得到a小于0,表示出不等式的解集,列出关于a的方程,求出方程的解得到a的值,将a的值代入确定出直线y=ax+1解析式,即可求出与x轴的交点坐标.∵关于x的不等式ax+1>0(a≠0)的解集是:x<1,∴a<0,解得:x<,∴=1,即a=-1,即直线解析式为y=-x+1,令y=0,解得:x=1,则直线y=-x+1与x轴的交点是(1,0).故选D【考点】本题考查了一次函数与一元一次不等式点评:解答本题的关键是理解不等式的解集可看作是直线与x轴的交点的左边或右边的取值.同时认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.5.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为()A.x>-1B.x<-1C.x<-2D.无法确定【答案】B【解析】根据图形,找出直线l1在直线l2上方部分的x的取值范围即可.由图形可知,当x<-1时,k1x+b>k2x,所以,不等式的解集是x<-1,故选B.【考点】本题考查了两直线相交的问题点评:根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.6.若一次函数y=(m-1)x-m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.【答案】m<4且m≠1【解析】根据一次函数的图象的性质知,一次函数y=(m-1)x-m+4的图象与y轴的交点在x轴的上方.则应有-m+4>0,求解即可.一次函数y=(m-1)x-m+4中,令x=0,解得:y=-m+4,与y轴的交点在x轴的上方,则有-m+4>0,解得:m<4,又m-1≠0,即m≠1,则m的取值范围是m<4且m≠1.【考点】本题考查的是一元一次不等式与一次函数点评:正确求出函数与y轴的交点,转化为解不等式的问题是解决本题的关键.同时熟记系数k 不能为0.7.已知2x-y=0,且x-5>y,则x的取值范围是________.【答案】x<-5【解析】由2x-y=0,得y=2x,把y代入x-5>y求解即可.由于2x-y=0,则y=2x,∴x-5>y就是x-5>2x,解得x<-5,则x的取值范围是x<-5.【考点】本题考查的是一元一次不等式与一次函数点评:把2x-y=0,且x-5>y转化为关于x的不等式,是解决本题的关键.8.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为__________.【答案】x<3【解析】将所求不等式进行变形,可得:(k2-k1)x+b2-b1>0,k2x+b2-(k1x+b1)>0,即y2>y1;然后根据图象观察,得出符合条件的x的取值范围.由图知:x<3时,y1<y2,即y2-y1>0;∴当x<3时,k2x+b2-(k1x+b1)>0;化简得:(k2-k1)x+b2-b1>0;因此所求不等式的解集为:x<3.【考点】一元一次不等式与一次函数点评:解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.9.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.【答案】(2,3)【解析】已知不等式的解集为x<2,即当x<2时,y=-x+5的函数值大于y=3x-3的函数值;由此可知,两函数图象的交点横坐标为x=2;代入两函数的解析式中,即可求出交点坐标.已知不等式-x+5>3x-3的解集是x<2,则当x=2时,-x+5=3x-3;即当x=2时,函数y=-x+5与y=3x-3的函数值相等;因而直线y=-x+5与y=3x-3的交点坐标是:(2,3).【考点】本题考查的是一元一次不等式与一次函数点评:解答本题的关键是理解不等式的解集可看作是直线与x轴的交点的左边或右边的取值.同时认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.10.如果x,y满足不等式组,那么你能画出点(x,y)所在的平面区域吗?【答案】见图阴影部分:【解析】先在直角坐标系画出直线x=3,x+y=0,x-y+5=0,在结合原点(0,0)不在直线x-y+5=0上,即可得到结果.在直角坐标系画出直线x=3,x+y=0,x-y+5=0,因原点(0,0)不在直线x-y+5=0上,故将原点(0,0)代入x-y+5可知,原点所在平面区域表示x-y+5≥0部分,因原点在直线x+y=0上故取点(0,1)代入x+y判定可知点(0,1)所在平面区域表示x+y≥0的部分,见图阴影部分:【考点】本题考查的是一次函数的图像点评:解答本题的根据是把不等式转化为一次函数,同时熟练掌握一次函数的图像的作法.。
强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.72、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤33、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x 的图像过点A,则不等式2x<kx+b≤0的解集为()A .x ≤﹣2B .﹣2≤x <﹣1C .﹣2<x ≤﹣1D .﹣1<x ≤04x 的取值范围是( ) A .x ≥2 B .x >2 C .x ≠2D .x <2 5、下列四个说法:①若a =﹣b ,则a 2=b 2;②若|m |+m =0,则m <0;③若﹣1<m <0,则m 2<﹣m ;④两个四次多项式的和一定是四次多项式.其中正确说法的个数是( )A .4B .3C .2D .16、若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .2a +1>2b +1D .a ﹣1>b +17、若不等式﹣3x <1,两边同时除以﹣3,得( )A .x >﹣13 B .x <﹣13 C .x >13 D .x <138、如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <9、把不等式组123x x >-⎧⎨+≤⎩的解集在数轴上表示,正确的是( ) A . B .C .D .10、如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是 ( )A .102m << B .102m -<< C .0m < D .12m > 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,关于x 的不等式组在数轴上所表示的的解集是:______.2、a 、b 、c 表示的数在数轴上如图所示,试填入适当的>”“<”或“=”.(1)3a +______3b +;(2)-a b ________0;(3)35a __________35b ;(4)2a -________2b -; (5)14a -________14b -;(6)ac ⋅_______b c ⋅;(7)a c -________b c -;(8)ab _______2b .3、在某校班级篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜___场.4、关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.5、 “a 的25用不等式表示__________________.三、解答题(5小题,每小题10分,共计50分)1、(1)解不等式:3x ﹣2≤5x ,并把解集在数轴上表示出来.(2)解不等式组2(2)313123x x x x -≤-⎧⎪+-⎨>+⎪⎩,并写出它的最大整数解. 2、解不等式组并把它的解集在数轴上表示出来 ()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩3、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人.(1)若亲友团有6人,甲、乙旅行社各需多少费用?(2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)4、三角形的三边长分别是2,x ,10,且正偶数x 满足不等式11145x x +-<-,求该三角形的周长. 5、某公司销售A 、B 两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A 种型号设备x 台,A 、B 两种型号设备全部售完后获得毛利润y 万元(毛利润=售价-成本)(1)求y 关于x 的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A 、B 两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.2、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.3、B【分析】根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.【详解】解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),∴不等式2x<kx+b的解集是x<-1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),∴不等式kx+b≤0的解集是x≥-2,∴不等式2x<kx+b≤0的解集是-2≤x<-1,故选:B.【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.4、A【分析】根据二次根式有意义,被开方数为非负数,列一元一次不等式,解不等式即可得.【详解】x-≥,解:根据题意,得20x≥,∴2故选:A.【点睛】本题考查了二次根式有意义条件、一元一次不等式解法;解题的关键是熟练掌握二次根式有意义的条件是解题关键.5、C【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可.【详解】解:①若a=﹣b,则a2=b2,说法正确;②若|m|+m=0,则m 0,说法错误;③若﹣1<m<0,则m2<﹣m,说法正确;④两个四次多项式的和不一定是四次多项式,说法错误;①③正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.6、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C.【详解】解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、若a=3,b=1,a>b,但是b+1<a,不符合题意;C、∵a>b,∴2a+1>2b+1,符合题意;D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.7、A【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x <1,两边同时除以﹣3,得x >﹣13.故选:A .【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.8、A【分析】根据图像的意义当x =-3时,kx +b =2,根据一次函数的性质求解即可.【详解】解:∵当x =-3时,kx +b =2,且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-,故选A .【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.9、D【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:123x x >-⎧⎨+≤⎩①②, 解不等式②,得:1x ≤ ,所以不等式组的解集为11x -<≤把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.10、A【分析】根据第一象限的横坐标为正、纵坐标为负,列出关于m 的不等式组解答即可.【详解】解:∵P (m ,1﹣2m )在第一象限,∴0120m m ⎧⎨-⎩>> ,解得:102m << 故选A .【点睛】本题主要考查了解一元一次不等式组、平面直角坐标系等知识点,根据点在平面直角坐标系的象限列出关于m 的一元一次不等式组成为解答本题的关键.二、填空题1、21x -<≤【分析】根据图像特点向左是小于,向右是大于,即可得答案.【详解】∵从-2出发向右画出的折线中表示-2的点是空心,∴x >-2,∵从1出发向左画出的折线中表示1的点是实心,∴x ≤1,∴不等式的解集是:−2<x ≤1故答案为:−2<x ≤1.【点睛】本题考查了一元一次不等式的解法,做题的关键是掌握空心和实心的区别.2、> > > < < > > >【分析】本题主要是根据不等式的性质:(1)不等式的两边同时加上或减去同一个数或式子,不等式的方向不改变;(2)不等式的两边同时乘或除以一个大于零的数或式子,不等号的方向不变;(3)不等式的两边同时乘或除以一个小于零的数或式子,不等号的方向改变.据此可以对不等号的方向进行判断.【详解】解:由数轴的定义得:a>0,b>0,c <0,a >b >c ,(1)不等式a >b 的两边同加上3,不改变不等号的方向,则3a +>3b +;(2)不等式a >b 的两边同减去b ,不改变不等号的方向,则a -b >b -b ,即a -b >0;(3)不等式a >b 的两边同乘以35,不改变不等号的方向,则35a >35b ; (4)不等式a >b 的两边同乘以-2,改变不等号的方向,则2a -<2b -;(5)不等式a >b 的两边同乘以-4,改变不等号的方向,则-4a <-4b ;不等式-4a <-4b 的两边同加上1,不改变不等号的方向,则14a -<14b -;(6)不等式a >b 的两边同乘以正数c ,不改变不等号的方向,则a c ⋅ > b c ⋅;(7)不等式a >b 的两边同减去c ,不改变不等号的方向,则a c ->b c -;(8)不等式a >b 的两边同乘以正数b ,不改变不等号的方向,则ab >2b .【点睛】本题主要是考查不等式的基本性质,熟练掌握不等式的三个性质的应用是解本题的关键,同时不等式的性质(3)是类似题型中考查的重点及易错点.3、8【分析】设这个班要胜x 场,则负()28x -场,根据题意列出不等式求解,考虑场次为整数即可得出.【详解】解:设这个班要胜x 场,则负()28x -场,由题意得,()32843x x +-≥,解得:7.5x ≥,∵场次x 为正整数,∴8x ≥.答:这个班至少要胜8场.故答案为:8.【点睛】题目主要考查一元一次不等式的应用,理解题意,列出相应不等式求解是解题关键.4、m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:∵正比例函数()2y m x =+中,y 随x 的增大而增大,∴2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.5、25a【分析】根据题意表示出a 的25即可.【详解】解:由题意可得:a 的25可表示为25a .故填25-<a.【点睛】本题考查列一元一次不等式,掌握列一元一次不等式的基本方法成为解答本题的关键.三、解答题1、(1)x≥﹣1,数轴见解析;(2)733x-<≤,2【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x﹣5x≤2,合并同类项,得:﹣2x≤2,系数化为1,得:x≥﹣1,将不等式的解集表示在数轴上如下:(2)解不等式2(x﹣2)≤3﹣x,得:x≤73,解不等式13123+->+x x,得:x>﹣3,则不等式组的解集为﹣3<x≤73,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.2、542x ≤<图见解析【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.【详解】 解:()1317225231x x x x ⎧-≤-⎪⎨⎪->+⎩①②解不等式①得:4x ≤, 解不等式②得:52>x , ∴不等式组的解集为:542x ≤<,数轴上表示解集为:【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式组的解集,解题的关键在于能够熟练掌握求不等式组的解集的方法.3、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.4、22【分析】先求出不等式的解集,再根据x 是符合条件的正整数判断出x 的可能值,再由三角形的三边关系求出x 的值即可.解:原不等式可化为5(x+1)<20-4(1-x),解得x<11,∵x是它的正整数解,∴根据三角形第三边的取值范围,得8<x<12,∵x是正偶数,∴x=10.∴第三边的长为10,∴这个三角形的周长为10+10+2=22.【点睛】本题综合考查了求不等式特殊解的方法及三角形的三边关系,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
八年级下册数学 一次函数与不等式练习题

八年级下册数学一次函数与不等式练习题1.一次函数与一元一次方程、一元一次不等式1.1 一次函数与一元一次方程1) 一次函数与一元一次方程的关系:① (从数值上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 中,$y$ 等于时,$x$ 的值。
② (从形式上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 的图像与 $x$ 轴交点的横坐标。
2) 利用一次函数的图像解一元一次方程的步骤:转化→画图像→ 找交点。
1.2 一次函数与一元一次不等式1) 一次函数与一元一次不等式的关系:① (从数值上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 函数$y=kx+b$ 中 $y>0$ 时 $x$ 的取值范围;$ax+b<0$ 的解集$\Leftrightarrow$ 函数$y=kx+b$ 中$y<0$ 时$x$ 的取值范围。
② (从形式上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴上方的部分对应的 $x$ 的取值范围;$ax+b<0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴下方的部分对应的$x$ 的取值范围。
2) 应用:在同一直角坐标系中,比较两直线上函数值大小的方法:当自变量取同一个值时,对应图像上的点在上方的函数值就大。
例1:已知方程 $x+b=-2$ 的解是 $x=-2$,下列可能为直线 $y=x+b$ 的图象是()。
例2:直线 $y=kx+3$ 经过点 $A(2,1)$,则不等式$kx+3\geq0$ 的解集是()。
针对训练1、一次函数 $y=kx+b$ 的图象如图所示,则方程$kx+b=0$ 的解为()。
2、如图,一次函数 $y=kx+b$ 的图象经过 $A$、$B$ 两点,则不等式 $kx+b<0$ 的解集是()。
北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习

第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;①函数y ax d =+ 不经过第一象限;①不等式ax b cx d ++> 的解集是3x < ;①()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .12.同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足12y y ≥的x 取值范围是( )A .2x -≤B .2x ≥-C .2x <-D .2x >-3.如图,一次函数y kx b =+的图象经过A 、B 两点,则不等式0kx b +<的解集是( )A.1x>B.01x<<C.1x<D.0x<4.若一次函数y kx b=+(k b、为常数,且0k≠)的图象经过点()01A-,,()11B,,则不等式1kx b+>的解为()A.0x<B.0x>C.1x<D.1x>5.一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x0<B.x0>C.x2<D.x2>.6.如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4B.x≤4C.x≥1D.x≤17.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;①a>0;①当x<3时,y1<y2;①当y1>0且y2>0时,﹣a<x<4.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣1评卷人得分 二、填空题 9.如图,已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),则关于x 的不等式ax+b≤kx <1的解集为______.10.如图,直线()0y kx b k =+>交x 轴于点()30A -,,交直线y x =于点B ,则根据图象可知,()0x kx b +<不等式的解为_______.11.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.12.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.13.如图,一次函数y=﹣x ﹣2与y=2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为_____.14.函数2y x =和4y ax =+的图象相交于点(),2A m ,则不等式24x ax -≤的解为__________.15.如图,一次函数y kx b =+的图象与x 轴的交点坐标为()2,0-,则下列说法:y ①随x 的增大而减小;0b <②;③关于x 的方程0kx b +=的解为2x =-;④当1x =-时,0.y <其中正确的是______.(请你将正确序号填在横线上)16.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.评卷人得分三、解答题 17.如图:已知直线y kx b =+经过点()5,0A ,()1,4B .(1)求直线AB的解析式;(2)若直线24y x=-与直线AB相交于点C,求点C的坐标;(3)根据图象,直接写出关于x的不等式240x kx b->+>的解集.18.如图,直线1l:1y x=+与直线2l:y mx n=+相交于点()1,P b.(1)求关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)已知直线2l经过第一、二、四象限,则当x______时,1x mx n+>+.19.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A (1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;20.如图,直线1:1l y x=+与直线22 :3l y x a=-+相交于点(1,)p b;(1)求出a,b的值;(2)根据图象直接写出不等式2013x x a<+<-+的解集;(3)求出ABP∆的面积.参考答案:1.A【解析】【分析】仔细观察图象:①a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;①c 的正负看函数y 2=cx +d 从左向右成何趋势,d 的正负看函数y 2=cx +d 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】由图象可得:a <0,b >0,c >0,d <0,①ab <0,故①正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故①正确,由图象可得当x <3时,一次函数y 1=ax +b 图象在y 2=cx +d 的图象上方,①ax +b >cx +d 的解集是x <3,故①正确;①一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,①3a +b =3c +d①3a−3c =d−b ,①a−c =13(d−b ),故①正确, 故选:A .【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.2.A【解析】【详解】试题分析:当2x ≤-时,直线11y k x b =+都在直线22y k x =的上方,即12y y ≥.故选A . 考点:一次函数与一元一次不等式.3.A【解析】由图象可知:B (1,0),且当x >1时,y <0,即可得到不等式kx+b <0的解集是x >1,即可得出选项.【详解】解:①一次函数y=kx+b 的图象经过A 、B 两点,由图象可知:B (1,0),根据图象当x >1时,y <0,即:不等式kx+b <0的解集是x >1.故选A .【点睛】本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.4.D【解析】【分析】可直接画出图像,利用数形结合直接读出不等式的解 【详解】如下图图象,易得1kx b +>时,1x >故选D【点睛】本题考查一次函数与不等式的关系,本题关键在于利用画出图像,利用数形结合进行解题 5.A【解析】根据题意在函数图像中寻找3y >时函数图像所在的位置,发现此时函数图像对应的x 范围是小于零,从而得出答案【详解】解:①由函数图象可知,当x <0时函数图象在3的上方,①当y >3时,x <0.故选A .【点睛】本题考查的是一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键. 6.D【解析】【详解】根据函数图像可得:当1x ≤时,21y y ≥,即3ax b x +≥+.故选D考点:一次函数与不等式7.B【解析】【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;①a 看y 2=x +a 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】①①y 1=kx +b 的图象从左向右呈下降趋势,①k <0正确;①①y 2=x +a ,与y 轴的交点在负半轴上,①a <0,故①错误;①当x <3时,y 1>y 2,故①错误;①y 2=x +a 与x 轴交点的横坐标为x =﹣a ,当y 1>0且y 2>0时,﹣a <x <4正确;故正确的判断是①①,正确的个数是2个.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象与性质,利用数形结合是解题的关键.8.D【解析】【详解】解:①函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-,得: 1m =-,①点A (-1,2),①当1x <-时,12y x =-的图象在23y ax =+的图象上方,①关于 x 的不等式﹣2x >ax +3 的解集是1x <-.故选:D.9.﹣4≤x <2【解析】【分析】先利用待定系数法求出y =kx 的表达式,然后求出y =1时对应的x 值,再根据函数图象得出结论即可.【详解】解:①已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),①﹣4k =﹣2,解得:k =12,①解析式为y =12x ,当y =1时,x =2,①由函数图象可知,当x≥﹣4时一次函数y =ax+b 在一次函数y =kx 图象的下方, ①关于x 的不等式ax+b≤kx <1的解集是﹣4≤x <2.故答案为:﹣4≤x <2.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.10.-3<x <0【解析】【分析】先把()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩然后利用函数图像分别解两个不等式组即可. 【详解】解:由题意得:不等式()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩得00x kx b >⎧⎨+<⎩无解,00x kx b <⎧⎨+>⎩的解集 -3<x <0 故答案为:-3<x <0【点睛】本题考查了一次函数与一元一次不等式组的解,正确将一元二次不等式转化为一元一次不等式组是解题的关键.11.1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.12.1x ≤【解析】【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2),①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.13.﹣2<x <2【解析】【分析】先将点P (n ,﹣4)代入y=﹣x ﹣2,求出n 的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可. 【详解】①一次函数y=﹣x ﹣2的图象过点P (n ,﹣4),①﹣4=﹣n ﹣2,解得n=2,①P (2,﹣4),又①y=﹣x ﹣2与x 轴的交点是(﹣2,0),①关于x 的不等式组2220x m x x +--⎧⎨--⎩<<的解集为22x -<<. 故答案为22x -<<.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出 n 的值,是解答本题的关键.14.1x ≤【解析】【分析】函数2y x =和4y ax =+的图象相交于点(),2A m ,求出m 的值,然后解不等式即可.【详解】解:①函数y=2x 的图象经过点A (m ,2),①2m=2,解得:m=1,①点A (1,2),当x≤1时,2x≤ax+4,即不等式2x-4≤ax 的解集为x≤1.故答案为x≤1.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.③【解析】【分析】根据一次函数的性质,一次函数与一元一次方程的关系对个小题分析判断即可得解.【详解】由图可知:①y 随x 的增大而增大,错误;①b >0,错误;①关于x 的方程kx +b =0的解为x =﹣2,正确;①当x =﹣1时,y >0,错误.故答案为①.【点睛】本题考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.16.3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,①0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.17.(1)5y x =-+;(2)点C 的坐标为()32,;(3)35x <<【解析】【分析】 (1)将A 、B 坐标代入解析式中计算解答即可;(2)将两直线方程联立求方程组的解即可;(3)根据图像找出y>0,且直线24y x =-高于直线y kx b =+部分的x 值即可.【详解】解:(1)因为直线y kx b =+经过点()5,0A ,()1,4B所以将其代入解析式中有504x b x b +=⎧⎨+=⎩,解得15k b =-⎧⎨=⎩, 所以直线AB 的解析式为5y x =-+;(2)因为直线24y x =-与直线AB 相交于点C所以有524y x y x =-+⎧⎨=-⎩,解得32x y =⎧⎨=⎩ 所以点C 的坐标为()32,; (3)根据图像可知两直线交点C 的右侧直线24y x =-高于直线y kx b =+且大于0,此时x的取值范围是大于3并且小于5,所以不等式240x kx b ->+>的解集是35x <<.【点睛】本题考查的是一次函数综合问题,能够充分调动所学知识是解题的关键.18.(1)1x =,2y = (2)1x >【解析】【分析】(1)方程组的解即为两条直线的交点P 的坐标,将x =1,代入直线l 1求出P 点坐标即可;(2)不等式x +1>mx +n 的解集即直线l 1在直线l 2的上方时x 的取值范围.【详解】解:(1)由题意可得,关于x ,y 的方程组的解即为两条直线的交点P 的坐标, 当x =1时,代入直线l 1,求得y =2,即P (1,2)即方程组的解为12x y =⎧⎨=⎩; (2)由题意可知,x +1>mx +n 时,直线l 1在直线l 2的上方,由函数图象可得,此时x >1,故答案为x >1.【点睛】本题主要考查一次函数与二元一次方程组及一元一次不等式的关系,熟悉一次函数的图象并熟练应用数形结合的思想是解答本题的关键19.(1)a =﹣3,k =1;(2)x <1;(3)当x >2时,y <2.【解析】【分析】(1)把A (1,a )代入y =﹣x +4求得a 的值,再把将A (1,3)代入y =kx +k +1即可求得k 的值;(2)观察函数图象即可解答;(3)当x =2时,y =2,观察图象,x >2时,图象在x =2的右侧,在y =2的下面,即可解答.【详解】(1)把A (1,a )代入y =﹣x +4得a =﹣1+4=3,将A(1,3)代入y=kx+k+1得k+k+1=3,解得k=1;(2)根据图象可得:不等式﹣x+4>kx+k+1的解集为x<1;(3)当x=2时,y=﹣x+4=﹣2+4=2,所以当x>2时,y<2.【点睛】本题考查的是一次函数与不等式的解集,掌握利用函数图象求不等式解集的方法是关键.20.(1) a=83,b=2;(2)-1<x<1;(3)5.【解析】【分析】(1)把P点坐标代入y=x+1可得b的值,继而代入23y x a=-+可求a的值;(2)根据两函数图象的交点坐标及y=x+1与x轴的交点可得答案;(3)首先求出点A、B的坐标,由此计算AB的长,再由点P的坐标,即可计算出ABP∆的面积.【详解】解:(1)①直线l1:y=x+1过点P(1,b),①b=1+1=2;把点P(1,2)代入23y x a=-+中得a=8 3(2)①y=x+1与x轴交于点(-1,0),①在x=-1的左边x=1的右边的图象满足不等式2013x x a<+<-+,①不等式2013x x a<+<-+的解集是-1<x<1(3)在2833y x=-+中,当y=0时,x=4①点B的坐标是(4,0)又A(-1,0),①AB=4+1=5,①点P(1,2),①ABP∆的面积为:12×5×2=5.【点睛】此题主要考查了一次函数与二元一次方程组,关键是掌握待定系数法求一次函数解析式,掌握凡是函数图象经过的点必能满足解析式即可.。
2021八年级数学下一元一次不等式与一次函数同步练习含答案

一元一次不等式与一次函数1.已知函数y =2x +3,当y <0时,x 的取值范围是( B )A .x >-32B .x <-32C .x <32D .x <02.如图,直线y =kx +b 交坐标轴于A ,B 两点,则不等式kx +b >0的解集是( A )A .x >-2B .x <-2C .x >0D .x <03.如图,直线y =kx +b 经过点(2,0),则关于x 的不等式kx +b >0的解集是( B )A .x >2B .x <2C .x >0D .x <04. [2020广东惠州期中]如图,函数y=kx+b(k ≠0)的图象经过点(2,0),与函数y=2x 的图象交于点A,则在x 轴上方,当kx+b<2x 时,x 的取值范围是 ( C ) A.x>0 B.0<x<1 C.1<x<2 D..x>2【点拨】 设点A 的横坐标为a,把A(a,2)代入y=2x,得2a=2,解得a=1,则点A 的坐标为(1,2),所以当x>1时,2x>kx+b.因为函数y=kx+b(k ≠0)的图象经过点(2,0),所以在x 轴上方,当kx+b<2x 时,x 的取值范围是1<x<2.故选C.5. [2020广东佛山顺德区期末]如图,直线l 1:y 1=kx-4与l 2:y 2=-2x+3相交于点A,若不等式kx-4>-2x+3的解集为x>2,则直线l 1的表达式为 ( A )A.y 1=x-4B.y 1=-x-4C.y 1=x-4D.y 1=-x-4【点拨】∵不等式kx-4>-2x+3的解集为x>2,∴点A 的横坐标为2,把x=2代入y 2=-2x+3,得y=-2×2+3=-1,∴A(2,-1).把A(2,-1)代入y 1=kx-4,得2k-4=-1,解得k=,∴直线l 1的表达式为y 1=x-4.故选A.6. 如图,已知正比例函数y 1=ax 与一次函数y 2=12x +b 的图象交于点P.下面有四个结论:①a <0;②b <0;③当x >0时,y 1>0;④当x <-2时,y 1>y 2.其中正确的是( D )A .①②B .②③C .①③D .①④【点拨】由图象知,对于y 1=ax ,y 1随x 的增大而减小,∴a <0,故①正确;直线y 2=12x +b 与y 轴交于正半轴,∴b>0,故②错误;当x >0时,y 1<0,故③错误;当x <-2时,直线y 1=ax 在直线y 2=12x +b 的上方,∴当x <-2时,y 1>y 2,故④正确,故选D.7. 观察图中的函数图象,则关于x 的不等式ax -bx >c 的解集为( D )A .x <2B .x <1C .x >2D .x >1【点拨】由图象可知,两图象的交点坐标是(1,2),当x >1时,ax >bx +c ,所以关于x 的不等式ax -bx >c 的解集为x >1.故选D.8. [2020湖南湘潭中考]如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b ≥x 时,则x 的取值范围为 ( A )A.x ≤1B.x ≥1C.x<1D.x>1【点拨】 如图,直线y=x 也经过点P(1,1),根据图象知,kx+b ≥x 的解集为x ≤1.故选A.9. 如图,在同一平面直角坐标系中,函数y1=2x 和y2=-x+b 的图象交于点A(m,n),若不等式2x<-x+b 恰好有3个非负整数解,则 ( D )A.m=2B.m=3C.2<m<3D.2<m ≤3【点拨】 由题图可得,2x<-x+b 的解集为x<m,因为不等式2x<-x+b 恰好有3个非负整数解,所以2<m ≤3.故选D. 10. [2020江苏无锡锡山区一模]若函数y=kx-b 的图象如图所示,则关于x 的不等式k(x-3)-b>0的解集为 ( C )A. x<3B.x>2C.x<5D.x>5【点拨】 将直线y=kx-b 向右平移3个单位长度,可得到直线y=k(x-3)-b,如图所示.观察图形,知当x<5时,直线y=k(x-3)-b 在x 轴上方.故关于x 的不等式k(x-3)-b>0的解集为x<5.故选C.11. 如图,直线y =x +b 和y =kx +2与x 轴分别交于点A(-2,0),点B(3,0),则不等式组⎩⎨⎧x +b >0kx +2>0的解集为( C )A.x<-2 B.x>3 C.-2<x<3 D.x<-2或x>312.已知在一定弹性范围内甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数关系式分别是y1=k1x+b1,y2=k2x+b2,它们的图象如图所示,当所挂物体质量均为2 kg(都在弹性范围内)时,甲、乙两弹簧的长度y1与y2的大小关系为( A )A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定13. 如图,这是甲、乙两家商店销售同一种产品的售价y(元)与销售量x(件)之间的函数关系图象.下列说法:①售2件时,甲、乙两家售价一样;②买1件时,买乙家的合算;③买3件时,买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是( D )A.①② B.②③④ C.②③ D.①②③14.当自变量x >-1 时,函数y=x+1的值大于0;当x <-1 时,函数y=x+1的值小于0.15. 直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图象如图所示,则当x__ <-1 时,y1>y2.16.如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则-2<kx+b<1的解集为______-1<x<2______【点拨】此题运用数形结合思想,观察图象知-2<kx+b<1的解集就是线段AB(不包含端点)所对应的自变量x的取值范围.17.[2019山东烟台中考]如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为__x ≤1_______【点拨】点P(m,3)代入y=x+2,得m=1,∴P(1,3),结合题中图象可知x+2≤ax+c的解集为x≤1.18.如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),则不等式kx+b≥2的解集是___x≤0__________【点拨】由一次函数的图象可知,y随x的增大而减小,因为一次函数y=kx+b的图象与y轴交于点(0,2),所以当x≤0时,kx+b≥ 2.19.(2019·南京)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围;(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.(1)解:k=-2时,y1=-2x+2,根据题意得-2x+2>x-3,解得x<53;(2):当x=1时,y=x-3=-2,把(1,-2)代入y1=kx+2得k+2=-2,解得k=-4,当-4≤k<0时,y1>y2;当0<k≤1时,y1>y2.故k的取值范围为-4≤k<0或0<k≤1.20.已知直线y1=mx+3n-1与直线y2=(m-1)x-2n+2.(1)如果m=-1,n=1,当x取何值时,y1>y2?(2)如果两条直线相交于点A,A点的横坐标x满足-2<x<13,求整数n的值.(1)解:∵m=-1,n=1,∴直线y1=mx+3n-1=-x+2,直线y2=(m-1)x-2n+2=-2x.令y1>y2;则-x+2>-2x,解得x>-2,故当x>-2时,y1>y2;(2):由y1=y2得mx+3n-1=(m-1)x-2n+2,解得x=-5n+3.∵-2<x<13,∴-2<-5n+3<13,解得-2<n<1.又∵n是整数,∴n=-1或0.21.定义运算min{a,b}:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{4,0}=0;min{2,2}=2;min{-3,-1}=-3.根据该定义运算完成下列问题:(1)min{-3,2}= -3 ,当x≤2时,min{x,2}= X ;(2)若min{3x-1,-x+3}=3x-1,求x的取值范围;(3)如图,已知直线y1=x+m与y2=kx-2相交于点P(-2,1),若min{x+m,kx-2}=kx-2,结合图象,直接写出x的取值范围.【点拨】(1)-3 x(2)由题意,得3x-1≤-x+3,解得x≤1,所以x的取值范围为x≤1.(3)x≥-2.因为min{x+m,kx-2}=kx-2,所以y1≥y2.由题中图象,可得x≥-2.22.【2020·北京】在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的表达式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.(1)解:∵一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,∴k=1,将点(1,2)的坐标代入y=x+b,得1+b=2,解得b=1,∴一次函数的表达式为y=x+1.(2)【点拨】把点(1,2)的坐标代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.解:m≥2.23.(2020·新疆)某超市销售A,B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A,B两款保温杯的销售单价各是多少元?(2)由于需求量大,A,B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?(1)解:设A款保温杯的销售单价是a元,则B款保温杯的销售单价是(a+10)元,480a+10=360a,解得a=30,经检验,a=30是原分式方程的解且符合题意,则a+10=40.答:A,B两款保温杯的销售单价分别是30元、40元.(2):设购买A款保温杯x个,销售利润为w元,则购买B款保温杯(120-x)个,w=(30-20)x+[40×(1-10%)-20](120-x)=-6x+1 920.∵A款保温杯的数量不少于B款保温杯数量的两倍,∴x≥2(120-x),解得x≥80.∵w随x的增大而减小,∴当x=80时,w取得最大值,此时w=1 440,120-x=40.答:当购买A款保温杯80个,B款保温杯40个时,才能使这批保温杯的销售利润最大,最大利润是1 440元.24.(2019·常德)某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.【思路点拨】运用待定系数法,即可求出y与x之间的函数表达式;(1)解:设y甲=k1x,根据题意得5k1=100,解得k1=20,∴y甲=20x;设y乙=k2x+100,将点(20,300)的坐标代入得20k2+100=300,解得k2=10. ∴y乙=10x+100.【思路点拨】解方程或解不等式即可解决问题,分三种情形回答即可.(2):①y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.。
(完整版)八年级数学一元一次不等式与一次函数练习

一 填空题
1.已知正比例函数 y= x (b 为常数),当 x>0 时, y 随 x 的增大 b
而增大,则一次函数 y=x+b 的图象不经过第
象限 .
【解析】 ∵正比例函数 y= x (b 为常数),当 x>0 时, y 随 x 的 b
增大而增大, ∴b<0,
∵一次函数 y=x+b 中 k=1>0,b<0,
(1)填空: A、C 两港口间的距离为
km, a
;
(2)求图中点 P 的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过 10 km 时能够相互望见,求甲、乙两船 可以相互望见时 x 的取值范围.
解:( 1)A 、 C 两港口间距离 s=30+90=120km, 30 90
又由于甲船行驶速度不变,故, 0.5 a 0.5
请求出点 P 的坐标,若不存在,请说明理由。
y
B
C
y
B
C
P
D
O
A
x
D
O
Ax
B 点坐标为( 0,b),且 a,b 满足
+|2a-b-2|=0.D 为 y
轴上一点,其坐标为( 0,2),点 P 从点 A 出发以每秒 1 个单位的
速度沿线段 AC-CB 的方向运动,当点 P 与点 B 重合时停止运动,
运动时间为 t 秒.
解 y=-2x- 4 与 y=4x+b 构成的方程组 .得交点坐标
作 x 轴的垂线,分别交函数
1 y=- x+b 和 y=x 的图象于点 C、D.
2
(1)求点 A 的坐标;
(2)若 OB=CD ,求 a 的值.
八年级数学下册 一元一次不等式组与一次函数同步练习北师大版 试题

轧东卡州北占业市传业学校一元一次不等式〔组〕与一次函数1、在一次函数y=-2x+8中,假设y>0,那么〔〕A.x>4 B.x<4 C.x>0 D.x<02.如下左图是一次函数y=kx+b的图象,当y<2时,x的取值范围是〔〕A.x<1 B.x>1C.x<3 D.x>33.一次函数y=3x+m-2的图象不经过第二象限,那么m的取值范围是〔〕A.m≤2 B.m≤-2 C.m>2 D.m<24.函数y=mx+2x-2,要使函数值y随自变量x的增大而增大,那么m的取值范围是〔〕A.m≥-2 B.m>-2 C.m≤-2 D.m<-25.直线L1:y=k1x+b与直线L2:y=k2x在同一平面直角坐标系中的图象如下列图,那么关于x的不等式k1x+b>k2x的解为〔〕A.x>-1 B.x<-1C.x<-2 D.无法确定6.y1=3x+2,y2=-x-5,如果y1>y2,那么x的取值范围是_____.7.当a取_____时,一次函数y=3x+a+6与y轴的交点在x轴下方.〔•在横线上填上一个你认为恰当的数即可〕8.一次函数y=〔a+5〕x+3经过第一,二,三象限,那么a的取值范围是____.四、精讲点拨:例1、某校校长带着该校级“三好学生〞去旅游,甲旅行社说:如果买一张全票那么其余学生可享受半价优惠.乙旅行社说:包括校长在内全部按票价的6折优惠〔即按全价的60%收费〕.全票价为240元.(1)设学生人数为x,甲、乙旅行社收费分别用y甲、y乙表示,分别写出y甲、y乙与x的函数关系式.(2)当学生是多少时,两家旅行社收费相同?(3)当x>4时,选择哪家旅行社较合算?例2、某工厂现有甲种原料360千克,乙种原料290千克,方案用这两种原料生产A、B两种产品共50件,生产一件A种产品,需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B种产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二下期一元一次不等式组与一次函数应用题专项练习
例:光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.
1、某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
(1)若该起市同时一次购进甲、两种商品共80件,恰好用去1600元,求能购进甲乙两种商品各多少件?
(2)该超市为使甲、乙两种商品共80元的总利润(利润=售价-进价)不少于600元,但又不超过610元,请你帮助该超市设计相应的进货方案。
2、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
3、某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.
4、今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,一种货车可装荔枝香蕉各2吨;
(1)该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来(6分)
(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案?使运费最少?最少运费是多少元?(4分)
5、某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金
不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)。