初二一次函数应用题练习
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
初二数学《一次函数应用题》习题

一次函数应用题一次函数的应用是解决实际问题的又一种方法,是中考的命题热门,由于学生的社会经验较少,理解实际问题的能力有限,无论是利用方程解决实际题,还是利用函数解决实际问题,学生都感觉是个难点,因此必须认真对待.从历年的中考试题中的我们发现出题的形式有三类:一.识图解决实际问题;二. 建立解析式、解决实际问题;三.方案选择.因此我们就从这三个类型开始学习一次函数应用题(一)———识别图象,解决实际问题【例题】1.如图的折线表示一辆自行车离家的距离与时间的关系,骑车者9:00离开家,15:00回家,根据图象回答:(1)离家最远的距离是千米,对应的时间是. (2)第一次休息时,离家多远?答:(3)在11:00-12:00他骑车的路程是多少千米?答:(4)在9:00-10:00的平均速度是多少?答:(5)他在何时至何时停止前进并休息午餐?答:(6)他在停止前进后返回,骑了多少千米?答:(7)返回时的平均速度是多少?答:2.如图,l A l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。
(1)B出发时与A相距千米。
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时。
(3)B出发后小时与A相遇。
(4)求出A行走的路程S与时间t的函数关系式。
【练习】1.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司中的一家签订月租合同,设汽车每月行驶x千米,应付给个体车主的月租费是y2元,应付给出租车公司的月租费是y1元,y1,y2分别与x之间的函数关系图象(两条射线)如图(1)观察图象,回答下列问:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家的车费相同?(3)如果该单位估计每月的行程约为2300千米,那么这个单位租哪家的车合算?2.一农民带了若干自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答农民自带的零钱是元;降价前他每千克土豆的出售的价格是元;降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,那么他一共带了千克土豆。
八年级一次函数应用题

应用题专题:1.大桥局在A、B两地有闲置的挖土机16台和12台,现要运往甲、乙两地,其中甲地15台,乙地13台,从A、B两地分别运送一台挖土机到甲、乙两地的费用如下表:(1)如果设A地运往甲地的挖土机为x台,请填写下表(2)求所需总费用y(元)与x(台)之间的函数关系式。
(3)如果经过精心组织实行最佳方案,那么需要准备的总调运费用最低为多少?2.C市和D市遭受地震袭击,急需救灾物质10吨和8吨。
我省的A市和B市分别募集到救灾物质12吨和6吨,全部赠送给C市和D市。
已知A市到C市的运费为40元/吨,A市到D市的运费为50元/吨,B市到C市的运费为30元/吨,B市到D市的运费为80元/吨。
(1)设B市运到C市的救灾物质为x吨,求总运费y与x的函数关系式,并指出x的取值范围;(2)求最低总运费,并说明总运费最低时的运输方案。
3.在全国预防“甲感”时期,某厂接受了生产一批高质量医用口罩的任务.要求8天之内(含8天)生产A 型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只.该厂的生产能力是:每天只能生产一种型号的口罩,若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只.已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.设该厂在这次任务中生产A型口罩x万只.(1)若该厂这次生产口罩的总利润为y万元,请求出y关于x的函数关系式;(2)在完成任务的前提下,如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?4.2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A,B两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求出y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?5.甲乙两仓库要向A、B两地运送钢材,已知甲库可调出100吨钢材,乙库可调出80吨钢材,A地需70吨钢材,B地需110吨钢材,两库到A、B两地的路程和运费如下表:(表中运费栏“元/吨·千米”表示每吨钢材送1千米所需钱数)设甲库运往A地钢材x吨,由甲乙两仓库要向A、B两地运送钢材的总运费为y(元)(1)求总运费y(元)关于x(吨)的函数关系式。
初中八年级一次函数实际常用的应用题__有答案

一次函数实际常用应用类问题 答案1、解:⑴由图象可知:当0≤x ≤10时,设y 关于x 的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50 ∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x ≤20时,设y 关于x 的函数解析式为y=mx+b , ∵(10,350),(20,850)在y=mx+b 上, ∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100 ∴y= 50x-100 (0≤x ≤10)50x-150 (10<x ≤20) 令y=360 当0≤x ≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x ≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。
要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。
2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。
由题意得:6=2 k 1,6=3 k 2,解得:k 1=3,k 2=2 ∴s 甲=3t ,s 乙=2t ⑵当甲到达山顶时,s 甲=12(千米),∴12=3t 解得:t=4∴s 乙=2t=8(千米) ⑶由图象可知:甲到达山顶宾并休息1小时后点D 的坐标为(5,12) 由题意得:点B 的纵坐标为12-23=221,代入s 乙=2t ,解得:t=421∴点B (421,221)。
设过B 、D 两点的直线解析式为s=kx+b ,由题意得 421t+b=221 解得: k=-65t+b=12 b=42 ∴直线BD 的解析式为s=-6t+42 ∴当乙到达山顶时,s 乙=12,得t=6,把t=6代入s=-6t+42得s=6(千米)3、解:⑴设存水量y 与放水时间x 的函数解析式为y=kx+b, 把(2,17)、(12,8)代入y=kx+b,得 17=2k+b 解得 k=-109 b =5948=12k+b∴y=-109x+594 (2≤x ≤9188) ⑵由图象可得每个同学接水量为0.25升,则前22个同学需接水0.25×22=5.5(升),存水量y=18-5.5=12.5(升)∴12.5=-109x+594解得 x=7 ∴前22个同学接水共需要7分钟。
初中八年级一次函数实际常用的应用题【有答案】

一次函数实际常用应用类问题1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3、教室里放有一台饮水机,饮水机上有两个放水管。
课间同学们到饮水机前用茶杯接水。
假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。
两个放水管同时打开时,它们的流量相同。
放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。
饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨49cm 30cm36cm 3个球有水溢出(第23题) 图2 图2(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?.8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。
初二一次函数应用题练习

《一次函数的应用》热点考题训练例一:如图,温度计上表示了摄氏温度与华氏温度的刻度,能否用函数解析式表示摄氏温度与华氏温度的关系?如果今天的气温是摄氏32度,那么华氏是多少度?例二:遥控赛车在“争先”杯赛中,电脑记录了速度的变化过程如图所示。
能否用函数解析式表示这段记录?例三:某居民小区按照分期付款的形式福利售房,政府给予一定的贴息。
小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000远与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%。
⑴ 若第x (x ≥2)年小明家交付房款y 元,求年付房款y (元)与x (年)的函数关系式;⑵例四:已知雅美服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M ,N 两种型号的时装共80套。
已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45员;做一套N 型号的时装需要A 种布料1.1米,B 种布料0.4米,可获利润50元。
若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。
(1)求y 与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?例五:某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。
00– –230 5122 212 100训练题一、填空题1、某校办工厂现年产值是万元,如果每增加元,投资一年可增加元产值。
那么总产值y (万元)与增加的投资额x (万元)之间的函数关系式为 。
2、如图⑴中的直线ABC ,为甲地向乙地打长途电话所需付的电话费y (元)与通话时间t (分钟)之间的函数关系式的图象。
人教版八年级下册数学一次函数应用题训练
人教版八年级下册数学一次函数应用题训练1.某旗舰店元月份售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年三月后,这两款玩具持续热销,于是旗舰店准备再购进这两款玩具共540个,其中“冰墩墩”的数量不超过“雪容融”数量的两倍.若三月份购进的这两款玩具全部售出,那么旗舰店应如何进货才能使销售利润最大?2.周末,小刚同学骑自行车从家里出发到野外郊游.从家出发1小时后到达第一个景点,游玩一段时间后按原速前往第二个景点,此时,小刚同学的妈妈驾车沿相同路线前往第二个景点,如图,是他们离家的路程y(千米)与小刚同学离家的时间x(小时)的函数图像.(1)小刚同学在第一个景点游玩了多少小时?他骑车的速度是多少千米/小时?第二个景点与第一个景点相距多少千米?(2)求妈妈驾车的速度及妈妈追上小刚同学所用的时间.3.某装修公司与甲、乙两家品牌供应商签订长期供应某款门锁的供货合同,该公司每月向每家供应商至少订购门锁20把,根据业务需求,该装修公司每月向两家供应商订购该款门锁共200把.五月份该公司向甲、乙两家供应商支付门锁的费用分别是4400元和12000元,甲供应商门锁的单价是乙供应商的1.1倍.(1)五月份甲、乙两家供应商门锁的单价分别是多少元?(2)受国际金属价格波动的影响,六月份,甲供应商门锁的单价在五月份的基础上提高a )元,乙供应商的单价提高了15%.若在乙供应商处购买的门锁数量不少了a(0于甲的一半,则如何安排进货才能使装修公司的进货成本最少?最少进货成本是多少?4.已知,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S(千米),与该日下午时间t(时)之间的关系.根据图象回答下列问题:(1)直接写出:甲出发______小时后,乙才开始出发;乙的速度为______千米/时;甲骑自行车在全程的平均速度为______千米/时.(2)求乙出发几小时后就追上了甲?(3)求乙出发几小时后与甲相距10千米?5.从今年3月开始,上海疫情牵动着全国人民的心.4月9日,上海最大方舱医院投入使用,某市政府计划派出360名医务工作者去上海方舱医院支援,经过研究,决定从当地租车公司提供的甲,乙两种型号客车中租用20辆作为交通工具.租车公司提供给的有关两种型号客车的载客量和租金信息如下表.设公司租用甲型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并写出x的取值范围;(2)若要使租车总费用不超过7400元,一共有几种租车方案?并求出最低租车费用.6.为了体验大学校园文化,乐乐利用周末骑电动车从家出发去西北大学,当他骑了一段路时,想起要帮在西北大读书的果果买一本书,于是原路返回到刚经过的书店,买到书后继续前往西北大.如图是他离家的距离与时间的关系示意图,请根据图中提供的信息,回答下列问题:(1)乐乐家离西北大的距离是多少?乐乐在书店停留了多长时间?(2)买到书后,乐乐从书店到西北大骑车的平均速度是多少?(3)本次去西北大途中,乐乐一共行驶了多少米?7.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?8.每年的11月9日是全国消防日,学校组织大家这个周末前往消防队学习消防安全知识,哥哥和弟弟从家出发到消防队参观消防演练,哥哥步行一时间后,弟弟骑自行车沿相同路线行走,两人均匀速前行,他们的路程差s(米)与哥哥出发时间t(分)之间的关系如图所示.(1)求哥哥和弟弟的速度各是多少?(2)求他们家到消防队的距离.(3)求图中的a,b的值.9.甲、乙两人同时从家乘车去县城,途中甲因故下车,改骑自行车前往(换车时间不计)已知甲骑自行车的速度为15千米/时,乙到达县城休息1小时后,以另一速度返回,1小时后与甲相遇,图为甲、乙两人之间的距离y(千米)与行使时间x(小时)之间的函数关系:(1)请将图中的()内填上正确的值,并直接写出乙从家到县城的行驶速度;(2)求出乙返回到与甲相遇过程中,y与x之间的函数关系式,并求出乙返回时的行驶速度;(3)求出相遇时距离家有多远及家与县城之间的距离.10.有A、B两个港口,水由A流向B,水流的速度是3千米/时,甲船由A顺流驶向B,乙船同时由B逆流驶向A,各自不停地在A、B之间往返航行.甲在静水中的速度是21千米/时,乙在静水中的速度是15千米/时;甲、乙同时出发,设行驶的时间为t 小时,甲船距B港口的距离为1S千米,乙船距B港口的距离为2S千米;如图为1S(千米)和t(小时)关系的部分图像;(1)A、B两港口的距离是______千米;(2)求甲船在A、B两个港口之间往返一次1S(千米)和t(小时)所对应的关系式;(3)在图中画出乙船从出发到第一次返回B港口这段时间内,S(千米)和t(小时)2的关系图象;(4)直接写出甲、乙两船第二次相遇时距离B港口的距离是多少?11.某商店今年春季分两次订购A,B两种商品销售,同种商品前后进价相同,具体情况如下表.(1)求这两种商品订货的单价.(2)夏季来临,需求增加,商店计划再订购这两种商品共1000件,其中A种件数不少于B种件数的4倍.销售价每件A种30元,B种100元.求夏季销售这两种商品的毛利W(元)与再订购A种商品件数m之间的函数关系式.并求最大毛利.12.某校组队参加庆祝中国共青团成立100周年经典诵读比赛,需要为参赛选手每人配备一个朗诵文件夹.已知甲、乙两家店铺销售同款文件夹,原价相同,但销售方式不同.在甲店铺,无论一次性购买多少个文件夹,一律打8.5折;在乙店铺,当购买数量不超过30个时,按原价出售.当购买数量超过30个时,超过的部分打7折.设该校需购买x个朗诵文件夹,在甲店铺购买所需的费用为1y元,在乙店铺购买所需的费用为2y元,1y,2y关于x的函数图象如图所示.(1)分别求出1y ,2y 关于x 的函数解析式; (2)求图中m 的值,并说明m 的实际意义;(3)若该学校一次性购买朗诵文件夹的数量超过40个,但不超过90个,到哪家店铺购买更优惠?13.从今年3月开始,上海的疫情时刻牵动着全国人民的心.4月9日,上海最大方舱医院投入使用,市政府计划派出360名医务工作者去上海方舱医院支援.经研究,决定租用当地租车公司提供的A ,B 两种型号客车共20辆作为交通工具,运送所有医务工作者去方舱医院.下表是租车公司提供的两种型号客车的载客量和租金信息。
初二数学一次函数练习题及答案
初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。
答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。
答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。
答案:14.函数y = -2x - 1与y轴交于点(____,0)。
答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。
解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。
所以当x = 3时,y的值为7。
(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。
所以当y = 5时,相应的x值为2。
2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。
(2)求函数的斜率和截距。
解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。
所以与x轴的交点坐标为(5/3, 0)。
当函数与y轴交点时,x = 0,代入函数得到y = 5。
所以与y轴的交点坐标为(0, 5)。
(2)已知函数y = -3x + 5,斜率为-3,截距为5。
四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。
八年级上册一次函数的应用题
八年级上册一次函数的应用题:
题目:一辆汽车以每小时60公里的速度行驶,从起点出发后经过3小时到达目的地。
假设汽车的行驶距离和时间成一次函数关系,请回答下列问题:
汽车在3小时内行驶了多远?
如果汽车行驶6小时,预计会到达的距离是多少?
汽车需要行驶多少小时才能行驶500公里?
解答:
由题意可知,汽车的速度为每小时60公里,行驶了3小时,因此汽车在3小时内行驶的距离为:60公里/小时× 3小时 = 180公里。
根据题目中给出的信息,汽车的行驶距离和时间成一次函数关系。
我们可以使用函数的定义来解答这个问题。
设汽车行驶的距离为D(单位:公里),行驶的时间为t(单位:小时),那么汽车行驶的速度为60公里/小时。
由一次函数的定义可知,D = 60t。
当t = 6时,代入公式计算得到D = 60 × 6 = 360公里。
因此,如果汽车行驶6小时,预计会到达的距离是360公里。
同样地,我们可以使用函数的定义来解答这个问题。
设汽车行驶的距离为D(单位:公里),行驶的时间为t(单位:小时)。
根据题目中给出的信息,我们知道D = 60t。
要计算汽车需要行驶多少小时才能行驶500公里,我们可以将D设为500,然后求解t。
即:500 = 60t。
解这个方程可得到t = 500 / 60 ≈ 8.33小时。
因此,汽车需要行驶约8.33小时才能行驶500公里。
初二数学一次函数练习题及答案
初二数学一次函数练习题及答案《一次函数》练习题及参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y(元)与产品数x(个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y(元)与产品数量x(个)的函数关系式;③完成250个以上产品得到的报酬y(元)与产品数量x(个)的函数关系式.答案:① (0② (150③ (x250)第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t(小时)的关系.答案: (0t30)第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t(分)的关系答案: (t0)第5题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y (cm),底边长为x(cm),则y 与x的函数关系式为______.答案:第7题. 若函数y=(m-3)xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为 .答案:. y=3n+1(n为1、2、3、4、…….)第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1km加收1元,则路程x2km时,车费y(元)与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L),与工作时间x(h)之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%…………某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y(元)与其工资x(元)之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1 km加收1元,则路程x2 km时,车费y(元)与路程x(km)之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为y(cm),y与x之间的函数关系式是什么?答案:138cm,y=30x-3(x-1)=27x+3.第16题. 已知y+a与x-b成正比例(其中a、b都是常数),试说明:y是x 的一次函数答案:设y+a=k(x-b)(x0)y=kx-(a+bk)第17题. 已知y+a与x-b成正比例(其中a、b都是常数)(1)试说明y是x的一次函数;(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:(1)因为y+a与x-b成正比例,所以y+a=k(x-b)(k0),即y=kx-(bk+a)因为k不等于0,a、b为常数,所以y是x的一次函数;(2)代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程S(km)与行驶时间t(h)之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x 之间的函数关系式为 .答案:y=x+39.18%x(x0)第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次第23题. 点 (填:“在”或“不在”)直线上答案:在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数的应用》热点考题训练例一:如图,温度计上表示了摄氏温度与华氏温度的刻度,能否用函数解析式表示摄氏温度与华氏温度的关系?如果今天的气温是摄氏32度,那么华氏是多少度?例二:遥控赛车在“争先”杯赛中,电脑记录了速度的变化过程如图所示。
能否用函数解析式表示这段记录?例三:某居民小区按照分期付款的形式福利售房,政府给予一定的贴息。
小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000远与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%。
⑴ 若第x (x ≥2)年小明家交付房款y 元,求年付房款y (元)与x (年)的函数关系式;⑵例四:已知雅美服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M ,N 两种型号的时装共80套。
已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45员;做一套N 型号的时装需要A 种布料1.1米,B 种布料0.4米,可获利润50元。
若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。
(1)求y 与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?例五:某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。
00– –230 5122 212 100训练题一、填空题1、某校办工厂现年产值是万元,如果每增加元,投资一年可增加元产值。
那么总产值y (万元)与增加的投资额x (万元)之间的函数关系式为 。
2、如图⑴中的直线ABC ,为甲地向乙地打长途电话所需付的电话费y (元)与通话时间t (分钟)之间的函数关系式的图象。
当t ≥3时,该图象的解析式为 ;从图象中可知,通话2分钟需付电话费 元;,通话7分钟需付电话费 元;3、某种储蓄的月利率是0.8%,存入100元本金后,本息和y (元)与所存月数x 之间的函数关系式是 ;4、一服装个体户在进一批服装时,进价已按原价打了七五折, 他打算对该批服装定一新价标在价目卡上,并标明按该价降价20%销售。
这样,依然可获得25%的纯利。
则这个体户给这批服装定的新价y 与原价x 之间的函数关系式是 ;5、假如甲、乙两人在一次赛跑中,路程S 与时间 的关系如图⑵所示,那么可以知道:① 这是一次 米赛跑;②甲乙两人中先到达终点的是 ;③乙在这次赛跑中的速度为 米秒 ;二、选择题1、幸福村村办工厂今年前五个月生产某种产品的总量 (件)关于时间 (月)的函数图象如图⑶所示,则该厂对这种产品来说 ( )A 、1月至3月每月产总量逐月增加,4、5两月每月生产量逐月减少B 、1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平C 、1月至3月每月生产总量逐月增加,4、5两月均停止生产D 、1月至3月每月生产总量不变,4、5两月均停止生产2、一根弹簧的原长为12 cm ,它能挂的重量不能超过15 kg 并且每挂重1kg 就伸长12cm 写出挂重后的弹簧长度y (cm )与挂重x (kg )之间的函数关系式是 ( )A 、y = 12 x + 12(0<x ≤15)B 、y = 12x + 12(0≤x <15) C 、y = 12 x + 12(0≤x ≤15) D 、y = 12x + 12(0<x <15) 3、小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用15分钟返回家里。
下面图形中表示小明的父亲离家的时间与距离之间的关系是 ( )1、一小水库有进水闸、放水闸各一个,单独进水4小时可以装满一库水,单独放水6小时可以放完一库水。
当库中的水占满水的时同时开进水闸和放水闸,设两闸开放的时间用表示,水库中的水占满库水的几分之几用 。
表示(1)求与之间的函数关系式,并写出自变量 的取值范围;(2)在直角坐标系中画出(1)小题中1.⑴⑵ 秒) t ⑶ (C ) (B )(A ) (D )函数的图象;(3)求当水库中从有 库水到半库水时两闸开放的时间。
2、如图公路上有A 、B 、C 三站,一辆汽车在上午8时从离A 站10千米的P 地出发向C 站匀速前进,15分钟后离A 站20千米。
(1) 设出发x 小时后,汽车离A 站y 千米,写出y 与x 之间的函数关系式;(2) 当汽车行驶到离A 站150千米的B 站时,接到通知要在中午12点前赶到离B 站30千米的C 站。
汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高到多少?3、某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图象如图所示。
求 (1)y 与x 之间的函数关系式 ⑵ 旅客最多可免费携带行李的公斤数。
4、荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物往广州,这列货车可挂A 、B 两种不同规格的货厢50节,已知用一节A 型货厢的运费是0.5吨万元,用一节B 型货厢的运费是0.8万元。
⑴ 设运输这批货物的总运费为y (万元),用A 型货的节数为x (节),试写出y 与x 之间的函数关系式; ⑵ 已知甲种货物35吨和乙种货物15吨,可装满一节A 型货厢,甲种货物25吨和乙种货物35吨吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,有哪几种运输方案?请你设计出来。
⑶利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?5、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件。
已知生产一件A 种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。
(1)、按要求安排A 、B 两种产品的生产件数,有哪几种方案?请你给设计出来;(2)、设生产A 、B 两种产品获总利润为y (元),其中一种的生产件数为x ,试写出y 与x 之间的函数关系式,并利用函数的性质说明 (1)中哪种生产方案获总利润最大?最大利润是多少?6、某地上年度电价为0.8元,年用电量为1亿度。
本年计划将电价调至0.55~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿度)与(x – 0.4 )(元)成反比例,又当x = 0.65时,y = 0.8。
(1)、求y 与x 之间的函数关系式;(2)、若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[ 收益 = 用电量 × ( 实际电价 – 成本价 )] B P A · · ··C 行李票费用(元)行李重量(公斤)7、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元有并加收0.4元的城市污水处理费,设某户每月用水量为x (立方米),应交水费为y (元)(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式;(2)如果某单位共有用户50户,某月共交水费514.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?8、辽南素以“苹果之乡”著称,某乡组织20辆汽车装满运三种苹果42吨到外地销售。
按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。
(1)、设有x辆车装运种A苹果,用y辆车装运种B苹果,根据下表提供的信息求y与x之间的函数关系式,并求x的取值范围;(2)、设此次外销活动的利润为W (百元),求w与x的函数关系式以及最大利润,并安排相应的车辆分配方案。
9、某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管是每辆一次0.3元。
(1)、若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)、若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。
10.一项工程交给甲乙两队施工,如果甲队独做,需12天完成;如果乙队独做,则需16天完成。
如果由甲乙两队共同完成这项工程,用x、y分别表示甲乙两队工作的天数。
(1)、用x的代数式表示y;(2)、若要求这项工程在10天内完成,两队工作天数都是整数,则完成这项工程最少要多少天。
11、我市某地一家农工商公司收获的一种绿色蔬菜,共140吨,若在市场上直接销售,每吨利润为1000元,经粗加工后,每吨利润可达4500元,经细加工后,每吨利润为6500元。
该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨;但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内(含15天)将这批蔬菜全部销售或加工完毕。
为此公司研制了两种可行方案:方案一:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接出售。
方案二:将一部分蔬菜进行精加工,其余蔬菜进行粗加工。
⑴写出方案一所获利润W 1;⑵求出方案二所获利润W 2(元)与精加工蔬菜数x(吨)之间的函数关系式;⑶你认为任何安排加工(或直接销售)使公司获利最多?最大利润是多少?。