高中数学圆的方程典型例题

合集下载

高中数学例题:圆的标准方程

高中数学例题:圆的标准方程

高中数学例题:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++=【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||0CB = ,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( )A .(x ―4)2+(y+1)2=10B .(x+4)2+(y ―1)2=10C .(x ―4)2+(y+1)2=100 D.22(4)(1)x y -++=【答案】A例2.求圆心在直线2x ―y ―3=0上,且过点(5,2)和(3,―2)的圆的方程.【答案】(x ―2)2+(y ―1)2=10【解析】 解法一:设所求圆的圆心为(a ,b ),半径为r ,由题意得222222230(5)(2)(3)(2)a b a b r a b r --=⎧⎪-+-=⎨⎪-+--=⎩,解方程组得a=2,b=1,r =∴所求圆的方程为(x ―2)2+(y ―1)2=10.解法二:因点(5,2)和(3,―2)在圆上,故圆心在这两点所连线段的垂直平分线上,可求得垂直平分线的方程为x+2y ―4=0.又圆心在直线2x ―y ―3=0上,故圆心为两直线的交点.由230240x y x y --=⎧⎨+-=⎩求得两直线交点为(2,1),故所求圆的方程为(x ―2)2+(y ―1)2=10.【总结升华】求圆的标准方程的关键是求圆的坐标和圆的半径,这就需要充分挖掘题目中所给的几何条件,并充分利用平面几何中的有关知识求解,如“若圆经过某两点,则圆心必在这两点连线的中垂线上”等.举一反三:【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++=【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-=所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.。

圆的方程 高中数学讲义

圆的方程 高中数学讲义

圆的方程讲义一、圆的标准方程:1.以点),(b a C 为圆心,r 为半径的圆的标准方程为 特别的,圆心在原点,半径为r 的圆的标准方程为 注:特殊位置的圆的方程(1)圆心在原点(2)圆心在x 轴上(3)圆心在y 轴上(4)圆过原点(5)与x 轴相切的圆(6)与y 轴相切的圆2.点与圆的位置关系:已知点),(00y x M 和圆C :)0()()(222>=-+-r r b y a x ,点M 到圆心C 的距离为d ,则(1)点M 在圆上⇔ ⇔(2)点M 在圆内⇔ ⇔(3)点M 在圆外⇔ ⇔3.典型例题例1.ABC ∆的三个顶点)8,2(),3,7(),1,5(--C B A ,求它的外接圆的方程例2.已知圆心为C 的圆经过点)1,1(A 和)2,2(-B ,且圆心C 在直线 l :01=+-y x 上,求圆心为C 的圆的标准方程例 3.已知两点),(),,(2211y x B y x A ,求证:以AB 为直径的圆的方程为0))(())((2121=--+--y y y y x x x x二、圆的一般方程1.对于方程022=++++F Ey Dx y x(1)当0422>-+F E D 时,方程表示(2)当0422=-+F E D 时,方程表示(3)当0422<-+F E D 时,方程表示2.圆的一般方程:方程 叫做圆的一般方程,其圆心为 ,半径为注圆的一般方程的系数特点:(1)22,y x 项的系数(2)无xy 的项(3)3.点与圆的位置关系:已知点),(00y x M 和圆C :022=++++F Ey Dx y x ,则(1)点M 在圆上⇔(2)点M 在圆内⇔(3)点M 在圆外⇔例1.若方程01222222=-+++++a a ay ax y x 表示圆,求a 的取值范围变式:若原点在圆01222222=-+++++a a ay ax y x 外,求a 的取值范围例2.求过三点)2,4(),1,1(),0,,0(B A O 的圆的方程,并求出这个圆的半径长和圆心坐标.三、直线与圆的位置关系1.平面几何中,直线与圆有三种位置关系:(1)直线与圆相交,有 个公共点;(2)直线与圆相切,有 个公共点;(3)直线与圆相离,有 个公共点.2.直线与圆的位置关系的判定:已知直线l :0=++C By Ax ,圆C :)0()()(222>=-+-r r b y a x(1)方法1:(几何法)设圆心C 到直线l 的距离(弦心距)为22b a C bB aA d +++=,则 ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离(2)方法2:(代数法)联立直线l 与圆C 的方程0)()(02222=++⇒⎩⎨⎧=-+-=++t qx px r b y a x C By Ax ① ⇔直线与圆相交② ⇔直线与圆相切③ ⇔直线与圆相离例1.如图,已知直线l :063=-+y x 和圆心为C 的圆04222=--+y y x ,判断直线l 与圆C 的位置关系例2.直线m x y +-=33与圆122=+y x 在第一象限内有两个交点,求实数m 的取值范围3.弦长公式:设直线l :b kx y +=与圆C :)0()()(222>=-+-r r b y a x 相交于B A ,两点,则弦长AB 的求法有:(1)几何法:由弦心距d ,半弦长2L ,圆的半径r 满足勾股定理222)2(r L d =+=⇒L (2)代数法:(弦长公式)=AB == =例3.已知直线l :012=--y x 与圆C :01222=--+y y x 交于B A ,,求弦长AB例4.过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为54,求直线l 的方程变式1:过点)3,3(--M 的直线l 被圆C :021422=-++y y x 所截得的弦长为8,求直线l 的方程变式2:过点)0,3(P 直线l 被圆C :0122822=+--+y x y x 截得的弦长为4,求直线l 的方程4.弦的中点(中点弦)问题:例5.过点)0,4(P 的直线l 与圆C :422=+y x 交于B A ,两点,求弦AB 的中点Q 的轨迹方程例6.直线kx y =与圆0104622=+--+y x y x 相交于B A ,,求弦AB 的中点P 的轨迹方程5.以弦为直径的圆过定点问题例7.已知圆0622=+-++m y x y x 与直线032=-+y x 交于Q P ,两点,且以PQ 为直径的圆过原点,求m 的值四、圆的切线问题1.求过圆上一点的圆的切线方程例8.求过点)3,1(P 的圆O :422=+y x 的切线l 的方程例9.证明:过圆222r y x =+上一点),(00y x P 的圆的切线方程为:200r y y x x =+注:常见的与圆的切线有关的结论(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为(3)过圆022=++++F Ey Dx y x 上一点),(00y x P 的圆的切线方程为(4)过二次曲线(包括圆、椭圆、双曲线、抛物线)022=++++F Ey Dx Cy Ax 上一点),(00y x P 的圆的切线方程为2.求过圆外一点的圆的切线方程例10.求过点)3,4(-A 的圆1)1()3(22=-+-y x 的切线l 的方程练习:求过点)4,3(A 的圆1)1()2(22=-+-y x 的切线l 方程3.求切线长例11.过圆C :1)2()2(22=-+-y x 外一点)2,0(P 作圆C 的切线PT ,T 为切点,求切线PT 的长注:圆的切线长公式:(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线PT ,T 为切点,则切线长=PT例12.已知圆C :1)1()2(22=-+-y x ,在直线l :01243=--y x 上求一点P ,过点P 作圆C 的切线,使得切线段最短4.切点弦例13.设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为注:圆的切点弦所在直线方程(1)设点),(00y x P 是圆222)()(r b y a x =-+-外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为(2)设点),(00y x P 是圆022=++++F Ey Dx y x 外任意一点,过点P 作圆的切线,切点为B A ,,则切点弦AB 所在直线方程为五、圆和圆的位置关系1.圆和圆的位置关系:(1)圆和圆相离,有 个公共点(2)圆和圆外切,有 个公共点(3)圆和圆相交,有 个公共点(4)圆和圆内切,有 个公共点(5)圆和圆内含,有 个公共点2.圆和圆的五种位置关系的判定(1)几何法:设两圆21,C C 的半径分别为21,r r ,圆心距为d ,则①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔④圆和圆内切⇔⑤圆和圆内含⇔(2)代数法:联立两圆的方程①圆和圆相离⇔②圆和圆外切⇔③圆和圆相交⇔注:用代数法判断出两圆相切后,若要进一步区分是外切还是内切,则还要判断小圆圆心是在大圆内还是在大圆外,若在大圆内,则两圆 ,若在大圆外,则两圆 , 类似可以区分外离与内含例14.已知圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x ,试判断圆1C 与圆2C 的位置关系例15.设圆1C :088222=-+++y x y x 和圆2C :024422=---+y x y x 相交于B A ,两点,求(1)两圆的公共弦AB 所在的直线方程(2)求两圆的公共弦AB 的长3.两圆的公切线条数(1)当两圆外离时,有 条公切线, 条外公切线, 条内公切线(2)当两圆外切时,有 条公切线, 条外公切线, 条内公切线(3)当两圆相交时,有 条公切线(4)当两圆内切时,有 条公切线(5)当两圆内含时,有 条公切线例16.(1)圆1C :122=+y x 与圆1C :1)3(22=-+y x 有 条公切线(2)点)1,0(A 和)5,4(B 到直线l 的距离分别为1和2,则符合条件的直线l 有 条4.两圆公切线的求法例17.已知圆1O :096222=++++y x y x ,2O :012622=++-+y x y x ,求两圆的公切线方程。

高中数学例题:圆的一般方程

高中数学例题:圆的一般方程

高中数学例题:圆的一般方程例3.已知直线x 2+y 2―2(t+3)x+2(1―4t 2)y+16t 4+9=0表示一个圆.(1)求t 的取值范围;(2)求这个圆的圆心和半径;(3)求该圆半径r 的最大值及此时圆的标准方程.【思路点拨】若一个圆可用一般方程表示,则它具备隐含条件D 2+E 2―4F >0,解题时,应充分利用这一隐含条件.【答案】(1)117t -<<(2)(t+3,4t 2-1) (3)7 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭ 【解析】(1)已知方程表示一个圆⇔D 2+E 2―4F >0,即4(t+3)2+4(1―4t 2)2―4(16t 4+9)>0,整理得7t 2―6t ―1<0117t ⇔-<<.(2)圆的方程化为[x ―(t+3)]2+[y+(1―4t 2)]2=1+6t ―7t 2.∴它的圆心坐标为(t+3,4t 2-1).(3)由7r ===≤.∴r 的最大值为7,此时圆的标准方程为 222413167497x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 【总结升华】 在本例中,当t 在1,17⎛⎫- ⎪⎝⎭中任取一个值,它对应着一个不同的圆,它实质上是一系列的圆,因此本例中的圆的方程实质上是一个圆系方程,由2341x t y t =+⎧⎨=-⎩得y=4(x ―3)2―1,再由117t -<<,知2047x <<,因此它是一个圆心在抛物线2204(3)147y x x ⎛⎫=--<< ⎪⎝⎭的圆系方程.举一反三:【变式1】(1)求过(2,2),(5,3),(3,1)A B C -的圆的方程,及圆心坐标和半径;(2)求经过点(2,4)A --且与直线3260x y +-=相切于点(8,6)的圆的方程.【答案】(1)()224(1)5x y -+-= (4,1)(2)22113300x y x y +-+-= 【解析】(1)法一:设圆的方程为:220x y Dx Ey F ++++=,则8220345301030D E F D E F D E F +++=⎧⎪+++=⎨⎪+-+=⎩,解得:8212D E F =-⎧⎪=-⎨⎪=⎩所以所求圆的方程为:228220x y x y +--+=,即()224(1)5x y -+-=,所以圆心为(4,1)法二:线段AB 的中点为为75,22⎛⎫ ⎪⎝⎭,321523AB k -==- 线段AB 的中垂线为57322y x ⎛⎫-=-- ⎪⎝⎭,即3130x y --= 同理得线段BC 中垂线为260x y +-=联立2603130x y x y +-=⎧⎨+-=⎩,解得41x y =⎧⎨=⎩所以所求圆的方程为(4,1),半径r ==所以()224(1)5x y -+-=.(2)法一:设圆的方程为:220x y Dx Ey F ++++=,则2024062382100860D E F ED DEF --+=⎧⎪⎪+⎪=⎨⎪+⎪⎪+++=⎩,解得:11330D E F =-⎧⎪=⎨⎪=-⎩ 所以圆的方程为22113300x y x y +-+-=.法二:过点B 与直线3260x y +-=垂直的直线是3180x y --=, 线段AB 的中垂线为40x y +-=,由318040x y x y --=⎧⎨+-=⎩得:圆心坐标为113,22⎛⎫- ⎪⎝⎭,由两点间距离公式得半径21252r =, 所以圆的方程为22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭. 【变式2】判断方程ax 2+ay 2―4(a ―1)x+4y=0(a ≠0)是否表示圆,若表示圆,写出圆心和半径长.【答案】表示圆,圆心坐标2(1)2,a a a -⎛⎫- ⎪⎝⎭,半径||r a = 【变式3】方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是A .2a <-或23a >B .203a -<<C .20a -<<D .223a -<<【答案】D【解析】方程x 2+y 2+ax+2ay+2a 2+a-1=0转化为2223()124a x y a a a ⎛⎫+++=--+ ⎪⎝⎭,所以若方程表示圆,则有23104a a --+>,∴ 23440a a +-<,∴ 223a -<<.例4.(1)△ABC 的三个顶点分别为A (―1,5),B (―2,―2),C (5,5),求其外接圆的方程;(2)圆C 过点P (1,2)和Q (―2,3),且圆C 在两坐标轴上截得的弦长相等,求圆C 的方程.【思路点拨】在(1)中,由于所求的圆过三个点,因而选用一般式,从而只要确定系数D 、E 、F 即可;注意到三角形外接圆的圆心为各边的垂直平分线的交点,所以也可先求圆心,再求半径,从而求出圆的方程.在(2)中,可用圆的一般方程,但这样做计算量较大,因此我们可以通过作图,利用图形的直观性来进行分析,从而得到圆心或半径所满足的条件.【答案】(1)x 2+y 2―4x ―2y ―20=0(2)(x+1)2+(y ―1)2=5或(x+2)2+(y+2)2=25【解析】(1)解法一:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0,由题意有5260228055500D E F D E F D E F -+++=⎧⎪--++=⎨⎪+++=⎩,解得4220D E F =-⎧⎪=-⎨⎪=-⎩.故所求的圆的方程为x 2+y 2―4x ―2y ―20=0.解法二:由题意可求得AC 的中垂线的方程为x=2,BC 的中垂线方程为x+y ―3=0.∴圆心是两中垂线的交点(2,1),∴半径5r ==,∴所求的圆的方程为(x ―2)2+(y ―1)2=25,即x 2+y 2―4x ―2y ―20=0.(2)解法一:如右图所示,由于圆C 在两坐标轴上的弦长相等,即|AD|=|EG|,所以它们的一半也相等,即|AB|=|GF|,又|AC|=|GC|,∴Rt △ABC ≌Rt △GFC ,∴|BC|=|FC|.设C (a ,b ),则|a|=|b|. ①又圆C 过点P (1,2)和Q (―2,3),∴圆心在PQ 的垂直平分线上, 即51322y x ⎛⎫-=+ ⎪⎝⎭,即y=3x+4,∴b=3a+4. ② 由①知a=±b ,代入②得11a b =-⎧⎨=⎩或22a b =-⎧⎨=-⎩.∴r ==5.故所求的圆的方程为(x+1)2+(y ―1)2=5或(x+2)2+(y+2)2=25.即x 2+y 2+2x ―2y ―3=0或x 2+y 2+4x+4y ―17=0.解法二:设所求的圆的方程为x 2+y 2+Dx+Ey+F=0.∵圆C 过点P (1,2)和Q (-2,3),∴22122049230D E F D E F ⎧++++=⎨+-++=⎩,解得38117E D F D =-⎧⎨=-⎩. ∴圆C 的方程为x 2+y 2+Dx+(3D ―8)y+11―7D=0,将y=0代入得x 2+Dx+11―7D=0.∴圆C 在x 轴上截得的弦长为12||x x -=x=0代入得y 2+(3D ―8)y+11―7D=0,∴圆C 在y 轴上截得的弦长为12||y y -=由题意有=,即D 2―4(11―7D)=(3D ―8)2―4(11―7D),解得D=4或D=2.故所求的圆的方程为x 2+y 2+4x+4y ―7=0或x 2+y 2+2x ―2y ―3=0.【总结升华】 (1)本例(1)的解法二思维迂回链过长,计算量过大,而解法一则较为简捷,因此,当所有已知的条件与圆心和半径都无直接关系,在求该圆的方程时,一般设圆的方程为一般方程,再用待定系数法来确定系数即可.(2)本例(2)中,尽管所给的条件也都与圆心和半径无直接关系,但可通过画图分析,利用平面几何知识,找到与圆心和半径相联系的蛛丝马迹,从而避免了选用圆的一般方程带来的繁琐的计算.(3)一般地,当给出了圆上的三点坐标,特别是当这三点的横坐标和横坐标之间、纵坐标和纵坐标之间均不相同时,选用圆的一般方程比选用圆的标准方程简捷;而在其他情况下的首选应该是圆的标准方程,此时要注意从几何角度来分析问题,以便找到与圆心和半径相联系的可用条件.举一反三:【变式1】如图,等边△ABC 的边长为2,求这个三角形的外接圆的方程,并写出圆心坐标和半径长.【答案】⎛ ⎝⎭2243x y ⎛+= ⎝⎭。

高中数学 圆的方程测试题及答案

高中数学 圆的方程测试题及答案

圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7B.-6<a <4C.-7<a <3D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2)C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B .1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B )A .21± B .22± C .2221-或 D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个 8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C≠0,D 2+E 2-4AF≥0 D.B=0且A=C≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB . 求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21. 自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2 + y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22. 已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x △已知圆1O 的方程为(x-1)2+(y -1)2=1 △ △△作差得x+2y -41=0, 即为所求直线l 的方程。

高中数学_必修二_圆与方程_经典例题 整理

高中数学_必修二_圆与方程_经典例题  整理

习题精选精讲圆标准方程已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题.一、求圆的方程例1 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )(A)3)1()2(22=++-y x (B)3)1()2(22=-++y x(C)9)1()2(22=++-y x (D)9)1()2(22=-++y x二、位置关系问题例2 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+三、切线问题例3 (06重庆卷理) 过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31=(B)x y 3=或x y 31-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31=四、弦长问题例4设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .五、夹角问题例5 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( ) (A)21 (B)53 (C)23 (D) 0六、圆心角问题例6 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .七、最值问题例7 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )(A) 30 (B) 18 (C)26 (D)25八、综合问题例8 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ) (A)]4,12[ππ (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π圆的方程1. 确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围.(1) 圆的标准方程:(x -a)2+(y -b)2=r 2,其中(a ,b)是圆心坐标,r 是圆的半径;(2) 圆的一般方程:x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0),圆心坐标为(2,2E D --),半径为r =2422F E D -+ 2. 直线与圆的位置关系的判定方法.(1) 法一:直线:Ax +By +C =0;圆:x 2+y 2+Dx +Ey +F =0.消元⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 一元二次方程⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆−−→−相离相切相交判别式000 (2) 法二:直线:Ax +By +C =0;圆:(x -a)2+(y -b)2=r 2,圆心(a ,b)到直线的距离为d =⎪⎩⎪⎨⎧⇔>⇔=⇔<→+++相离相切相交r d r d r d B A CBb Aa 22. 3. 两圆的位置关系的判定方法.设两圆圆心分别为O 1、 O 2,半径分别为r 1、 r 2, |O 1O 2|为圆心距,则两圆位置关系如下:|O 1O 2|>r 1+r 2⇔两圆外离;|O 1O 2|=r 1+r 2⇔两圆外切;|r 1-r 2|<|O 1O 2|<r 1+r 2⇔两圆相交;|O 1O 2|=|r 1-r 2|⇔两圆内切;0<|O 1O 2|<|r 1-r 2|⇔两圆内含.●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71B.-1<t <21C.-71<t <1 D .1<t <2 2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131C.|a |<51 D .|a |<1313.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是A.当a 2+b 2=r 2时,圆必过原点B.当a =r 时,圆与y 轴相切C.当b =r 时,圆与x 轴相切D .当b <r 时,圆与x 轴相交●典例剖析【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =02.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.4.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.5.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足·=0.(1)求m 的值;(2)求直线PQ 的方程.培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy 的最大值和最小值;(2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.“求经过两圆04622=-++x y x 和028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程。

高中数学例题:圆系问题

高中数学例题:圆系问题

高中数学例题:圆系问题例7.求过直线2x+y+4=0和圆x 2+y 2+2x ―4y+1=0的交点,且满足下列条件之一的圆的方程:(1)过原点;(2)有最小面积.【思路点拨】设出圆系方程,然后再根据题目条件确定圆的方程。

【答案】(1)22317024x y x y ++-= (2) 221364555x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭ 【解析】 设所求圆的方程为x 2+y 2+2x ―4y+1+λ(2x+y+4)=0,即x 2+y 2+2(1+λ)x+(λ―4)y+(1+4λ)=0. ①(1)因为所求的圆过原点,所以1+4λ=0,14λ=-. 故所求圆的方程为22317024x y x y ++-=. (2)当半径最小时,圆面积也最小.把方程①化为标准形式, 得2224584[(1)]2455x y λλλ-⎛⎫⎛⎫++++=-+ ⎪ ⎪⎝⎭⎝⎭.所以当85λ=时,22584455r λ⎛⎫=-+ ⎪⎝⎭取得最小值,即min r =,故满足条件(2)的圆的方程为221364555x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 【点评 】 本题的一般解题思路是先求出直线与圆的交点的坐标A (x 1,y 1)、B (x 2,y 2),所求圆过两个点,再利用第三个独立条件和圆的一般方程即可求解.本题用了一个典型解法:设直线l :Ax+By+C=0与圆C :x 2+y 2+Dx+Ey+F=0,则方程x 2+y 2+Dx+Ex+F+λ(Ax+By+C)=0表示过直线l 与圆的交点的圆系方程.举一反三:【变式1】求过两圆x 2+y 2+6x ―4=0和x 2+y 2+6y ―28=0的交点,且圆心在直线x ―y ―4=0上的圆的方程.【答案】x 2+y 2―x+7y ―32=0【解析】设所求的圆的方程为x 2+y 2+6x ―4+λ(x 2+y 2+6y ―28)=0, 即22664280111x y x y λλλλλ++++-=+++. ∵圆心为33,11λλλ-⎛⎫-⎪++⎝⎭,且在直线x ―y ―4=0上, ∴3340711λλλλ-+-=⇒=-++. 故所求的圆的方程为x 2+y 2―x+7y ―32=0.。

高中数学圆的方程典型例题全

类型七:圆中的最值问题例18:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x . 可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t . 所以433max +=t ,433min -=t . 即12--x y 的最大值为433+,最小值为433-. 此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x . 所以y x 2-的最大值为52+-,最小值为52--. (法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值. 由11222=++--=k k k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-. 令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.例20:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .解:设),(y x P ,则828)(2)2()2(222222222+=++=+-+++=+OP y x y x y x PBPA .设圆心为)4,3(C ,则325min=-=-=r OC OP ,∴22PB PA +的最小值为268322=+⨯.练习:1:已知点),(y x P 在圆1)1(22=-+y x 上运动.(1)求21--x y 的最大值与最小值;(2)求y x +2的最大值与最小值. 解:(1)设k x y =--21,则k 表示点),(y x P 与点(2,1)连线的斜率.当该直线与圆相切时,k 取得最大值与最小值.由1122=+k k ,解得33±=k ,∴21--x y 的最大值为33,最小值为33-.(2)设m y x =+2,则m 表示直线m y x =+2在y 轴上的截距. 当该直线与圆相切时,m 取得最大值与最小值.由151=-m ,解得51±=m ,∴y x +2的最大值为51+,最小值为51-.2 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围. 分析一:利用圆上任一点的参数坐标代替x 、y ,转化为三角问题来解决.解法一:设圆122=+y x 上任一点)sin ,(cos θθP则有θcos =x ,θsin =y )2,0[πθ∈ ∴1cos 2sin +-=θθu ,∴2sin cos -=+θθu u∴)2(sin cos +-=-u u θθ.即2)sin(12+=-+u u ϕθ(u =ϕtan ) ∴1)2()sin(2++=-u u ϕθ.又∵1)sin(≤-ϕθ∴1122≤++u u解之得:43-≤u . 分析二:12+-=x y u 的几何意义是过圆122=+y x 上一动点和定点)2,1(-的连线的斜率,利用此直线与圆122=+y x 有公共点,可确定出u 的取值范围.解法二:由12+-=x y u 得:)1(2+=-x u y ,此直线与圆122=+y x 有公共点,故点)0,0(到直线的距离1≤d .∴1122≤++u u解得:43-≤u . 另外,直线)1(2+=-x u y 与圆122=+y x 的公共点还可以这样来处理:由⎩⎨⎧=++=-1)1(222y x x u y 消去y 后得:0)34()42()1(2222=++++++u u x u u x u , 此方程有实根,故0)34)(1(4)42(2222≥+++-+=∆u u u u u , 解之得:43-≤u . 说明:这里将圆上的点用它的参数式表示出来,从而将求变量u 的范围问题转化成三角函数的有关知识来求解.或者是利用其几何意义转化成斜率来求解,使问题变得简捷方便.3、已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求222PC PB PA ++的最大值和最小值. 类型八:轨迹问题例21、基础训练:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.例22、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.例23 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH ,则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥, 所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.例24 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++. 由222OA AMOM=+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+. 又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+. 这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q , 由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ① βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar br a r b r ββαα ③联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+.说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.本题给出三种解法.其中的解法一是几何方法,它充分利用了图形中隐含的数量关系.而解法二与解法三,从本质上是一样的,都可以称为参数方法.解法二涉及到了1x 、2x 、1y 、2y 四个参数,故需列出五个方程;而解法三中,由于借助了圆222r y x =+的参数方程,只涉及到两个参数α、β,故只需列出三个方程便可.上述三种解法的共同之处是,利用了图形的几何特征,借助数形结合的思想方法求解.练习:1、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是 .解:设),(y x P .∵APB ∠=600,∴O P A ∠=300.∵AP OA ⊥,∴22==OA OP ,∴222=+y x ,化简得422=+y x ,∴动点P 的轨迹方程是422=+y x .练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.解:设动点P 的坐标为),(y x P .由)0(>=a a PBPA ,得a yc x y c x =+-++2222)()(,化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a .当1≠a 时,化简得01)1(222222=+-+++c x aa c y x ,整理得222222)12()11(-=+-+-a ac y c a a x ; 当1=a 时,化简得0=x .所以当1≠a 时,P 点的轨迹是以)0,11(22c a a -+为圆心,122-a ac为半径的圆;当1=a 时,P 点的轨迹是y 轴.2、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于 解:设点P 的坐标是),(y x .由PB PA 2=,得2222)1(2)2(y x y x +-=++,化简得4)2(22=+-y x ,∴点P 的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为π4.4、已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且MB AM 31=,问点M 的轨迹是什么?解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(31),(11y x y y x x --=--,∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩⎪⎪⎨⎧=-=yy x x 3413411.∵点A 在圆122=+y x 上运动,∴12121=+y x ,∴1)34()134(22=+-y x ,即169)43(22=+-y x ,∴点M 的轨迹方程是169)43(22=+-y x . 例5、已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴31==OB OA MB AM , ∴MB AM 31=.由变式1可得点M 的轨迹方程是169)43(22=+-y x . 练习巩固:已知直线1+=kx y 与圆422=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,∴点M 的坐标为)2,2(yx ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴0)12(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(22=-+y x .∴点P 的轨迹方程是1)1(22=-+y x .类型九:圆的综合应用例25、 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=⋅O Q O P k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.或因为通过原点的直线的斜率为xy,由直线l 与圆的方程构造以xy为未知数的一元二次方程,由根与系数关系得出OQ OP k k ⋅的值,从而使问题得以解决.解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得1-=⋅O Q O P k k ,即12211-=⋅x y x y ,也即:02121=+y y x x . ① 另一方面,),(11y x 、),(22y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x 的实数解,即1x 、2x 是方程02741052=-++m x x ②的两个根.∴221-=+x x ,527421-=m x x . ③ 又P 、Q 在直线032=-+y x 上,∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=. 将③代入,得51221+=m y y . ④将③、④代入①,解得3=m ,代入方程②,检验0>∆成立, ∴3=m .解法二:由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有0)2(9)6)(2(31222=++-+++y x my x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m . 由于0≠x ,故可得012)3(4))(274(2=++-+-m xym x y m .∴OP k ,OQ k 是上述方程两根.故1-=⋅O Q O P k k .得127412-=-+m m,解得3=m .经检验可知3=m 为所求.说明:求解本题时,应避免去求P 、Q 两点的坐标的具体数值.除此之外,还应对求出的m 值进行必要的检验,这是因为在求解过程中并没有确保有交点P 、Q 存在.解法一显示了一种解这类题的通法,解法二的关键在于依据直线方程构造出一个关于xy的二次齐次方程,虽有规律可循,但需一定的变形技巧,同时也可看出,这种方法给人以一种淋漓酣畅,一气呵成之感.例26、已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.分析一:为了使不等式0≥++m y x 恒成立,即使m y x -≥+恒成立,只须使m y x -≥+min )(就行了.因此只要求出y x +的最小值,m 的范围就可求得.解法一:令y x u +=,由⎩⎨⎧=-+=+1)1(22y x u y x得:0)1(2222=++-u y u y ∵0≥∆且228)1(4u u -+=∆, ∴0)12(42≥++-u u .即0)122≤--u u ,∴2121+≤≤-u , ∴21min -=u ,即21)(min -=+y x 又0≥++m y x 恒成立即m y x -≥+恒成立. ∴m y x -≥-=+21)(min 成立, ∴12-≥m .分析二:设圆上一点)sin 1,(cos θθ+P [因为这时P 点坐标满足方程1)1(22=-+y x ]问题转化为利用三解问题来解.解法二:设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈∴θcos =x ,θsin 1+=y ∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .昂立教育---通往名校的桥梁■■■ 第 11 页 共 11 页 ■■■ 说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.例27 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.分析:该题不论是问题的背景或生活实际的贴近程度上都具有深刻的实际意义和较强的应用意识,启示我们在学习中要注意联系实际,要重视数学在生产、生活以及相关学科的应用.解题时要明确题意,掌握建立数学模型的方法.解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.∵10=AB ,∴)0,5(-A ,)0,5(B .设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件:价格+A 地运费≤价格+B 地的运费 即:2222)5()5(3y x a y x a +-≤++.∵0>a , ∴2222)5()5(3y x y x +-≤++ 化简整理得:222)415()425(≤++y x ∴以点)0,425(-为圆心415为半径的圆是两地购货的分界线. 圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货.说明:实际应用题要明确题意,建议数学模型.。

圆的方程 高中数学例题课后习题详解

第二章直线和圆的方程2.4圆的方程2.4.1圆的标准方程例1求圆心为(2,3)A -,半径为5的圆的标准方程,并判断点1(5,7)M -,2(2,1)M --是否在这个圆上.分析:根据点的坐标与圆的方程的关系,只要判断一个点的坐标是否满足圆的方程,就可以得到这个点是否在图上.解:圆心为(2,3)A -,半径为5的圆的标准方程是22(2)(3)25x y -++=把点1(5,7)M -的坐标代入方程22(2)(3)25x y -++=的左边,得22(52)(73)25-+-+=,左右两边相等,点1M 的坐标满足圆的方程,所以点1M 在这个圆上.把点2(2,1)M --的坐标代入方程22(2)(3)25x y -++=的左边,得22(22)(13)20--+-+=,左右两边不相等,点2M 的坐标不满足圆的方程,所以点2M 不在这个圆上(图2.4-2).图2.4-2例2ABC 的三个顶点分别是(5,1)A ,(7,3)B -,(2,8)C -,求ABC 的外接圆的标准方程.分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆.显然已知的三个点不在同一条直线上.只要确定了a ,b ,r ,圆的标准方程就确定了.解:设所求的方程是222()()x a y b r -+-=.①因为(5,1)A ,(7,3)B -,(2,8)C -三点都在圆上,所以它们的坐标都满足方程①.于是222222222(5)(1),(7)(3),(2)(8),a b r a b r a b r ⎧-+-=⎪-+--=⎨⎪-+--=⎩即22222222210226,14658,41668,a b a b r a b a b r a b a b r ⎧+--+=⎪+-++=⎨⎪+-++=⎩观察上面的式子,我们发现,三式两两相减,可以消去2a ,2b ,2r ,得到关于a ,b 的二元一次方程组28,1.a b a b -=⎧⎨+=-⎩解此方程组,得2,3.a b =⎧⎨=-⎩代入222(5)(1)a b r -+-=,得225r =.所以,ABC 的外接圆的标准方程是22(2)(3)25x y -++=.例3已知圆心为C 的圆经过(1,1)A ,(2,2)B -两点,且圆心C 在直线:10l x y -+=,求此圆的标准方程.分析:设圆心C 的坐标为(,)a b .由已知条件可知,||||CA CB =,且10a b -+=.由此可求出圆心坐标和半径.另外,因为线段AB 是圆的一条弦,根据平面几何知识,AB 的中点与圆心C 的连线垂直于AB ,由此可得到另一种解法.解法1:设圆心C 的坐标为(,)a b .因为圆心C 在直线:10l x y -+=上,所以10a b -+=.①因为A ,B 是圆上两点,所以||||CA CB ==,即330a b --=②由①②可得3a =-,2b =-.所以圆心C 的坐标是(3,2)--.圆的半径||5r AC ===.所以,所求圆的标准方程是22(3)(2)25x y +++=.解法2:如图2.4-3,设线段AB 的中点为D .由A ,B 两点的坐标为(1,1),(22)-,可得点D 的坐标为31,22⎛⎫- ⎪⎝⎭,直线AB 的斜率为21321AB k --==--.因此,线段AB 的垂直平分线l '的方程是113232y x ⎛⎫+=- ⎪⎝⎭,即330x y --=.由垂径定理可知,圆心C 也在线段AB 的垂直平分线上,所以它的坐标是方程组330,10x y x y --=⎧⎨-+=⎩的解.解这个方程组,得3,2.x y =-⎧⎨=-⎩所以圆心C 的坐标是(3,2)--.圆的半径||5r AC ===.所以,所求圆的标准方程是22(3)(2)25x y +++=.图2.4-3练习1.写出下列圆的标准方程.(1)圆心为()3,4C -,半径是;(2)圆心为()8,3C -,且经过点()5,1M --.【答案】(1)(x +3)2+(y ﹣4)2=5.(2)(x +8)2+(y ﹣3)2=25.【解析】【分析】(1)根据圆心和半径,直接写出圆的标准方程.(2)先求出圆的半径,可得圆的标准方程.【详解】解:(1)∵圆心在C (﹣3,4)x +3)2+(y ﹣4)2=5.(2)∵圆心在C (﹣8,3),且经过点M (﹣5,﹣1),故半径为MC ==5,故圆的标准方程为(x +8)2+(y ﹣3)2=25.2.已知圆的标准方程是()()223216x y -++=,借助计算工具计算,判断下列各点在圆上、圆外,还是在圆内.(1)()14.30, 5.72M -;(2)()25.70,1.08M ;(3)()33,6M -.【答案】(1)1M 在圆内;(2)2M 在圆外;(3)3M 在圆上.【解析】【分析】分别将三个点代入方程,和等号右边比较即可判断.【详解】(1)22(4.303)(5.722)15.528416-+-+=< ,1M ∴在圆内;(2)22(5.703)(1.082)16.776416-++=> ,2M ∴在圆外;(3)22(33)(62)16-+-+= ,3M ∴在圆上.3.已知()14,9P ,()26,3P 两点,求以12PP 为直径的圆的方程,并判断点()6,9M ,()3,3N ,()5,3Q 与圆的位置关系.【答案】点M 在圆上,点N 在圆外,点Q 在圆内【解析】【分析】先求出圆心和半径,得到圆方程,再计算点到圆心的距离,与半径作比较得到答案.【详解】由线段的中点坐标公式,求得圆心()5,6C .直径12PP ==.故所求圆的方程为()()225610x y -+-=.CM r == ,∴点M在圆上;CN r => ,∴点N 在圆外;3CQ r =< ,∴点Q 在圆内.综上:点M 在圆上,点N 在圆外,点Q 在圆内【点睛】本题考查了点和圆的位置关系,属于基础题型.4.已知AOB 的三个顶点分别是点()4,0A ,()0,0O ,()0,3B ,求AOB 的外接圆的标准方程.【答案】()22325224x y ⎛⎫-+-= ⎪⎝⎭【解析】【分析】由题意可确定圆的直径为AB ,根据中点坐标公式求出圆心坐标,结合两点距离公式求出半径即可.【详解】由题意知,AB 为圆的直径,设圆心为()C a b ,,则AB 中点即为3(2)2C ,,所以半径为52OC =,故外接圆的标准方程为:22325(2)()24x y -+-=.2.4.2圆的一般方程例4求过三点(0,0)O ,1(1,1)M ,2(4,2)M 的圆的方程,并求这个圆的圆心坐标和半径.分析:将点O ,1M ,2M 的坐标分别代入圆的一般方程,可得一个三元一次方程组,解方程组即可求出圆的方程.解:设圆的方程是220x y Dx Ey F ++++=.①因为O ,1M ,2M 三点都在圆上,所以它们的坐标都是方程①的解.把它们的坐标依次代入方程①,得到关于D ,E ,F 的一个三元一次方程组0,20,42200.F D E F D E F =⎧⎪+++=⎨⎪+++=⎩解这个方程组,得8,6,0.D E F =-⎧⎪=⎨⎪=⎩所以,所求圆的方程是22860x y x y +-+=.由前面的讨论可知,所求圆的圆心坐标是(4,3)-,半径5r ==.例5已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.分析:如图2.4-4,点A 运动引起点M 运动,而点A 在已知圆上运动,点A 的坐标满足方程22(1)4x y ++=.建立点M 与点A 坐标之间的关系,就可以利用点A 的坐标所满足的关系式得到点M 的坐标满足的关系式,求出点M的轨迹方程.图2.4-4解:设点M 的坐标是(),x y ,点A 的坐标是()00,x y ,由于点B 的坐标是(4,3),且M 是线段AB 的中点,所以042x x +=,032y y +=.于是有024x x =-,023y y =-.①因为点A 在圆22(1)4x y ++=上运动,所以点A 的坐标满足圆的方程,即()220014x y ++=.②把①代入②,得22(241)(23)4x y -++-=,整理,得2233122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭这就是点M 的轨迹方程,它表示以33,22⎛⎫ ⎪⎝⎭为圆心,半径为1的圆.练习5.求下列各圆的圆心坐标和半径.(1)2260x y x +-=;(2)2220x y by ++=;(3)222230x y ax a +--+=.【答案】(1)圆心为(30),,半径为3;(2)圆心为(0)b -,,半径为b ;(3)圆心为()a ,半径为a .【解析】【分析】结合配方法将圆的一般方程化为标准方程,再求出圆心和半径即可.【详解】(1)方程222260(3)9x y x x y +-=⇒-+=,所以圆心为(30),,半径为3;(2方程2222220()x y by x y b b ++=⇒++=,所以圆心为(0)b -,,半径为b ;(3)方程222222230()()x y ax a x a y a +--+=⇒-+-=,所以圆心为()a ,半径为a ;6.判断下列方程分别表示什么图形,并说明理由.(1)220x y +=;(2)222460x y x y +-+-=;(3)22220x y ax b ++-=.【答案】答案见解析【解析】【分析】(1)由方程可得0,0x y ==;(2)化简可得()()221211x y -++=可判断;(3)化简可得()2222x a y a b ++=+,分0a b ==和0a ≠或0b ≠时讨论可得.【详解】(1) 220x y +=,0,0x y ∴==,故220x y +=表示点()0,0;(2)222460x y x y +-+-=可化为()()221211x y -++=,所以方程222460x y x y +-+-=表示以()1,2-为半径的圆;(3)22220x y ax b ++-=可化为()2222x a y a b ++=+,当0a b ==时,方程22220x y ax b ++-=表示点()0,0,当0a ≠或0b ≠时,方程22220x y ax b ++-=表示以(),0a -为半径的圆.7.如图,在四边形ABCD 中,6AB =,3CD =,且//AB CD ,AD BC =,AB 与CD 间的距离为3.求等腰梯形ABCD 的外接圆的方程,并求这个圆的圆心坐标和半径.【答案】圆心坐标为30,8⎛⎫ ⎪⎝⎭,半径长为8.【解析】【分析】设所求圆的方程为220x y Dx Ey F ++++=,将A,B,C 三点坐标代入求解即可.【详解】由题意可知A (-3,0),B (3,0),C 3,32⎛⎫ ⎪⎝⎭设所求圆的方程为220x y Dx Ey F ++++=,则9309309393042D F D F D E F ⎧⎪-+=⎪++=⎨⎪⎪++++=⎩.解得0349D E F =⎧⎪⎪=-⎨⎪=-⎪⎩,故所求圆的方程为223904x y y +--=,其圆心坐标为30,8⎛⎫ ⎪⎝⎭,3658=.习题2.4复习巩固8.求下列各圆的圆心坐标和半径,并画出它们的图形.(1)22250x y x +--=;(2)222440x y x y ++--=;(3)2220x y ax ++=;(4)222220x y by b +--=.【答案】(1)圆心(10),,半径r =,图见解析;(2)圆心(12)-,,半径3r =,图见解析;(3)圆心(0)a -,,半径r a =,图见解析;(4)圆心(0)b ,,半径r =,图见解析;【解析】【分析】结合配方法将圆的一般方程化为标准方程,再求出圆心和半径,进而画出图形即可.【详解】(1)方程2222250(1)6x y x x y +--=⇒-+=,所以圆心为(10),,如图;(2方程22222440(1)(2)9x y x y x y ++--=⇒++-=,所以圆心为(12)-,,半径为3,如图;(3)方程2222220()x y ax x a y a ++=⇒++=,0a ≠所以圆心为(0)a -,,半径为a ;不妨设=2a ,如图;(4)方程222222220()3x y by b x y b b +--=⇒+-=,0b ≠所以圆心为(0)b ,;不妨设=1b ,如图;9.求下列各圆的方程,并面出图形.(1)圆心为点()8,3C -,且过点()5,1A ;(2)过()1,5A -,()5,5B ,()6,2C -三点.【答案】(1)22(8)(3)25x y -++=(图见解析)(2)2242200x y x y +---=(图见解析)【解析】【分析】(1)求出半径,利用圆的标准方程写出即可.(2)设出圆的一般方程,将三点代入解出即可.【详解】(1)由题意知半径5r ==,所以圆的方程为:22(8)(3)25x y -++=.(2)设圆的一般方程为:220x y Dx Ey F ++++=.将()1,5A -,()5,5B ,()6,2C -代入得:1+255042525550236462020D E F D D E F E D E F F -++==-⎧⎧⎪⎪++++=⇒=-⎨⎨⎪⎪++-+==-⎩⎩所以圆的方程为:2242200x y x y +---=.10.已知圆C 经过原点和点()2,1A ,并且圆心在直线:210l x y --=上,求圆C 的标准方程.【答案】22612951020x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭【解析】【分析】设圆C 的标准方程为()()222x a y b r -+-=,根据题意得到不等式组,解之即可求出结果.【详解】设圆C 的标准方程为()()222x a y b r -+-=,由题意可得()()()()2222220021210a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪--=⎪⎩,解得2651102920a b r ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,因此22612951020x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.11.圆C 的圆心在x 轴上,并且过()1,1A -和()1,3B 两点,求圆C 的方程.【答案】()22210x y -+=【解析】【分析】由题意,设圆心坐标和半径表示圆的标准方程,结合待定系数法即可.【详解】设圆C 的圆心坐标为()C a ,0,半径为r ,则圆C 的标准方程为:222()x a y r -+=,有{222222(1)1(1)3a r a r --+=-+=,解得2210a r ==,,所以圆C 的标准方程为:22(2)10x y -+=综合运用12.已知圆的一条直径的端点分别是A (x 1,y 1),B (x 2,y 2).求证:此圆的方程是(x –x 1)(x –x 2)+(y –y 1)(y –y 2)=0.【答案】证明见解析【解析】【分析】由题意求得圆心和半径,可得圆的标准方程,化简即可.【详解】∵圆的一条直径的端点分别是A (x 1,y 1),B (x 2,y 2),∴圆心为C (122x x +,122y y +),半径为2AB =∴此圆的方程是2122x x x +⎛⎫- ⎪⎝⎭+()()22212121224x x y y y y y -+-+⎛⎫-= ⎪⎝⎭,即x 2–(x 1+x 2)x +()2124x x ++y 2–(y 1+y 2)y +()()()22212121244y y x x y y +-+-=,即x 2–(x 1+x 2)x +x 1•x 2+y 2–(y 1+y 2)y +y 1•y 2=0,即(x –x 1)(x –x 2)+(y –y 1)(y –y 2)=0.【点睛】本题主要考查圆的标准方程的特征,属于基础题.13.平面直角坐标系中有()0,1A ,()2,1B ,()3,4C ,()1,2D -四点,这四点是否在同一个圆上?为什么?【答案】四点在同一个圆上(证明见解析)【解析】【分析】以、、A B C 三点,求出圆的方程,再将点D 代入即可得出答案.【详解】设过、、A B C 三点的圆的一般方程为220x y Dx Ey F ++++=.将、、A B C 三点代入得:1+02412069163405E F D D E F E D E F F +==-⎧⎧⎪⎪++++=⇒=-⎨⎨⎪⎪++++==⎩⎩.所以圆的一般方程为222650x y x y +--+=.将点()1,2D -代入得:22(1)22(1)6250-+-⨯--⨯+=,满足方程.所以四点在同一个圆上.14.已知等腰三角形ABC 的一个顶点为()4,2A ,底边的一个端点为()3,5B ,求底边的另一个端点C 的轨迹方程,并说明它是什么图形.【答案】22(4)(2)10x y -+-=(去掉(3,5),(5,-1)两点);表示是以()4,2为圆心,半径,且去掉(3,5),(5,-1)两点的圆【解析】【分析】根据等腰三角形和已知顶点A (4,2),一个端点B (3,5),利用腰相等且能构成三角形即可求端点C 的轨迹方程;【详解】由题意知:设另一个端点(,)C x y,腰长为r ==,∴C 的轨迹方程:22(4)(2)10x y -+-=,又由A 、B 、C 构成三角形,即三点不可共线,∴需要去掉重合点(3,5),反向共线点(5,-1),即表示是以()4,2为圆心,以半径,且去掉(3,5),(5,-1)两点的圆.15.长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,求线段AB 的中点的轨迹方程,并说明轨迹的形状.【答案】轨迹方程为:x 2+y 2=a 2(a >0).表示圆心在原点半径为a 的圆.【解析】【分析】设AB 的中点坐标为(x ,y ),当A 、B 均不与原点重合时,由直角三角形虚部的中线等于斜边的一半可得AB 中点轨迹,验证A 、B 有一点与原点重合时成立得答案.【详解】解:设线段AB 的中点P (x ,y ),若A 、B 不与原点重合时,则△AOB 是直角三角形,且∠O 为直角,则OP 12=AB ,而AB =2a ,∴OP =a ,即P 的轨迹是以原点为圆心,以a 为半径的圆,方程为x 2+y 2=a 2(a >0);若A 、B 有一个是原点,同样满足x 2+y 2=a 2(a >0).故线段AB 的中点的轨迹方程为:x 2+y 2=a 2(a >0).表示圆心在原点半径为a 的圆.拓广探索16.已知动点M 与两个定点()0,0O ,()3,0A 的距离的比为12,求动点M 的轨迹方程,并说明轨迹的形状.【答案】22(1)4x y ++=,以(1,0)-为圆心2为半径的圆【解析】【分析】设出点M ,根据题意列出等式,化简即为答案.【详解】设点(,)M x y .则12MO MA==,化简得:2222230(1)4x y x x y ++-=⇒++=为以(1,0)-为圆心2为半径的圆.17.在半面直角坐标系中,如果点P 的坐标(),x y 满足cos sin x a r y b r θθ=+⎧⎨=+⎩,其中θ为参数.证明:点P 的轨迹是圆心为(),a b ,半径为r 的圆.【答案】证明见解析.【解析】【分析】将参数方程化为普通方程可证得结果.【详解】由cos sin x a r y b r θθ=+⎧⎨=+⎩可得cos sin x ary b r θθ-⎧=⎪⎪⎨-⎪=⎪⎩,又因为22cos sin 1θθ+=,所以221x a y b r r --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即222()()x a y b r -+-=,所以点P 的轨迹是圆心为(,)a b ,半径为r 的圆.。

高中数学:圆的方程

高中数学:圆的方程1.(2019·福建厦门联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( B )A .0B .1C .2D .3解析:方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( B )A .1B .2 C. 2D .4解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.(2019·广东珠海四校联考)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的标准方程为( B )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:由题意设圆心坐标为(a ,-a ),则有|a -(-a )|2=|a -(-a )-4|2,即|a |=|a -2|,解得a =1. 故圆心坐标为(1,-1),半径r =22=2, 所以圆C 的标准方程为(x -1)2+(y +1)2=2,故选B.4.圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是( D )A .2 3 B.203 C .4D.163解析:由圆x 2+y 2+2x -6y +1=0知,其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝ ⎛⎭⎪⎫1a +3b=13⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥13⎝ ⎛⎭⎪⎫10+2 3a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号,故选D.5.(2019·河南豫西五校联考)在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -by +2b +1=0相切的所有圆中,半径最大的圆的标准方程为( B )A .x 2+(y -1)2=4B .x 2+(y -1)2=2C .x 2+(y -1)2=8D .x 2+(y -1)2=16解析:法一 由题意可得圆心(0,1)到直线x -by +2b +1=0的距离d =|1+b |1+b 2=(1+b )21+b 2=1+2b 1+b 2≤ 1+2|b |1+b 2≤2,当且仅当b =1时取等号,所以半径最大的圆的半径r =2, 此时圆的标准方程为x 2+(y -1)2=2.法二 直线x -by +2b +1=0过定点P (-1,2),如图.∴圆与直线x -by +2b +1=0相切于点P 时,圆的半径最大,为2,此时圆的标准方程为x 2+(y -1)2=2,故选B.6.(2019·福建三明第一中学月考)若对圆(x -1)2+(y -1)2=1上任意一点P (x ,y ),|3x -4y +a |+|3x -4y -9|的取值与x ,y 无关,则实数a 的取值范围是( D )A .(-∞,-4]B .[-4,6]C .(-∞,-4]∪[6,+∞)D .[6,+∞)解析:设z =|3x -4y +a |+|3x -4y -9|=5⎝ ⎛⎭⎪⎪⎫|3x -4y +a |9+16+|3x -4y -9|9+16,故|3x -4y +a |+|3x -4y -9|可看作点P 到直线m :3x -4y +a =0与直线l :3x -4y -9=0距离之和的5倍,∵取值与x ,y 无关,∴这个距离之和与P 无关,如图所示,可知直线m 向上平移时,P 点到直线m ,l 间的距离之和均为m ,l 间的距离,即此时与x ,y 的值无关,当直线m 与圆相切时,|3-4+a |9+16=1,化简得|a -1|=5,解得a =6或a =-4(舍去),∴a ≥6,故选D.7.(2019·河南新乡模拟)若圆C :x 2+⎝ ⎛⎭⎪⎫y +12m 2=n 的圆心为椭圆M :x 2+my 2=1的一个焦点,且圆C 经过M 的另一个焦点,则圆C 的标准方程为x 2+(y +1)2=4.解析:∵圆C 的圆心为⎝ ⎛⎭⎪⎫0,-12m ,∴1m -1=12m ,m =12.又圆C 经过M 的另一个焦点, 则圆C 经过点(0,1),从而n =4. 故圆C 的标准方程为x 2+(y +1)2=4.8.(2019·东北三省四校联考)已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为74.解析:设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方, ∴(x 20+y 20)max =(5+1)2=36,∴d max =74.9.设点P 是函数y =-4-(x -1)2图象上的任意一点,点Q 坐标为(2a ,a -3)(a ∈R ),则|PQ |的最小值为5-2.解析:函数y =-4-(x -1)2的图象表示圆(x -1)2+y 2=4在x轴及下方的部分,令点Q 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2a ,y =a -3,得y =x2-3,即x -2y -6=0,作出图象如图所示,由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+(-2)2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离, 因此|PQ |的最小值是5-2.10.(2019·安徽“江南十校”联考)已知圆C 的圆心在直线x +y =0上,圆C 与直线x -y =0相切,且在直线x -y -3=0上截得的弦长为6,则圆C 的方程为(x -1)2+(y +1)2=2.解析:解法一:∵所求圆的圆心在直线x +y =0上, ∴设所求圆的圆心为(a ,-a ). 又∵所求圆与直线x -y =0相切, ∴半径r =2|a |2=2|a |.又所求圆在直线x -y -3=0上截得的弦长为6,圆心(a ,-a )到直线x -y -3=0的距离d =|2a -3|2,∴d 2+⎝ ⎛⎭⎪⎫622=r 2,即(2a -3)22+32=2a 2,解得a =1.∴圆C 的方程为(x -1)2+(y +1)2=2.解法二:设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),则圆心(a ,b )到直线x -y -3=0的距离d =|a -b -3|2.∴r 2=(a -b -3)22+32, 即2r 2=(a -b -3)2+3.①由于所求圆与直线x -y =0相切, ∴(a -b )2=2r 2.②又∵圆心在直线x +y =0上,∴a +b =0.③ 联立①②③,解得⎩⎪⎨⎪⎧a =1,b =-1,r =2,故圆C 的方程为(x -1)2+(y +1)2=2.解法三:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F ,∵圆心在直线x +y =0上, ∴-D 2-E2=0,即D +E =0,① 又∵圆C 与直线x -y =0相切, ∴⎪⎪⎪⎪⎪⎪-D 2+E 22=12D 2+E 2-4F ,即(D -E )2=2(D 2+E 2-4F ), ∴D 2+E 2+2DE -8F =0.②又知圆心⎝ ⎛⎭⎪⎫-D2,-E 2到直线x -y -3=0的距离d =⎪⎪⎪⎪⎪⎪-D 2+E 2-32,由已知得d 2+⎝ ⎛⎭⎪⎫622=r 2,∴(D -E +6)2+12=2(D 2+E 2-4F ),③ 联立①②③,解得⎩⎪⎨⎪⎧D =-2,E =2,F =0,故所求圆的方程为x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.11.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3.故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1.此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.12.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值.解:(1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42>2 2. 所以点Q 在圆C 外,所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率,设n -3m +2=k ,则直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 因为直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤22,可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.13.已知点P (t ,t ),t ∈R ,点M 是圆x 2+(y -1)2=14上的动点,点N 是圆(x -2)2+y 2=14上的动点,则|PN |-|PM |的最大值是( B )A.5-1 B .2 C .3D.5解析:易知圆x 2+(y -1)2=14的圆心为A (0,1),圆(x -2)2+y 2=14的圆心为B (2,0),P (t ,t )在直线y =x 上,A (0,1)关于直线y =x 的对称点为A ′(1,0),则|PN |-|PM |≤|PB |+12-⎝ ⎛⎭⎪⎫|P A |-12=|PB |-|P A |+1=|PB |-|P A ′|+1≤|A ′B |+1=2,故选B.14.(2019·厦门模拟)已知两点A (0,-3),B (4,0),若点P 是圆C :x 2+y 2-2y =0上的动点,则△ABP 的面积的最小值为( B )A .6 B.112 C .8D.212解析:x 2+y 2-2y =0可化为x 2+(y -1)2=1, 则圆C 为以(0,1)为圆心,1为半径的圆.如图,过圆心C 向直线AB 作垂线交圆于点P ,连接BP ,AP ,这时△ABP 的面积最小,直线AB 的方程为x 4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离d =165,又|AB |=32+42=5,∴△ABP 的面积的最小值为12×5×⎝ ⎛⎭⎪⎫165-1=112.15.如图,在等腰△ABC 中,已知|AB |=|AC |,B (-1,0),AC 边的中点为D (2,0),则点C 的轨迹所包围的图形的面积为4π.解析:由已知|AB |=2|AD |,设点A (x ,y ), 则(x +1)2+y 2=4[(x -2)2+y 2],所以点A 的轨迹方程为(x -3)2+y 2=4(y ≠0),设C (x ′,y ′),由AC 边的中点为D (2,0)知A (4-x ′,-y ′), 所以C 的轨迹方程为(4-x ′-3)2+(-y ′)2=4, 即(x -1)2+y 2=4(y ≠0),所以点C 的轨迹所包围的图形面积为4π.16.(2017·全国卷Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解:(1)证明:设A (x 1,y 1),B (x 2,y 2),l :x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x可得y 2-2my -4=0,则y 1y 2=-4.又x 1=y 212,x 2=y 222,故x 1x 2=(y 1y 2)24=4.因此OA 的斜率与OB 的斜率之积为y 1x 1·y 2x 2=-44=-1,所以OA ⊥OB .故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m ,x 1+x 2=m (y 1+y 2)+4=2m 2+4. 故圆心M 的坐标为(m 2+2,m ),圆M 的半径r =(m 2+2)2+m 2. 由于圆M 过点P (4,-2), 因此AP →·BP →=0,故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0, 即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0. 由(1)可得y 1y 2=-4,x 1x 2=4. 所以2m 2-m -1=0, 解得m =1或m =-12.当m =1时,直线l 的方程为x -y -2=0,圆心M 的坐标为(3,1),圆M 的半径为10,圆M 的方程为(x -3)2+(y -1)2=10.当m =-12时,直线l 的方程为2x +y -4=0,圆心M 的坐标为⎝ ⎛⎭⎪⎫94,-12,圆M 的半径为854,圆M 的方程为⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y +122=8516.。

高中数学-圆的一般方程

返回
圆C过点A(1,2),B(3,4)且在x轴上截得的弦长为6, 求圆C的方程.
设所求圆的方程为x2+y2+Dx+Ey+F=0,
∵圆过A(1,2),B(3,4),
∴ D+2E+F=-5 ①
3D+4E+F=-25 ② 令y=0得x2+Dx+F=0,
设圆C与x轴的两个交点的横坐标分别是x1,x2,由韦达定理,
,
化简得x2+y2+2x-3=0,配方得(x+1)2+y2=4, 故该曲线是以C(-1,0)为圆心,以2为半径的圆.
返回
【点评】考查直接法求轨迹方程.
返回
如图所示,一动点P到定圆(x-2)2+(y+1)2=9所引的切线长(切 点为D)等于它到定点M(-7,5)的距离的一半,求动点P的轨 迹方程. 解:设点P的坐标为(x,y),则 |PM|=2|PD|. 由两点间的距离公式及勾股定理得
开始
学点一
学点二
学点三
1.方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)叫做圆的 一般方程 .
2.对于方程x2+y2+Dx+Ey+F=0
(1)当
D2+E2-4F>0
时,方程表示以(
D 2
,
E2 )为圆
( D , E) 22
心,1 D2 E2 - 4F 为半径的圆;
2
(2)当D2+E2-4F<0 时,方程只有一解,表示一个点
∴0≤k2<
4
3,
要使圆的面积最大,只需圆的半径r最大,下面求r的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d .将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2, ∴()22|31|21k k k -+=+-,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。

所以,所求的直线l 的方程是34130x y +-=或3x =.2、过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为解:设直线方程为kx y =,即0=-y kx .∵圆方程可化为25)1()2(22=++-y x ,∴圆心为(2,-1),半径为210.依题意有2101122=++k k ,解得3-=k 或31=k ,∴直线方程为x y 3-=或x y 31=. 3、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 .解:∵圆1)1(22=+-y x 的圆心为(1,0),半径为1,∴1125522=++a ,解得8=a 或18-=a .类型三:弦长、弧问题例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB .例10、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例11、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.例12、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.解:∵曲线24x y -=表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范围是22<≤-m 或22=m .例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意.又123=-=-d r .∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个.解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则 34363433221=+-⨯+⨯=d ,143163433222=+-⨯+⨯=d .∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个.说明:对于本题,若不留心,则易发生以下误解:设圆心1O 到直线01143=-+y x 的距离为d ,则324311343322<=+-⨯+⨯=d .∴圆1O 到01143=-+y x 距离为1的点有两个.显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.练习1:直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是解:依题意有a a >-21,解得1212-<<--a .∵0>a ,∴120-<<a .练习2:若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是 . 解:依题意有11122<+-k k ,解得340<<k ,∴k 的取值范围是)34,0(.3、 圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).(A )1个 (B )2个 (C )3个 (D )4个分析:把034222=-+++y x y x 化为()()82122=+++y x ,圆心为()21--,,半径为22=r ,圆心到直线的距离为2,所以在圆上共有三个点到直线的距离等于2,所以选C .4、 过点()43--,P 作直线l ,当斜率为何值时,直线l 与圆()()42122=++-y x C :有公共点,如图所示.分析:观察动画演示,分析思路. 解:设直线l 的方程为()34+=+x k y即043=-+-k y kx根据r d ≤有214322≤+-++kk k整理得0432=-k k解得340≤≤k .类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?PEOyx例14、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

相关文档
最新文档