人教高中物理必修二第五章4.圆周运动的三种模型
人教版高中物理必修2:4.圆周运动

因此
1.0m≤R3≤27.9m。
R3 R2
L
R3-R2
在0≤R3≤0.4m的情况下,- mgL
小球最终停在D右侧, L 36.0m
0
1 2
mv02
在1.0m≤R3≤27.9m的情况下,L L 2L L1 2L 26. 0 m
小球最终停在D左侧,到A点的距离是26m。
Ⅱ.轨道半径较大时,小球第一次滚上第三个圆轨道上升的最大高度不
超过R3。设小球上升高度恰好为R3,
mgL1
2L 2mgR3
0
1 2
mv02
可得R3=1.0m; 由于圆形轨道间不相互重叠,
R2 R3 2 L2 R3 -R2 2
设第二、三个圆轨道恰好相切,如图可以求得R3´=27.9m;
解析:(1)设小于经过第一个圆轨道的最高点时的速度为v1根
据动能定理
-mgL1来自2mgR11 2
mv12
1 2
mv02
球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定 律 F mg m v12
R1
得
F 10.0N
(2)设小球在第二个圆轨道的最高点的速度为v2,由题意
mg m v22 R2
周 运
火车 转弯
FN
θ
动
F合
R
θ
mg
FN r
F静 mg
转盘
F静
FN
O
O
滚r
mg
筒
竖 直 圆 周 运 动 模 型
模型1--- 绳、内轨模型
V0
FT
O
受力分析
OG
人教版高中必修二物理教学课件 第五章:曲线运动 5.4 圆周运动 ppt导学课件(含答案)

三种传动装置及其特点.
传动类型 同轴传动
皮带传动
齿轮传动
装置
A、B 两点在同 两个轮子用皮带 两个齿轮轮齿啮
轴的一个圆盘 连接,A、B 两点 合,A、B 两点分
上
分别是两个轮子 别是两个齿轮边
边缘的点
缘上的点
角速度、 特点
周期相同
线速度相同
线速度相同
转动方向 相同
相同
相反
规律
角速度与半径成 角速度与半径成
3.择式分析:若线速度大小相等,则根据 ω ∝1r分析; 若角速度大小相等,则根据 v ∝ r 分析.
1.如图所示的齿轮传动装置中,主动轮和从动轮的齿 大小相同,主动轮的齿数 z1=24,从动轮的齿数 z2=8, 当主动轮以角速度 ω 逆时针转动时,从动轮的转动情况 是( )
A.顺时针转动,周期为23πω B.逆时针转动,周期为23πω
A.①③⑤⑦ C.②④⑥⑦
B.②④⑥⑧ D.②④⑤⑧
解析:由题意知半径 R=0.25 m,线速度 v=Rω=2.5
v
2π
m/s,则角速度 ω=R=10 rad/s,②正确;周期 T= ω =
0.2π s=0.628 s,④正确;
频率
f=T1=1.59
Hz,⑥正确;转速
n= ω =5
2π π
r/s<
答案:ABC
解析:A、B 两轮通过皮带传动,皮带不打滑,则 A、 B 两轮边缘的线速度大小相等,
即 va=vb 或 va∶vb=1∶1.① 由 v=ωr 得 ωa∶ωb=rB∶rA=1∶2.② B、C 两轮固定在一起绕同一轴转动,则 B、C 两轮 的角速度相等,即 ωb=ωc 或 ωb∶ωc=1∶1.③ 由 v=ωr 得 vb∶vc=rB∶rC=1∶2.④
向心力(第二课时) 水平面内典型圆周运动模型 人教版高中物理必修二

由 变a形=2ω:2具r知有ω相A<同ω摆B,高由、a不=同v摆2/r长知和vA摆>v角B。的圆锥摆,如图所示。
由T=2π
h g
知摆高h相同,则TA=TB,ωA=ωB,
由v=ωr知vA>vB,由a=ω2r知aA>aB。
二、水平面内圆周运动模型——圆锥摆
▲典型实例: 圆锥摆 火车转弯 飞机水平转弯
飞车走壁
点评:①临界值是圆周运动中经常考查的一个重点内容,它是物体在做圆周运动 过程中,发生质变的数值或使物体受力情况发生变化的关键数值,今后要注意对 临界值的判断和应用;②当θ很小时,sinθ≈tanθ≈θ。
课后练习:如图所示,物块P置于水平转盘上随转盘一起运动,且与圆盘
相对静止,图中c沿半径指向圆心,a与c垂直,下列说法正确的是( D )
特别提醒:汽车、摩托车赛道拐弯处,高速公路转弯处设计成外高内低,也是尽量使车 受到的重力和支持力的合力提供向心力,以减小车轮与路面之间的横向摩擦力。
铁路转弯处的圆弧半径是300 m,轨距是1.435 m,规定火车通 过这里的速度是72 km/h,内外轨的高度差应该是多大,才能使铁轨不受 轮缘的挤压?保持内外轨的这个高度差,如果车的速度 大于或小于72 km/h,会分别发生什么现象?说明理由。
代入上式得: = ;所以内外轨的高度差为 h= =
m=0.195 m。
L rg
rg 300×9.8
讨论:(1)如果车速v>72 km/h(20 m/s),F将小于需要的向心力,所差的力仍 需由外轨对轮缘的弹力来弥补。这样就出现外侧车轮的轮缘向外挤压外轨的现象。 (2)如果车速v<72 km/h,F将大于需要的向心力。超出的力则由内轨对内侧车 轮缘的压力来平衡,这样就出现了内侧车轮的轮缘向外挤压内轨的现象。
人教版高一物理必修二圆周运动的典型模型归纳总结

巩固练习
答案:A
F拉
l
F向
mg
答案:CD
平抛+圆周运动模型
水流星(无支撑)
过山车(无支撑)
(二)杆模型(有支撑)
能过最高点的条件: v 0
匀速圆周问题的解题步骤 (1)确定做圆周运动的物体为研究对象。 (2)找出物体做圆周运动的轨道平面、圆心位置和半径。 (3)对研究对象进行受力分析,画出受力示意图。 (4)运用平行四边形定则或正交分解法求出外界提供的合 力 F 合。 (5)根据向心力公式 F=ma=mvr2=mrω2=mr4Tπ22=mvω, 选择一种形式确定物体所需要的向心力。 (6)根据 F 合=F 建立方程求解。
解析:(1)对球N,受力如图甲所示,其做圆周运动的半径为 2R,根据牛顿第二定律有
Fb=mω2·2R=2mω2R。 (2)对球M,受力如图乙所示,其做圆周运动的半径为R,根 据牛顿第二定律有 Fa-Fb′=mω2R Fb=Fb′ 解得Fa=Fb′+mω2R=3mω2R。 答案:(1)2mω2R (2)3mω2R
(2)当v大于 gR tan时受到指向内侧的摩擦力(或压力)
(3)当v小于 gR tan时受到指向外侧的摩擦力(或压力)
3.拱形桥问题
(1)凸形路面 N
v
a向
G
G
N
m
v2
r
N G m v2 (失重)
r
注:当 v gr
时汽车对桥的压力为零。
(2)凹形路面 N
a向
v
G
v2 N G m
r v2 N Gm G r
供,图 2-1 所示为赛车做圆周运动的后视图(赛车正垂直
纸面向里运动)。赛车以最大速度 vmax 行驶时,地面对赛车的 摩擦力为最大静摩擦力 fmax。受力分析如图所示,利用正交分 解法列方程
新人教版物理必修二5.4 圆周运动 课件 (共38张PPT)

(2)A点的向心加速度为 anA=ω22r2/2=0.05m/s2
(3)电动机皮带轮边缘上质点的向心加速度为 an=V12/r1=0.30m/s2
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/3/62021/3/6Saturday, March 06, 2021
练习:1800对应多少弧度? 900对应多少弧度?
角速度的单位:
弧度/秒rad/s 或 s-1
做匀速圆周运动的物体, 如果转过一周所用的时间 越少,那么就表示运动得 越快。
周期:T
表示运动一周所用的时间
匀速圆周运动是周期不变的运动!
周期的倒数叫频率
频率:f 1
T
表示一秒内转过的圈数
频率越高表明物体运转得越快!
间,比较圆弧长度
v
可见:尽管做匀速圆
周运动的物体在各个
o
时刻的线速度大小相
v
等,但线速度的方向
是不断变化的
v
变速 速率不变
匀速圆周运动是
运动!
是线速度大小不变的运动!
1、物理意义: 描述质点绕圆心转动的快慢。
2、定义:质点所在的半径转
过的角度Δθ和所用时间Δt的
比值叫做角速度。
O
Δθ采用弧
3、公式:ω=
D.半径
2. (双选)质点做匀速圆周运动,则(BC )
A.在任何相等的时间里,质点的位移都相等
B.在任何相等的时间里,质点通过的路程都 相等
C.在任何相等的时间里,连接质点和圆心的 半径转过的角度都相等
六种圆周运动模型PPT课件

4
三、火车转弯模型:
.
5
四、汽车过桥模型:
F向
ma
mv 2 R
mv 2 FN G R
.
mv 2 F向 ma R
6
五、轻绳模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
gR :绳子或外轨道对物体的弹力:
v2 F m G
R
方向竖直向下
v= gR :绳子或外轨道对物体的弹力:F=0
v< gR:物体不能过最高点!!!
v=
gR
是物体所受弹力方向变化的临界速度。 .
7
六、轻杆模型
1、安全通过最高点的临界条件:
v临 = gR
2、对最高点分析:
v>
gR :绳子或轨道对物体的弹力:
F
m v2 G R
方向竖直向下
v= gR :轻杆或管道对物体的弹力:F=0
v< gR:轻杆或管道对物体的弹力:
稳定状态下小球所处的位置越高半径rr越大角速度越小线速度越大而小球受到的支持力和向心力并不随位置的变化而变化
六种圆周运动模型分析
.
1
一、圆盘模型:
Байду номын сангаас
F合
f
F心
mv 2 r
mw 2r
当f最大值时: f mg
线速度有最大值:v gr
角速度有最大值:w g
r
.
2
二、圆锥摆模型: 由拉力F和重力G的合力提供向心力
.
3
倒置圆锥摆模型:
1.如果内壁光滑,由重力和支持力的合力提供向心力
F合
圆周运动的三种模型
圆周运动的三种模型一、圆锥摆模型:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力分析,正交分法解得:竖直方向:水平方向:F X=最终得F合=。
用力的合成法得F合=。
半径r=,圆周运动F向==,由F合=F向可得V=,ω=圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。
(小球的半径远小于R)2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。
求(取g=10m/s2,结果可用根式表示):(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?二.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 =2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力)3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道)练习:质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( )A . 0 B. mg C .3mg D 5mg三.轻杆模型:(一)轻杆模型的特点:1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力)2. 当 =R v m 2临界( 轻杆对小球的作用力N= 0 ),gR v 临界3 当 (即0<v< v 临界)时,有 =Rv m 2( 轻杆对小球的作用力N 为 力) 4 当(即v>v 临界)时,有 =R v m 2(轻杆对小球的作用力N 为 力) 练习:半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( )A. 外轨道受到24N 的压力B. 外轨道受到6N 的压力C. 内轨道受到24N 的压力D. 内轨道受到 6N 的压力一.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:2. 小球能通过最高点的条件:(当时,绳子对球产生拉力)3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是()A . 0 B. mg C .3mg D 5mg分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型当小球经过最高点的临界速度为v ,则当小球以2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则因为所以根据牛顿第三定律,小球对轨道压力的大小也是,故选c.1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的临界条件:v=0 ,N=mg (N为支持力)2. 当时,有(N为支持力)3 当时,有(N=0 )4 当时,有(N 为拉力)例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则()A. 外轨道受到24N的压力B. 外轨道受到6N的压力C. 内轨道受到24N 的压力D. 内轨道受到6N的压力分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:当小球到最高点轨道对其作用力为零时:有则, =>2m/s所以,内轨道对小球有向上的支持力,则有代入数值得:N=6N根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选D三.圆锥摆模型:圆锥摆模型在圆周运动中的应用:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆线与竖直方向成θ角,则分析:摆球在水平面上做匀速圆周运动,加速度必定指向圆心,依据牛顿第二定律,对摆球受力分析,得:圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
人教高中物理必修二第五章4.圆周运动的三种模型
圆周运动的三种模型一、圆锥摆模型:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力分析,正交分法解得:竖直方向:水平方向:F X=最终得F合=。
用力的合成法得F合=。
半径r=,圆周运动F向==,由F合=F向可得V=,ω=圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。
(小球的半径远小于R)2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。
求(取g=10m/s2,结果可用根式表示):(1)若要小球离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?二.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 =2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力)3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道)练习:质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( )A . 0 B. mg C .3mg D 5mg三.轻杆模型:(一)轻杆模型的特点:1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力)2. 当 =R v m 2临界( 轻杆对小球的作用力N= 0 ),gR v 临界3 当 (即0<v< v 临界)时,有 =Rv m 2( 轻杆对小球的作用力N 为 力)4 当(即v>v 临界)时,有 =R v m 2(轻杆对小球的作用力N 为 力) 练习:半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( )A. 外轨道受到24N 的压力B. 外轨道受到6N 的压力C. 内轨道受到24N 的压力D. 内轨道受到 6N 的压力一.轻绳模型(一)轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二)轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:2. 小球能通过最高点的条件:(当时,绳子对球产生拉力)3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是()A . 0 B. mg C .3mg D 5mg分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型当小球经过最高点的临界速度为v ,则当小球以2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则因为所以根据牛顿第三定律,小球对轨道压力的大小也是,故选c.1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二)轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的临界条件:v=0 ,N=mg (N为支持力)2. 当时,有(N为支持力)3 当时,有(N=0 )4 当时,有(N 为拉力)例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则()A. 外轨道受到24N的压力B. 外轨道受到6N的压力C. 内轨道受到24N 的压力D. 内轨道受到6N的压力分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:当小球到最高点轨道对其作用力为零时:有则, =>2m/s所以,内轨道对小球有向上的支持力,则有代入数值得:N=6N根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选D三.圆锥摆模型:圆锥摆模型在圆周运动中的应用:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆线与竖直方向成θ角,则分析:摆球在水平面上做匀速圆周运动,加速度必定指向圆心,依据牛顿第二定律,对摆球受力分析,得:圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
竖直平面内的圆周运动模型—人教版高中物理必修二课件(共20张PPT)
【解析】 (1)以水桶中的水为研究对象,在最高点恰好不 流出来,说明水的重力恰好提供其做圆周运动所需的向心力,此 时桶的速率最小.此时有:mg=mvl20
则所求速率即为桶的最小速率:v0= gl≈2.24 m/s.
(2)在最高点水桶的速率 v=3 m/s>2.24 m/s,水桶能过最高 点,
增大,当 v> gR时,管道对小球的作用力方向向下,根据牛顿第 二定律得 mg+FN=mvR2,当 v 由 gR逐渐增大时,管道对小球的 弹力也逐渐增大,故 C、D 正确,B 错误.
答案:CD
方法技巧
竖直平面内圆周运动的分析方法 竖直面内圆周运动过顶点的问题关键在于能不能过顶点, 能过顶点的条件下物体的受力情况究竟是怎样的.下面是竖直面 内圆周运动的求解思路: (1)确定模型:首先判断是轻绳模型还是轻杆模型,两种模 型过最高点的临界条件不同,其原因主要是“绳”不能支持物 体,而“杆”既能支持物体,也能拉物体. (2)确定临界点:v 临= gr,对轻绳模型来说是能否通过最高 点的临界点,而对轻杆模型来说是表现为支持力还是拉力的临界 点.
(3)确定研究状态:通常情况下竖直平面内的圆周运动只涉 及最高点和最低点的运动情况.
(4)分析求解:对物体在最高点或最低点进行受力分析,列 方程 F 合=F 向=mvr2=mω2r 求解.
A.若 vP=0,小滑块恰能通过 P 点,且离开 P 点后做自由落体运动 B.若 vP=0,小滑块能通过 P 点,且离开 P 点后做平抛运动 C.若 vP= gR,小滑块恰能到达 P 点,且离开 P 点后做自由落体运动 D.若 vP= gR,小滑块恰能到达 P 点,且离开 P 点后做平抛运动
人教版高中物理必修二 5.4圆周运动(共123张PPT)
v
变速 匀速圆周运动是
运动!
是线速度大小不变的运动!
v
可见:尽管做匀速圆周
运动的物体在各个时刻
o
的线速度大小相等,但
v
线速度的方向是不断变
化着的
v
变速 速率不变 匀速圆周运动是
运动!
是线速度大小不变的运动!
二、角果物体在一段时间Δt
内半径转过的角度 Δθ越 大,那么就表示运动
o
的线速度大小相等,但
v
线速度的方向是不断变
化着的
v
变速 匀速圆周运动是
运动!
v
可见:尽管做匀速圆周
运动的物体在各个时刻
o
的线速度大小相等,但
v
线速度的方向是不断变
化着的
v
变速 速率不变 匀速圆周运动是
运动!
v
可见:尽管做匀速圆周
运动的物体在各个时刻
o
的线速度大小相等,但
v
线速度的方向是不断变
化着的
比较圆周运动的快慢
方法1:对于同一圆周运动,比较物体在同一段时 间内通过的圆弧长短
方法2:对于同一圆周运动,比较物体在同一段时 间内转过的圈数
方法3:对于同一圆周运动,比较物体在同一段时 间内半径转过的角度大小
方法4:对于同一圆周运动,比较物体转过一圈所 用时间的多少
描述圆周运动快慢的物理量
一、线速度
得越快
二、角速度
·O
如果物体在一段时间Δt
内半径转过的角度 Δθ越 大,那么就表示运动
得越快
t
二、角速度
·O
如果物体在一段时间Δt
内半径转过的角度Δθ越 大,那么就表示运动 得越快
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动的三种模型
一、圆锥摆模型:
如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力
分析,
正交分法解得:竖直方向:水平方向:F X=最终得F合=。
用力的合成法得F合=。
半径r=,圆周运动F向==,由F合=F向可得V=,ω=
圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
分析方法同样适用自行车,
摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。
(小球的半径远小于R)
2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。
求(取g=10m/s2,结果可用根式表示):
(1)若要小球离开锥面,则小球的角速度ω0至少为多大?
(2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?
二.轻绳模型
(一)轻绳模型的特点:
1. 轻绳的质量和重力不计;
2. 只能产生和承受沿绳方向的拉力;
(二)轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 =
2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力)
3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道)
练习:
质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( )
A . 0 B. mg C .3mg D 5mg
三.轻杆模型:
(一)轻杆模型的特点:
1.轻杆的质量和重力不计;
2.能产生和承受各方向的拉力和压力
(二)轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力)
2. 当 =R v m 2临界
( 轻杆对小球的作用力N= 0 ),gR v 临界
3 当 (即0<v< v 临界)时,有 =R
v m 2
( 轻杆对小球的作用力N 为 力)
4 当
(即v>v 临界)时,有 =R v m 2
(轻杆对小球的作用力N 为 力) 练习:
半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( )
A. 外轨道受到24N 的压力
B. 外轨道受到6N 的压力
C. 内轨道受到24N 的压力
D. 内轨道受到 6N 的压力
一.轻绳模型
(一)轻绳模型的特点:
1. 轻绳的质量和重力不计;
2. 只能产生和承受沿绳方向的拉力;
(二)轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:
2. 小球能通过最高点的条件:(当时,绳子对球产生拉力)
3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)
例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是()
A . 0 B. mg C .3mg D 5mg
分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型
当小球经过最高点的临界速度为v ,则
当小球以2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则
因为所以
根据牛顿第三定律,小球对轨道压力的大小也是,故选c.
1.轻杆的质量和重力不计;
2.能产生和承受各方向的拉力和压力
(二)轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
1. 小球能通过最高点的临界条件:v=0 ,N=mg (N为支持力)
2. 当时,有(N为支持力)
3 当时,有(N=0 )
4 当时,有(N 为拉力)
例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则()
A. 外轨道受到24N的压力
B. 外轨道受到6N的压力
C. 内轨道受到24N 的压力
D. 内轨道受到6N的压力
分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:
当小球到最高点轨道对其作用力为零时:有
则, =>2m/s
所以,内轨道对小球有向上的支持力,则有
代入数值得:N=6N
根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选D
三.圆锥摆模型:
圆锥摆模型在圆周运动中的应用:
如图所示:摆球的质量为m,摆线长度为L ,摆动后摆线与竖直方向成θ角,则
分析:摆球在水平面上做匀速圆周运动,加速度必定指向圆心,依据牛顿第二定律,对摆球受力分析,得:
圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
例:小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。
(小球的半径远小于R)
分析:小球做匀速圆周运动的圆心在和小球等高的水平面上,向心力是重力和支持力的合力,所以是一个圆锥摆模型,则:
由此可得:
本题是一个圆锥摆模型,分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。
共同点是由重力和弹力的合力提供向心力,向心力方向水平。
在物理学中建立模型,都是要突出主要矛盾,屏弃次要矛盾,对客观事物抽象化和理想化。
同一个客观事物,在不同的情况下,可以抽象为不同的物理模型,一般,建立什么物理模型,必须根据问题的要求,条件而定。