【师说】2015-2016高中数学人教A版选修2-2习题:全册检测

合集下载

人教a版高中数学选修2-2全册同步测控知能训练题集含答案

人教a版高中数学选修2-2全册同步测控知能训练题集含答案

人教A版高中数学选修2-2全册同步测控知能训练题集目录第1章1.1.2知能优化训练第1章1.1.3知能优化训练第1章1.2.2(一)知能优化训练第1章1.2.2(二)知能优化训练第1章1.3.1知能优化训练第1章1.3.2知能优化训练第1章1.3.3知能优化训练第1章1.4知能优化训练第1章1.5.2知能优化训练第1章1.5.3知能优化训练第1章1.6知能优化训练第1章1.7.2知能优化训练第2章2.1.1知能优化训练第2章2.1.2知能优化训练第2章2.2.1知能优化训练第2章2.2.2知能优化训练第2章2.3知能优化训练第3章3.1.1知能优化训练第3章3.1.2知能优化训练第3章3.2.1知能优化训练第3章3.2.2知能优化训练1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量D .在区间[x 0,x 1]上的导数 答案:A2.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2解析:选C.Δy Δx =f (1+Δx )-f (1)Δx=2(1+Δx )2-4+2Δx=2(Δx )2+4Δx Δx=2Δx +4.3.一物体的运动方程为s =7t 2+8,则其在t =________时的瞬时速度为1.解析:Δs Δt =7(t 0+Δt )2+8-(7t 20+8)Δt=7Δt +14t 0,当li mΔt →0(7Δt +14t 0)=1时,t 0=114. 答案:1144.求函数y =x -1x 在x =1处的导数.解:Δy =(1+Δx )-11+Δx -(1-11)=Δx +Δx 1+Δx,Δy Δx =Δx +Δx 1+Δx Δx =1+11+Δx, ∴li m Δx →0 Δy Δx =li mΔx →0 (1+11+Δx )=2,从而y ′|x =1=2.一、选择题1.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44解析:选B.Δy =f (2.1)-f (2)=2.12-22=0.41.2.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率ΔyΔx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x 解析:选 B.因为Δy =[2(1+Δx )2-1]-(2×12-1)=4Δx +2(Δx )2,所以ΔyΔx=4+2Δx ,故选B.3.如果质点M 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ) A .6 B .18 C .54 D .81解析:选B.Δs Δt =3(3+Δt )2-3×32Δt =18+3Δt ,s ′=li m Δt →0 ΔsΔt =li mΔt →0(18+3Δt )=18,故选B.4.某质点沿曲线运动的方程y =-2x 2+1(x 表示时间,y 表示位移),则该点从x =1到x =2时的平均速度为( ) A .-4 B .-8 C .6 D .-6解析:选D.令f (x )=y =-2x 2+1,则质点从x =1到x =2时的平均速度v -=Δy Δx =f (2)-f (1)2-1=-2×22+1-(-2×12+1)2-1=-6.5.如果某物体做运动方程为s =2(1-t 2)的直线运动(位移单位:m ,时间单位:s),那么其在1.2 s 末的瞬时速度为( ) A .-0.88 m/s B .0.88 m/s C .-4.8 m/s D .4.8 m/s解析:选C.s ′|t =1.2=li mΔt →02[1-(1.2+Δt )2]-2(1-1.22)Δt =-4.8.6.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( )A .3B .-3C .2D .-2解析:选B.∵ΔyΔx =f (32+Δx )-f (32)Δx=-Δx -3,∴li mΔx →0 ΔyΔx =-3.二、填空题7.已知函数f (x )在x =1处的导数为1,则li mx →0f (1+x )-f (1)x =________. 解析:li mx →0f (1+x )-f (1)x =f ′(1)=1.答案:18.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.解析:li mΔx →0 ΔyΔx=li mΔx →0a (x +Δx )2+2(x +Δx )-ax 2-2xΔx=li mΔx →02ax ·Δx +2·Δx +a (Δx )2Δx=2ax +2.∴f ′(1)=2a +2=4, ∴a =1. 答案:19.已知函数y =f (x )在x =x 0处的导数为11,则li mΔx →0f (x 0-2Δx )-f (x 0)Δx =________.解析:li mΔx →0f (x 0-2Δx )-f (x 0)Δx=-2li m-2Δx →0f (x 0-2Δx )-f (x 0)-2Δx=-2f ′(x 0)=-2×11=-22. 答案:-22 三、解答题10.若f ′(x 0)=2,求lim k →0f (x 0-k )-f (x 0)2k 的值.解:令-k =Δx ,∵k →0,∴Δx →0. 则原式可变形为lim Δx →0 f (x 0+Δx )-f (x 0)-2Δx=-12lim Δx →0 f (x 0+Δx )-f (x )Δx=-12f ′(x 0)=-12×2=-1.11.一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ,时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时的平均速度.解:(1)初速度v 0=li mΔt →0s (Δt )-s (0)Δt=li m Δt →0 3Δt -(Δt )2Δt =li mΔt →0(3-Δt )=3.即物体的初速度为3 m/s.(2)v 瞬=li mΔt →0s (2+Δt )-s (2)Δt=li mΔt →03(2+Δt )-(2+Δt )2-(3×2-4)Δt=li mΔt →0-(Δt )2-ΔtΔt=li mΔt →(-Δt -1)=-1. 即此物体在t =2时的瞬时速度为1 m/s ,方向与初速度相反.(3)v -=s (2)-s (0)2-0=6-4-02=1.即t =0到t =2时的平均速度为1 m/s.12.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围. 解:∵函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx=-3-Δx ,∴由-3-Δx ≤-1,得Δx ≥-2. 又∵Δx >0,∴Δx >0,即Δx 的取值范围是(0,+∞).1.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直解析:选B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.2.曲线y =-1x 在点(1,-1)处的切线方程为( ) A .y =x -2 B .y =x C .y =x +2 D .y =-x -2解析:选A.f ′(1)=li m Δx →0 -11+Δx +11Δx =li mΔx →0 11+Δx=1,则在(1,-1)处的切线方程为y +1=x -1,即y =x -2.3.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________________________________________________________________________.解析:2=li mΔx →0(x 0+Δx )2+4(x 0+Δx )-x 20-4x 0Δx=2x 0+4,∴x 0=-1. 答案:-14.求证:函数y =x +1x图象上的各点处的斜率小于1.证明:∵y =li mΔx →0f (x +Δx )-f (x )Δx=li m Δx →0(x +Δx +1x +Δx)-(x +1x )Δx=x 2-1x 2=1-1x2<1,∴y =x +1x 图象上的各点处的斜率小于1.一、选择题1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线解析:选C.k =f ′(x 0),所以f ′(x 0)不存在只说明曲线在该点的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x =x 0.2.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2解析:选C.曲线在点A 处的切线的斜率就是函数y =2x 2在x =2处的导数.f ′(x )=li m Δx →0 ΔyΔx =li mΔx →02(x +Δx )2-2x 2Δx =li mΔx →04x ·Δx +2(Δx )2Δx =4x .则f ′(2)=8.3.已知曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为2x +y +1=0,那么( ) A .f ′(x 0)=0 B .f ′(x 0)<0 C .f ′(x 0)>0 D .f ′(x 0)不确定解析:选B.曲线在某点处的切线的斜率为负,说明函数在该点处的导数也为负.4.下列点中,在曲线y =x 2上,且在该点处的切线倾斜角为π4的是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)解析:选D.k =li m Δx →0 ΔyΔx =li mΔx →0(x +Δx )2-x 2Δx=li mΔx →(2x +Δx )=2x . ∵倾斜角为π4,∴斜率为1.∴2x =1,得x =12,故选D.5.设f (x )为可导函数,且满足li mx →f (1)-f (1-x )x=-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率是( )A .2B .-1 C.12D .-2解析:选B.∵li mx →f (1)-f (1-x )x =-1, ∴li mx →0 f (1-x )-f (1)-x =-1,∴f ′(1)=-1. 6.(2010年高考大纲全国卷Ⅱ)若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 解析:选A.y ′=li mΔx →0(x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx=li mΔx →0(2x +a )Δx +(Δx )2Δx =2x +a ,因为曲线y =x 2+ax +b 在点(0,b )处的切线l 的方程是x -y +1=0,所以切线l 的斜率k =1=y ′|x =0,且点(0,b )在切线l 上,于是有⎩⎪⎨⎪⎧0+a =10-b +1=0,解得⎩⎪⎨⎪⎧a =1b =1.二、填空题7.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________. 解析:设切点坐标为(x 0,1),则f ′(x 0)=4x 0-4=0, ∴x 0=1.即切点坐标为(1,1). ∴2-4+P =1,即P =3. 答案:38.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba =________.解析:li mΔx →0 a (1+Δx )2-aΔx =li mΔx →0(a ·Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2,即ba=2.答案:29.已知曲线y =12x 2-2上一点P (1,-32),则过点P 的切线的倾斜角为________.解析:∵y =12x 2-2,∴y ′=li mΔx →012(x +Δx )2-2-(12x 2-2)Δx=li m Δx →0 12(Δx )2+x ·Δx Δx =li m Δx →0(x +12Δx )=x .∴y ′|x =1=1.∴点P (1,-32)处的切线的斜率为1,则切线的倾斜角为45°.答案:45° 三、解答题10.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线. 解:曲线y =3x 2-4x +2在M (1,1)的斜率k =y ′|x =1=li m Δx →0 3(1+Δx )2-4(1+Δx )+2-3+4-2Δx =li mΔx →0(3Δx +2)=2.∴过点P (-1,2)直线的斜率为2, 由点斜式得y -2=2(x +1), 即2x -y +4=0.所以所求直线方程为2x -y +4=0.11.已知抛物线y =x 2+4与直线y =x +10.求: (1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎪⎨⎪⎧y =x 2+4,y =x +10,解得⎩⎪⎨⎪⎧x =-2y =8或⎩⎪⎨⎪⎧x =3y =13.∴抛物线与直线的交点坐标为(-2,8)或(3,13). (2)∵y =x 2+4,∴y ′=lim Δx →0(x +Δx )2+4-(x 2+4)Δx=lim Δx →0 (Δx )2+2x ·ΔxΔx =lim Δx →0(Δx +2x )=2x .∴y ′|x =-2=-4,y ′|x =3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6. ∴在点(-2,8)处的切线方程为4x +y =0; 在点(3,13)处的切线方程为6x -y -5=0.12.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.解:∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 当Δx 无限趋近于零时, ΔyΔx无限趋近于3x 20+2ax 0-9. 即f ′(x 0)=3x 20+2ax 0-9∴f ′(x 0)=3(x 0+a 3)2-9-a 23.当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3.又a <0, ∴a =-3.1.函数y =x 3cos x 的导数是( ) A .3x 2cos x +x 3sin x B .3x 2cos x -x 3sin x C .3x 2cos x D .-x 3sin x解析:选B.y ′=(x 3cos x )′=3x 2cos x +x 3(-sin x )=3x 2cos x -x 3sin x ,故选B. 2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A.193 B.163 C.133 D.103解析:选D.∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4.∴a =103.3.曲线y =x ln x 在x =1处的切线方程为________. 解析:∵y =x ln x ,∴y ′=ln x +1,则切线斜率k =y ′|x =1=1. ∴切线方程为y =x -1. 答案:y =x -14.求下列函数的导数:(1)y =3x 2+x cos x ;(2)y =x1+x;(3)y =lg x -e x ;(4)y =sin2x -cos2x .解:(1)y ′=6x +cos x -x sin x .(2)y ′=1+x -x (1+x )2=1(1+x )2. (3)y ′=(lg x )′-(e x )′=1x ln10-e x .(4)法一:y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′=2cos2x +2sin2x=22sin(2x +π4).法二:∵y =2sin(2x -π4),∴y ′=2cos(2x -π4) ·2=22sin(2x +π4).一、选择题1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x2 B .(log 2x )′=1x ln 2C .(3x )′=3x ·log 3eD .(x 2cos x )′=-2x sin x解析:选B.⎝⎛⎭⎫x +1x ′=1-1x2,(3x )′=3x ln3, (x 2cos x )′=2x cos x -x 2sin x .2.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -5解析:选B.由y ′=3x 2-6x 在点(1,-1)的值为-3,故切线方程为y +1=-3(x -1).即y =-3x +2.3.(2011年高考湖南卷)曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12 B.12C .-22 D.22解析:选B.y ′=cos x (sin x +cos x )-(cos x -sin x )sin x (sin x +cos x )2=1(sin x +cos x )2.故y ′|x =π4=12, ∴曲线在点M (π4,0)处的切线的斜率为12.4.函数y =x 2cos2x 的导数为( ) A .y ′=2x cos2x -x 2sin2x B .y ′=2x cos2x -2x 2sin2x C .y ′=x 2cos2x -2x sin2x D .y ′=2x cos2x +2x 2sin2x 解析:选B.y ′=(x 2cos2x )′ =(x 2)′·cos2x +x 2·(cos2x )′=2x cos2x -2x 2sin2x .5.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2 D .0解析:选B.由题意知f ′(x )=4ax 3+2bx ,若f ′(1)=2,即f ′(1)=4a +2b =2,从题中可知f ′(x )为奇函数,故f ′(-1)=-f ′(1)=-4a -2b =-2,故选B.6.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .2解析:选B.∵f (x )=12f ′(-1)x 2-2x +3,∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2. ∴f ′(-1)=-1. 二、填空题 7.令f (x )=x 2·e x ,则f ′(x )等于________. 解析:f ′(x )=(x 2)′·e x +x 2·(e x )′=2x ·e x +x 2·e x =e x (2x +x 2). 答案:e x (2x +x 2)8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.解析:∵f ′(x )=2ax -b cos x , ∴f ′(0)=-b =1,得b =-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.若函数f (x )=e xx 在x =c 处的导数值与函数值互为相反数,则c 的值为________.解析:∵f (x )=e x x ,∴f (c )=e cc ,又f ′(x )=e x ·x -e x x 2=e x (x -1)x 2,∴f ′(c )=e c (c -1)c 2.依题意知f (c )+f ′(c )=0,∴e c c +e c(c -1)c 2=0,∴2c -1=0得c =12.答案:12三、解答题10.求下列函数的导数: (1)f (x )=ln(8x );(2)f (x )=(x +1)(1x-1);(3)y =5log 2(2x +1).解:(1)因为f (x )=ln(8x )=ln8+ln x ,所以f ′(x )=(ln8)′+(ln x )′=1x .(2)因为f (x )=(x +1)(1x-1)=1-x +1x-1=-x +1x =1-xx,所以f ′(x )=-1·x -(1-x )·12xx=-12x(1+1x ).(3)设y =5log 2u ,u =2x +1,则y ′=5(log 2u )′(2x +1)′=10u ln2=10(2x +1)ln2.11.设f (x )=a ·e x +b ln x ,且f ′(1)=e ,f ′(-1)=1e.求a ,b 的值.解:由f (x )=a ·e x+b ln x ,∴f ′(x )=a ·e x +bx , 根据题意有⎩⎪⎨⎪⎧f ′(1)=a e +b =e f ′(-1)=a e -b =1e解得⎩⎪⎨⎪⎧a =1b =0,所以a ,b 的值分别是1,0.12.已知f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.求f (x )的解析式. 解:由f ′(x )为一次函数可知f (x )为二次函数. 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b .把f (x ),f ′(x )代入方程x 2f ′(x )-(2x -1)f (x )=1得: x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1, 即(a -b )x 2+(b -2c )x +c -1=0.要使方程对任意x 恒成立,则需有a =b ,b =2c ,c -1=0, 解得a =2,b =2,c =1,所以f(x)=2x2+2x+1.1.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C .6 D .9 答案:C2.下列结论正确的是( ) A .若y =cos x ,则y ′=sin x B .若y =sin x ,则y ′=-cos xC .若y =1x ,则y ′=-1x2D .若y =x ,则y ′=x2答案:C3.若y =10x ,则y ′|x =1=________.解析:∵y ′=10x ln10,∴y ′|x =1=10ln10. 答案:10ln104.质点的运动方程是s =1t5,求质点在t =2时的瞬时速度.解:∵s =1t 5,∴s ′=(1t5)′=(t -5)′=-5t -6.∴s ′|t =2=-5×2-6=-564,即质点在t =2时的瞬时速度是-564.一、选择题1.y =x 2的斜率等于2的切线方程为( ) A .2x -y +1=0 B .2x -y +1=0或2x -y -1=0 C .2x -y -1=0 D .2x -y =0解析:选C.设切点为(x 0,y 0),y ′=2x .y ′|x =x 0=2x 0=2,x 0=1,y 0=1,∴切线方程为y -1=2(x -1),即2x -y -1=0,故选C.2.过曲线y =1x 上一点P 的切线的斜率为-4,则点P 的坐标为( )A .(12,2)B .(12,2)或(-12,-2)C .(-12,-2)D .(12,-2)解析:选B.y ′=(1x )′=-1x 2=-4,x =±12,故选B.3.已知f (x )=x a,则f ′(-1)=-4,则a 的值等于( ) A .4 B .-4 C .5 D .-5解析:选A.f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4,a =4.故选A. 4.给出下列结论:①(cos x )′=sin x ;②(sin π3)′=cos π3;③若y =1x 2,则y ′=-1x ;④(-1x )′=12x x.其中正确的个数是( ) A .0 B .1 C .2 D .3解析:选B.因为(cos x )′=-sin x ,所以①错误;sin π3=32,而(32)′=0,所以②错误;(1x2)′=(x -2)′=-2x -3,所以③错误; (-1x )′=(-x -12)′=12x -32=12x x,所以④正确,故选B.5.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A .[0,π4]∪[3π4,π) B .[0,π)C .[π4,3π4]D .[0,π4]∪[π2,3π4]解析:选A.设切点P 的坐标为(x 0,y 0),切线的倾斜角为α. ∵y ′=cos x ,∴tan α=y ′|x =x 0=cos x 0. ∵-1≤cos x 0≤1,∴-1≤tan α≤1.又0≤α<π,∴α∈[0,π4]∪[3π4,π).6.已知命题p :函数y =f (x )的导函数是常数函数;命题q :函数y =f (x )是一次函数.则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选B.常数函数的导数也是常数函数.故由p 不能得q ,而由q 能得出p . 二、填空题7.设函数f (x )=log a x ,f ′(1)=-1,则a =________________________________________________________________________.解析:∵f ′(x )=1x ln a ,∴f ′(1)=1ln a =-1.∴ln a =-1,a =1e.答案:1e8.已知f (x )=x 2,g (x )=x 3,若f ′(x )-g ′(x )=-1,则x =________. 解析:f ′(x )=2x ,g ′(x )=3x 2,∴2x -3x 2=-1,解得x =1或-13.答案:1或-139.已知直线y =kx 是曲线y =ln x 的切线,则k 的值等于________.解析:因为y ′=(ln x )′=1x ,设切点为(x 0,y 0),则切线方程为y -y 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.由ln x 0-1=0,得x 0=e.∴k =1e.答案:1e三、解答题10.求下列函数的导数:(1)f (x )=log 2x ;(2)f (x )=2-x .解:(1)f ′(x )=(log2x )′=1x ln 2=2x ln2. (2)∵2-x =(12)x ,∴f ′(x )=[(12)x ]′=(12)x ln 12=-(12)x ln2.11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程. 解:∵y =3x 2,∴y ′=(3x 2)′=(x 23)′=23x -13,∴y ′|x =8=23×8-13=13.即在点P (8,4)的切线的斜率为13.∴适合题意的切线的斜率为-3.从而适合题意的直线方程为y -4=-3(x -8), 即3x +y -28=0.12.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2012(x ). 解:f 1(x )=(sin x )′=cos x , f 2(x )=(cos x )′=-sin x , f 3(x )=(-sin x )′=-cos x , f 4(x )=(-cos x )′=sin x , f 5(x )=(sin x )′=f 1(x ), f 6(x )=f 2(x ),…,f n +4(x )=f n (x ),可知周期为4, ∴f 2012(x )=f 0(x )=sin x .1.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A. 2.(2011年高考辽宁卷)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞)解析:选B.设m (x )=f (x )-(2x +4),则m ′(x )=f ′(x )-2>0,∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0,∴m (x )>0的解集为{x |x >-1},即f (x )>2x +4的解集为(-1,+∞).3.函数y =3x -x 3在(-1,1)内的单调性是____________. 解析:y ′=3-3x 2,令y ′<0得x >1或x <-1, 令y ′>0得-1<x <1.∴原函数在(-1,1)上是单调递增函数. 答案:单调递增4.求下列函数的单调区间. (1)y =x -ln x ;(2)y =12x.解:(1)函数的定义域为(0,+∞).其导数为y ′=1-1x .令1-1x >0,解得x >1;再令1-1x<0,解得0<x <1.因此,函数的单调增区间为(1,+∞), 函数的单调减区间为(0,1).(2)函数的定义域为(-∞,0)∪(0,+∞).y ′=-12x 2,所以当x ≠0时,y ′=-12x2<0,而当x =0时,函数无意义,所以y =12x 在(-∞,0),(0,+∞)内都是减函数,即y =12x 的单调减区间是(-∞,0),(0,+∞).一、选择题1.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)解析:选D.f ′(x )=(x -3)′e x +(x -3)(e x)′=(x -2)e x , 令f ′(x )>0,解得x >2,故选D.2.函数y =4x 2+1x 的单调递增区间是( )A .(0,+∞)B .(-∞,1)C .(12,+∞)D .(1,+∞)解析:选C.∵y ′=8x -1x 2=8x 3-1x 2>0,∴x >12.即函数的单调递增区间为(12,+∞).3.若在区间(a ,b )内,f ′(x )>0,且f (a )≥0,则在(a ,b )内有( ) A .f (x )>0 B .f (x )<0 C .f (x )=0 D .不能确定解析:选A.因f ′(x )>0,所以f (x )在(a ,b )上是增函数,所以f (x )>f (a )≥0. 4.下列函数中,在区间(-1,1)上是减函数的是( ) A .y =2-3x 2 B .y =ln xC .y =1x -2D .y =sin x解析:选C.对于函数y =1x -2,其导数y ′=-1(x -2)2<0,且函数在区间(-1,1)上有意义,所以函数y =1x -2在区间(-1,1)上是减函数,其余选项都不符合要求,故选C.5.函数y =x cos x -sin x 在下面哪个区间内是增函数( ) A.⎝⎛⎭⎫π2,3π2 B.()π,2π C.⎝⎛⎭⎫3π3,5π2D.()2π,3π 解析:选B.y ′=cos x -x sin x -cos x =-x sin x ,若y =f (x )在某区间内是增函数,只需在此区间内y ′恒大于或等于0即可.∴只有选项B 符合题意,当x ∈(π,2π)时,y ′≥0恒成立.6.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数, 所以y ′=3ax 2-1≤0恒成立, 即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 二、填空题7.y =x 2e x 的单调递增区间是________. 解析:∵y =x 2e x ,∴y ′=2x e x +x 2e x =e x x (2+x )>0⇒x <-2或x >0. ∴递增区间为(-∞,-2)和(0,+∞). 答案:(-∞,-2),(0,+∞)8.若函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],则b =________,c =________. 解析:∵y ′=3x 2+2bx +c ,由题意知[-1,2]是不等式3x 2+2bx +c <0的解集,∴-1,2是方程3x 2+2bx +c =0的根,由根与系数的关系得b =-32,c =-6.答案:-32-69.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间, ∴方程y ′=-4x 2+a =0有两个不等的实根, ∴Δ=02-4×(-4)×a >0, ∴a >0.答案:(0,+∞) 三、解答题10.求下列函数的单调区间.(1)f (x )=x 3+3x ;(2)f (x )=sin x (1+cos x )(0≤x ≤2π).解:(1)函数的定义域为(-∞,0)∪(0,+∞),f ′(x )=3x 2-3x 2=3(x 2-1x2),由f ′(x )>0,解得x <-1或x >1, 由f ′(x )<0,解得-1<x <1且x ≠0,∴f (x )的递增区间为(-∞,-1),(1,+∞), 递减区间为(-1,0),(0,1).(2)f ′(x )=cos x (1+cos x )+sin x (-sin x ) =2cos 2x +cos x -1=(2cos x -1)(cos x +1). ∵0≤x ≤2π,∴由f ′(x )=0得x 1=π3,x 2=π,x 3=53π,↗ ↘↘ ↗ ∴f (x )=sin x (1+cos x )(0≤x ≤2π)的单调递增区间为[0,π3],[53π,2π],单调递减区间为[π3,53π].11.已知函数f (x )=x 2·e x -1+ax 3+bx 2,且x =-2和x =1是f ′(x )=0的两根. (1)a ,b 的值;(2)f (x )的单调区间.解:(1)∵f ′(x )=e x -1(2x +x 2)+3ax 2+2bx=x e x -1(x +2)+x (3ax +2b ),又x =-2和x =1为f ′(x )=0的两根, ∴f ′(-2)=f ′(1)=0,故有⎩⎪⎨⎪⎧-6a +2b =03+3a +2b =0,解方程组得a =-13,b =-1.(2)∵a =-13,b =-1,∴f ′(x )=x (x +2)(e x -1-1),令f ′(x )=0得x 1=-2,x 2=0,x 3=1, 当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0; 当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0,∴f (x )的单调递增区间为(-2,0)和(1,+∞),单调递减区间为(-∞,-2)和(0,1).12.已知函数f (x )=ax -ax-2ln x (a ≥0),若函数f (x )在其定义域内为单调函数,求a 的取值范围.解:f ′(x )=a +a x2-2x ,要使函数f (x )在定义域(0,+∞)内为单调函数, 只需f ′(x )在(0,+∞)内恒大于0或恒小于0.当a =0时,f ′(x )=-2x<0在(0,+∞)内恒成立;当a >0时,要使f ′(x )=a (1x -1a )2+a -1a ≥0恒成立,∴a -1a ≥0,解得a ≥1.综上,a 的取值范围为a ≥1或a =0.1.设x0为可导函数f(x)的极值点,则下列说法正确的是()A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A2.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=()A.2B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0∴a=5.3.y=x3-6x+a的极大值为________.解析:y′=3x2-6=0,得x=±2.当x<-2或x>2时,y′>0;当-2<x<2时,y′<0.∴函数在x=-2时,取得极大值a+4 2.答案:a+4 24.求函数f(x)=x+1x的极值.解:函数的定义域是(-∞,0)∪(0,+∞),f′(x)=1-1x2=(x+1)(x-1)x2,令f′(x)=0,得x1=-1,x2=1.当↗极大值y极小值=f(1)=2.一、选择题1.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.2.下列函数存在极值的是()A.y=1x B.y=x-exC.y=x3+x2+2x-3 D.y=x3解析:选B.A中f′(x)=-1x2,令f′(x)=0无解,∴A中函数无极值.B中f′(x)=1-ex,令f ′(x )=0可得x =0.当x <0时,f ′(x )>0,当x >0时, f ′(x )<0.∴y =f (x )在x =0处取极大值,f (0)=-1. C 中f ′(x )=3x 2+2x +2,Δ=4-24=-20<0. ∴y =f (x )无极值.D 也无极值.故选B.3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个解析:选A.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如题图所示,函数f (x )在开区间(a ,b )内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.4.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,-1C .-1D .-3 解析:选C.f ′(x )=-x 2+x +2=-(x -2)·(x +1),∵在x =-1的附近左侧f ′(x )<0,右侧f ′(x )>0, ∴x =-1时取极小值.5.已知函数y =x -ln(1+x 2),则y 的极值情况是( ) A .有极小值 B .有极大值 C .既有极大值又有极小值 D .无极值解析:选D.f ′(x )=1-2x1+x 2=(x -1)21+x 2≥0,∴函数f (x )在定义域R 上为增函数,故选D. 6.已知函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a 、b 的值为( ) A .a =-4,b =11B .a =-4,b =1或a =-4,b =11C .a =-1,b =5D .以上都不正确解析:选A.f ′(x )=3x 2-2ax -b ,∵在x =1处f ′(x )有极值,∴f ′(1)=0,即3-2a -b =0.①又f (1)=1-a -b +a 2=10,即a 2-a -b -9=0.② 由①②得a 2+a -12=0,∴a =3或a =-4. ∴⎩⎪⎨⎪⎧ a =3,b =-3,或⎩⎪⎨⎪⎧ a =-4,b =11.当⎩⎪⎨⎪⎧a =3b =-3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故f (x )在R 上单调递增,不可能在x =1处取得极值,所以⎩⎪⎨⎪⎧a =3b =-3舍去.二、填空题7.函数f (x )=x 3-6x 2-15x +2的极大值是________,极小值是________. 解析:f ′(x )=3x 2-12x -15=3(x -5)(x +1), 在(-∞,-1),(5,+∞)上f ′(x )>0,在(-1,5)上 f ′(x )<0,∴f (x )极大值=f (-1)=10,f (x )极小值 =f (5)=-98. 答案:10 -988.设a ∈R ,若函数y =e x +ax ,x ∈R ,有大于零的极值点,则a 的取值范围为________. 解析:y ′=e x +a ,由y ′=0得x =ln(-a ). 由题意知ln(-a )>0,∴a <-1. 答案:(-∞,-1)9.若函数y =-x 3+6x 2+m 的极大值等于13,则实数m 等于________.解析:y ′=-3x 2+12x ,由y ′=0,得x =0或x =4,容易得出当x =4时函数取得极大值,所以-43+6×42+m =13,解得m =-19. 答案:-19 三、解答题10.求下列函数的极值.(1)f (x )=x 3-22(x -1)2;(2)f (x )=x 2e -x .解:(1)函数的定义域为(-∞,1)∪(1,+∞).∵f ′(x )=(x -2)2(x +1)2(x -1)3,令f ′(x )=0, 得x 1=-1,x 2=2.↗ ↘ ↗ ↗ 并且极大值为f (-1)=-38.(2)函数的定义域为R ,f ′(x )=2x e -x +x 2·(1ex )′=2x e -x -x 2e -x=x (2-x )e -x ,令f ′(x )=0,得x =0或x =2.当x ↘ ↗ ↘且为f (2)=4e -2.11.已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.解:∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ),令f ′(x )=0,则x =-m 或x =23m .↗ ↘ ↗∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1.12.(2010年高考安徽卷)设函数f (x )=sin x -cos x +x +1,0<x <2π, 求函数f (x )的单调区间与极值.解:由f (x )=sin x -cos x +x +1,0<x <2π, 知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +π4).令f ′(x )=0,从而sin(x +π4)=-22, 得x =π,或x =3π2.当x ↗ ↘ ↗ 因此,由上表知f (x )的单调递增区间是(0,π)与(3π2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.1.函数y =f (x )在[a ,b ]上( ) A .极大值一定比极小值大 B .极大值一定是最大值 C .最大值一定是极大值 D .最大值一定大于极小值解析:选D.由函数的最值与极值的概念可知,y =f (x )在[a ,b ]上的最大值一定大于极小值.2.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值解析:选D.f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.3.函数y =4x 2(x -2)在x ∈[-2,2]上的最小值为________,最大值为________.解析:由y ′=12x 2-16x =0,得x =0或x =43.当x =0时,y =0;当x =43时,y =-12827;当x =-2时,y =-64;当x =2时,y =0. 比较可知y max =0,y min =-64. 答案:-64 04.已知函数f (x )=13x 3-4x +4.求:(1)函数的极值;(2)函数在区间[-3,4]上的最大值和最小值. 解:(1)f ′(x )=x 2-4,解方程x 2-4=0, 得x 1=-2,x 2=2.当↗ ↘ ↗ 从上表可看出,当x =-2时,函数有极大值,且极大值为283;而当x =2时,函数有极小值,且极小值为-43.(2)f (-3)=13×(-3)3-4×(-3)+4=7,f (4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.一、选择题1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3) 解析:选B.∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减,故f (x )的最大值和最小值分别是f (3),f (5).2.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4解析:选C.f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0可得x =0或x =2(舍去), 当-1≤x <0时,f ′(x )>0,当0<x ≤1时,f ′(x )<0. 所以当x =0时,f (x )取得最大值为2.3.函数y =ln xx的最大值为( )A .e -1 B .eC .e 2 D.103解析:选A.令y ′=(ln x )′x -ln x ·x ′x 2=1-ln xx 2=0.解得x =e.当x >e 时,y ′<0;当x <e时,y ′>0.y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e.4.函数y =x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是( )A .π-1 B.π2-1C .πD .π+1解析:选C.因为y ′=1-cos x ,当x ∈⎣⎡⎦⎤π2,π时,y ′>0,则函数y 在区间⎣⎡⎦⎤π2,π上为增函数,所以y 的最大值为y max =π-sin π=π,故选C.5.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( ) A .-10 B .-71 C .-15 D .-22解析:选B.f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3,-1.又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20.由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71.6.已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a 等于( )A .-32 B.12C .-12 D.12或-32解析:选C.当a ≤-1时,最大值为4,不符合题意,当-1<a <2时,f (x )在[a,2]上是减函数,f (a )最大,-a 2-2a +3=154,解得a =-12或a =-32(舍去).二、填空题7.函数y =x e x 的最小值为________. 解析:令y ′=(x +1)e x =0,得x =-1. 当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e8.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:f ′(x )=m -2x ,令f ′(x )=0,得x =m2.由题设得m2∈[-2,-1],故m ∈[-4,-2].答案:[-4,-2]9.函数f (x )=ax 4-4ax 2+b (a >0,1≤x ≤2)的最大值为3,最小值为-5,则a =________,b =________.解析:y ′=4ax 3-8ax =4ax (x 2-2)=0, x 1=0,x 2=2,x 3=-2,又f (1)=a -4a +b =b -3a ,f (2)=16a -16a +b =b , f (2)=b -4a ,f (0)=b ,f (-2)=b -4a . ∴⎩⎪⎨⎪⎧b -4a =-5,b =3,∴a =2. 答案:2 3 三、解答题10.已知函数f (x )=x 3+ax 2+2,x =2是f (x )的一个极值点,求: (1)实数a 的值;(2)f (x )在区间[-1,3]上的最大值和最小值. 解:(1)∵f (x )在x =2处有极值,∴f ′(2)=0. ∵f ′(x )=3x 2+2ax ,∴3×4+4a =0,∴a =-3. (2)由(1)知a =-3,∴f (x )=x 3-3x 2+2,f ′(x )=3x 2-6x . 令f ′(x )=0,得x 1=0,x 2=2.当↗ ↘ ↗11.(2011年高考安徽卷)设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.解:对f (x )求导得f ′(x )=e x 1+ax 2-2ax (1+ax 2)2.① (1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=3,x 2=1.结合①,可知↗ ↘ ↗所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知1+ax 2-2ax ≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1. 所以a 的取值范围为{a |0<a ≤1}. 12.已知函数f (x )=x 3-ax 2+3x .(1)若f (x )在x ∈[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )在x ∈[1,a ]上的最大值和最小值. 解:(1)令f ′(x )=3x 2-2ax +3>0,∴a <⎣⎡⎦⎤32(x +1x )min =3(当x =1时取最小值). ∵x ≥1,∴a <3,a =3时亦符合题意, ∴a ≤3.(2)f ′(3)=0,即27-6a +3=0,∴a =5,f (x )=x 3-5x 2+3x ,f ′(x )=3x 2-10x +3.令f ′(x )=0,得x 1=3,x 2=13(舍去).当1<x <3时,f ′(x )<0,当3<x <5时,f ′(x )>0, 即当x =3时,f (x )的极小值f (3)=-9. 又f (1)=-1,f (5)=15,∴f (x )在[1,5]上的最小值是f (3)=-9, 最大值是f (5)=15.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203C .-1D .-8解析:选C.原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2(x >0);生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,则应生产( ) A .6千台 B .7千台 C .8千台 D .9千台解析:选A.设利润为y (万元),则y =y 1-y 2=17x 2-(2x 3-x 2)=-2x 3+18x 2(x >0),∴y ′=-6x 2+36x =-6x ·(x -6).令y ′=0,解得x =0或x =6,经检验知x =6既是函数的极大值点又是函数的最大值点.故选A.3.把长60 cm 的铁丝围成矩形,当长为________cm ,宽为________cm 时,矩形面积最大. 解析:设长为x cm ,则宽为(30-x ) cm , 所以面积S =x (30-x )=-x 2+30x . 由S ′=-2x +30=0,得x =15. 答案:15 154.某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x (x ≥10)层,则每平方米的平均建筑费用为560+48x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解:设楼房每平方米的平均综合费用为f (x )元,则f (x )=(560+48x )+2160×100002000x=560+48x +10800x (x ≥10,x ∈N *)f ′(x )=48-10800x2.令f ′(x )=0,得x =15. 当x >15时,f ′(x )>0; 当10≤x <15时,f ′(x )<0.因此,当x =15时,f (x )取最小值f (15)=2000(元).故为了使楼房每平方米的平均综合费用最少,该楼房应建为15层.一、选择题1.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( ) A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末解析:选D.∵s ′=t 3-5t 2+4t ,令s ′=0,得t 1=0,t 2=1,t 3=4,此时的函数值最大,故选D.2.用边长为48 cm 的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成一个铁盒,所做的铁盒容积最大时,在四角截去的正方形的边长为( ) A .6 cm B .8 cm C .10 cm D .12 cm解析:选 B.设截去小正方形的边长为x cm ,铁盒的容积为V cm 3.所以V =x (48-2x )2(0<x <24),V ′=12(x -8)(x -24).令V ′=0,则x =8∈(0,24).3.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为( ) A .32米,16米 B .30米,15米 C .40米,20米 D .36米,18米解析:选A.要求材料最省就是要求新砌的墙壁总长度最短,如图所示,设场地宽为x 米,则长为512x 米,因此新墙总长度L =2x +512x(x >0),则L ′=2-512x2.令L ′=0,得x =±16. ∵x >0,∴x =16.当x =16时,L 极小值=L min =64,∴堆料场的长为51216=32(米).4.(2010年高考山东卷)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件解析:选C.因为y ′=-x 2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x 3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值. 5.某公司生产一种产品,固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( ) A .150 B .200 C .250 D .300解析:选D.由题意可得总利润P (x )=-x 3900+300x -20000,0≤x ≤390.由P ′(x )=0,得x=300.当0≤x <300时,P ′(x )>0,当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.6.若一球的半径为r ,则内接于球的圆柱的侧面积最大为( ) A .2πr 2 B .πr 2C .4πr 2 D.12πr 2解析:。

人教新课标版数学高二-2015年春数学选修2-2作业 模块综合检测

人教新课标版数学高二-2015年春数学选修2-2作业 模块综合检测

模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,E ,F 分别为AB ,AC 的中点,则有EF ∥BC .这个命题的大前提为( )A .三角形的中位线平行于第三边B .三角形的中位线等于第三边的一半C .EF 为中位线D .EF ∥CB答案:A2.⎠⎛01(e x +2x )d x =( ) A .1B .e -1C .eD .e +1解析:选C .⎠⎛01(e x +2x)d x =(e x +x 2)10=e ,故选C . 3.复数(1-i 2)2=a +b i (a ,b ∈R ,i 是虚数单位),则a 2-b 2的值为( ) A .0B .1C .2D .-1解析:选D .(1-i 2)2=1-2i +i 22=-i =a +b i.所以a =0,b =-1,所以a 2-b 2=0-1=-1. 4.下列求导运算正确的是( ) A .(x +3x )′=1+3x2 B .(log 2x )′=1x ln 2 C .(3x )′=3x log 3e D .(x 2cos x )′=-2x sin x 解析:选B.(x +3x )′=1-3x2,所以A 不正确; (3x )′=3x ln 3,所以C 不正确;(x 2cos x )′=2x cos x +x 2·(-sin x ),所以D 不正确;(log 2x )′=1x ln 2,所以B 正确.故选B. 5.用反证法证明命题:“若(a -1)(b -1)(c -1)>0,则a ,b ,c 中至少有一个大于1”时,下列假设中正确的是( )A .假设a ,b ,c 都大于1B .假设a ,b ,c 都不大于1C .假设a ,b ,c 中至多有一个大于1D .假设a ,b ,c 中至多有两个大于1解析:选B.a ,b ,c 中至少有一个大于1的否定为a ,b ,c 都不大于1.6.已知函数f (x )=2x +1x +2,则函数y =f (x )的单调增区间是( ) A .(-∞,+∞)B .(-∞,-2)C .(-2,+∞)D .(-∞,-2)和(-2,+∞)解析:选D .据解析式可知函数f (x )的定义域为{x |x ∈R ,x ≠-2},由于f ′(x )=3(x +2)2>0,故函数f (x )在(-∞,-2)和(-2,+∞)上分别为增函数.7.已知集合A ={x |x 2+y 2=4},集合B ={x ||x +i|<2,i 为虚数单位,x ∈R },则集合A 与B 的关系是( )A .AB B .B AC .A ∩B =AD .A ∩B =∅解析:选B.|x +i|=x 2+1<2, 即x 2+1<4,解得-3<x <3,∴B =(-3,3),而A =[-2,2],∴B A ,故选B.8.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,从n =k 到n =k +1,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] 解析:选B.n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.9.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:选C .要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a (a +7)与2a +7+2(a +3)(a +4)的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12,故P <Q .10.如图,阴影部分的面积为( )A .⎠⎛ab [f (x )-g (x )]d x B .⎠⎛ac [g (x )-f (x )]d x +⎠⎛c b [f (x )-g (x )]d x C .⎠⎛a c [f (x )-g (x )]d x +⎠⎛cb [g (x )-f (x )]d x D .⎠⎛ab [g (x )-f (x )]d x 解析:选B .∵在区间(a ,c )上g (x )>f (x ),而在区间(c ,b )上g (x )<f (x ).∴S =⎠⎛a c [g (x )-f (x )]d x +⎠⎛cb [f (x )-g (x )]d x ,故选B . 11.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:选D .由题图可知,当x <-2时,f ′(x )>0;当x =-2时,f ′(x )=0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x =2时,f ′(x )=0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.12.观察数表:1 2 3 4 … 第一行2 3 4 5 … 第二行3 4 5 6 … 第三行4 5 6 7 … 第四行… … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n -1列的交叉点上的数应该是( )A .2n -1B .2n +1C .n 2-1D .2n -2解析:选D .根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行与第n 列交叉点上的数应该是2n -1,故第n 行与第n -1列的交叉点上的数应为2n -2.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________.解析:由i(z +1)=-3+2i ,得到z =-3+2i i-1=2+3i -1=1+3i. 答案:114.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,则产量q =________时,利润L 最大. 解析:收入R =q ·p =q (25-18q )=25q -18q 2. 利润L =R -C =(25q -18q 2)-(100+4q )=-18q 2+21q -100(0<q <200), L ′=-14q +21,令L ′=0,即-14q +21=0,求得唯一的极值点q =84. ∴产量q 为84时,利润L 最大.答案:8415.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为________. 解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1 16.(2014·山东省实验中学月考)给出下列四个命题:①若f ′(x 0)=0,则x 0是f (x )的极值点;②“可导函数f (x )在区间(a ,b )上不单调”等价于“f (x )在区间(a ,b )上有极值”;③若f (x )>g (x ),则f ′(x )>g ′(x );④如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,则该函数在[a ,b ]上一定能取得最大值和最小值.其中真命题的序号是________(把所有真命题的序号都填上).解析:②④显然正确;对f (x )=x 3,有f ′(0)=0,但x =0不是极值点,故①错;f (x )=x +1>g (x )=x ,但f ′(x )=g ′(x )=1,故③错.答案:②④三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知复数z 1=2-3i ,z 2=15-5i (2+i )2. 求:(1)z 1+z 2;(2)z 1·z 2;(3)z 1z 2. 解:z 2=15-5i (2+i )2=15-5i 3+4i =5(3-i )(3-4i )(3+4i )(3-4i )=5-15i 5 =1-3i.(1)z 1+z 2=(2-3i)+(1+3i)=3.(2)z 1·z 2=(2-3i)(1-3i)=2-9-9i =-7-9i.(3)z 1z 2=2-3i 1-3i =(2-3i )(1+3i )(1-3i )(1+3i )=2+9+3i 10=1110+310i. 18.(本小题满分12分)求函数f (x )=e xx -2的单调区间. 解:函数f (x )的定义域为(-∞,2)∪(2,+∞).f ′(x )=e x (x -2)-e x (x -2)2=e x (x -3)(x -2)2. 因为x ∈(-∞,2)∪(2,+∞),所以e x >0,(x -2)2>0.由f ′(x )>0,得x >3,所以函数f (x )的单调递增区间为(3,+∞);由f ′(x )<0,得x <3,又定义域为(-∞,2)∪(2,+∞),所以函数f (x )的单调递减区间为(-∞,2)和(2,3).19.(本小题满分12分)已知a ,b ,c >0,且a +b +c =1,求证:(1)a 2+b 2+c 2≥13; (2)a +b +c ≤ 3.证明:(1)∵a 2+19≥23a ,b 2+19≥23b ,c 2+19≥23c , ∴(a 2+19)+(b 2+19)+(c 2+19)≥23a +23b +23c =23. ∴a 2+b 2+c 2≥13. (2)∵a ·13≤a +132,b ·13≤b +132,c ·13≤c +132, 三式相加得a 3+b 3+c 3≤12(a +b +c )+12=1, ∴a +b +c ≤ 3.20.(本小题满分12分)已知数列{a n }满足S n +a n =2n +1.(1)写出a 1,a 2,a 3,并推测a n 的表达式;(2)用数学归纳法证明所得的结论.解:(1)由S n +a n =2n +1,当n =1时,S 1=a 1,∴a 1+a 1=2×1+1,得a 1=32. 当n =2时,S 2=a 1+a 2,则a 1+a 2+a 2=5,将a 1=32代入得a 2=74. 同理可得a 3=158.∴a n =2n +1-12n =2-12n. (2)证明:当n =1时,结论成立.假设n =k 时,命题成立,即a k =2-12k ; 当n =k +1时,S n +a n =2n +1,则a 1+a 2+…+a k +2a k +1=2(k +1)+1.∵a 1+a 2+…+a k =2k +1-a k ,∴2a k +1=4-12k ,a k +1=2-12k +1成立. ∴当n =k +1时,结论也成立.∴根据上述知对于任意自然数n ∈N *,结论成立.21.(本小题满分13分)设函数f (x )=x 3+ax 2+x +1,a ∈R .(1)若x =1时,函数f (x )取得极值,求函数f (x )在x =-1处的切线方程;(2)若函数f (x )在区间(12,1)内不单调,求实数a 的取值范围. 解:(1)由已知得f ′(x )=3x 2+2ax +1,f ′(1)=0,故a =-2, ∴f (x )=x 3-2x 2+x +1,当x =-1时,f (-1)=-3,即切点坐标为(-1,-3). 又f ′(-1)=8,∴切线方程为8x -y +5=0.(2)f (x )在区间(12,1)内不单调,即f ′(x )=0在(12,1)内有解, 令f ′(x )=3x 2+2ax +1=0,则2ax =-3x 2-1.由x ∈(12,1),得2a =-3x -1x. 令h (x )=-3x -1x ,由h ′(x )=-3+1x 2=0, 知h (x )在(33,1)上单调递减,在(12,33]上单调递增, ∴h (1)<h (x )≤h (33),即h (x )∈(-4,-23]. ∴-4<2a ≤-23,即-2<a ≤- 3.而当a =-3时,f ′(x )=3x 2-23x +1=(3x -1)2≥0,不满足题意.综上,实数a 的取值范围为(-2,-3).22.(本小题满分13分)已知函数f (x )=38x 2-2x +2+ln x . (1)求函数y =f (x )的单调区间;(2)若函数y =f (x )在[e m ,+∞)(m ∈Z )上有零点,求m 的最大值. 解:(1)函数f (x )的定义域为(0,+∞).f ′(x )=34x -2+1x =(3x -2)(x -2)4x, 当f ′(x )>0时,x ∈(0,23)∪(2,+∞);当f ′(x )<0时,x ∈(23,2),所以函数f (x )的单调递增区间为(0,23)和(2,+∞),单调递减区间为[23,2]. (2)由(1)知y 极大值=f (23)=56+ln 23>0,y 极小值=f (2)=ln 2-12>0. 当x >0且x →0时f (x )<0,故f (x )在定义域上存在唯一零点x 0,且x 0∈(0,23). 若m ≥0,则e m ≥1,[e m ,+∞)⊂(23,+∞),此区间不存在零点,舍去,故m <0. 当m =-1时,x ∈[1e ,+∞),f (1e )=1+38e 2-2e>0, 又(1e ,23)为增区间,此区间不存在零点,舍去. 当m =-2时,x ∈[1e 2,+∞),f (1e 2)=1e 2(38e 2-2)<0, 又(1e 2,23)为增区间,且y =f (23)>0,故x 0∈(1e 2,23). 综上,m 的最大值为-2.。

人教A版数学选修2-2全册基础检测题

人教A版数学选修2-2全册基础检测题

人教A 版数学选修2-2全册基础检测题一、单选题1.函数3y x x =+的递增区间是( )A .(0,)+∞B .(,1)-∞C .(,)-∞+∞D .(1,)+∞ 2.已知复数1z i =+(i 为虚数单位),则1z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.若函数21()f x x x =+,则()1f '-=( ) A .1- B .1C .3-D .3 4.下列求导运算不正确的是( )A .()22x x '=B .()1ln 33x x e e '+=+C .()33ln 3x x '= D .()sin cos x x '= 5.观察下列式子:213122+<,221151233++<,222111712344+++<,…,则可归纳出()2221111231n +++⋅⋅⋅++小于( ) A .1n n + B .211n n -+ C .211n n ++ D .21n n + 6.已知a R ∈,若2i 3i 1i a +=++,则a =( ) A .2 B .2- C .3 D .47.已知函数()f x 在1x =处的导数为1,则()()011lim3x f x f x ∆→+∆-=∆ ( ) A .13- B .3 C .13 D .32- 8.函数1()1f x x =+的图象在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为( ) A .2 B .-2 C .4 D .4- 9.某集团军接到抗洪命令,紧急抽调甲、乙、丙、丁四个专业抗洪小组去A ,B ,C ,D 四地参加抗洪抢险,每地仅去1人,其中甲不去A 地也不去B 地,乙与丙不去A 地也不去D 地,如果乙不去B 地,则去D 地的是( )A .甲B .乙C .丙D .丁 10.曲线2y x x =+在点(1,2)P 处切线的斜率为( )A .1B .2C .3D .4 11.已知函数()31f x ax bx =++的图象在点()1,1a b ++处的切线斜率为6,且函数()f x 在2x =处取得极值,则a b +=( )A .263-B .7C .223D .26312.近两年为抑制房价过快上涨,政府出台了一系列以“限购、限外、限贷限价”为主题的房地产调控政策.各地房产部门为尽快实现稳定房价,提出多种方案,其中之一就是在规定的时间T 内完成房产供应量任务Q .已知房产供应量Q 与时间t 的函数关系如图所示,则在以下四种房产供应方案中,供应效率(单位时间的供应量)逐步提高的是( )A .B .C .D .二、填空题13.函数3()3f x x x =-在区间[]1,3-上的最小值为__________.14.已知a 为整数,复数()()1z i a i =--,复数z 在复平面内对应的点在第三象限,则z =______. 15.曲线ln y x x =在点()10,处的切线的方程为__________. 16.某图书出版公司到某中学开展奉献爱心图书捐赠活动,某班级获得了某一品牌的图书共4本,其中数学、英语、物理、化学各一本.现将这4本书随机发给该班的甲、乙、丙、丁四个人,每人一本,并请这四个人在看自己得到的赠书之前进行预测,结果如下:甲说:乙或丙得到物理书; 乙说:甲或丙得到英语书; 丙说:数学书被甲得到; 丁说:甲得到物理书.最终结果显示:甲、乙、丙、丁四个人的预测均不正确,那么甲得到的书是_____三、解答题17.求下列函数的导数.①n 1l y x x=+; ②()()22131y x x =-+;③sincos 22x y x x =-; ④cos x x y e=; 18.已知函数3()33f x x x =-++.(1)求函数()f x 的单调区间;(2)求函数()f x 在[]0,2上的最大值和最小值.19.()()2256815z m m m m i =-++-+,i 为虚数单位,m 为实数.(1)当z 为纯虚数时,求m 的值;(2)当复数8z i -在复平面内对应的点位于第四象限时,求m 的取值范围.20.(1)已知a ,b 都是正数,并且a b ,求证:552332a b a b a b +>+; (2)若x ,y 都是正实数,且2x y =>,求证:12x y +<与12y x+<中至少有一个成立. 21.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A 系列进行市场销售量调研,通过对该品牌的A 系列一个阶段的调研得知,发现A 系列每日的销售量()f x (单位:千克)与销售价格x (元/千克)近似满足关系式2()10(7)4a f x x x =+--,其中47x <<,a 为常数.已知销售价格为6元/千克时,每日可售出A 系列15千克.(1)求函数()f x 的解析式;(2)若A 系列的成本为4元/千克,试确定销售价格x 的值,使该商场每日销售A 系列所获得的利润最大.22.已知函数3()31f x x x =-+.(1)求()f x 的单调区间和极值;(2)求曲线在点(0,(0))f 处的切线方程.参考答案1.C【分析】利用导数的性质进行求解即可.【详解】3'231y x x y x =+⇒=+,因为'0y >在整个实数集上恒成立,所以函数3y x x =+的递增区间是(,)-∞+∞.故选:C2.D【分析】 由复数的运算化简1z,再判断复平面内对应的点所在象限. 【详解】 因为()()11111122i i z i i -==-+-,所以1z 在复平面内对应的点11 ,22⎛⎫- ⎪⎝⎭在第四象限. 故选:D3.C【分析】求得导函数,代入即可求得结果.【详解】21()2f x x x '=-,则13f .故选:C4.B【分析】 根据导数的四则运算法则和常用函数导数公式判断即可.【详解】根据导数的四则运算法则和常用函数导数公式知()ln 30'=,故选项B 不正确.故选:B5.C【分析】根据已知式子分子和分母的规律归纳出结论.【详解】由已知式子可知所猜测分式的分母为1n +,分子第1n +个正奇数,即21n ,()2221112112311n n n ++++⋅⋅⋅+<++∴. 故选:C.6.D【分析】 将2i 3i 1ia +=++,变形为()()2i 3i 1i a +=++,利用复数相等求解. 【详解】 因为2i 3i 1i a +=++, 所以()()2i 3i 1i 24i a +=++=+,所以4a =.故选:D.7.C【分析】()()()()0011111lim lim 33x x f x f f x f x x∆→∆→+∆-+∆-=∆∆,利用导数的定义即可求解. 【详解】()()()()()001111111lim lim 13333x x f x f f x f f x x ∆→∆→+∆-+∆-'===∆∆, 故选:C.8.D【分析】首先求出函数的导函数,再代入求值即可;【详解】解:因为()11f x x =+,所以()21f x x '=-,142f ⎛⎫'=- ⎪⎝⎭. 故选:D9.A【分析】根据题意进行推理可得结果.【详解】因为甲、乙、丙都不去A 地,所以只能是丁去A 地,又甲、乙不去B 地,所以只能是丙去B 地,又乙、丙不去D 地,所以只能是甲去D 地,乙去C 地.故选:A【点睛】本题考查了演绎推理,属于基础题.10.C【分析】求得函数2y x x =+的导数,由导数的几何意义,可令1x =,计算可得所求切线的斜率.【详解】 解:2y x x =+的导数为21y x =+′, 可得曲线2y x x =+在点(1,2)P 处切线的斜率为2113⨯+=.故选:C.【点睛】本题考查导数的运用:求切线的斜率,熟练掌握导数的运算性质是解题的关键,是一道基本题.11.C【分析】 计算()'f x ,然后根据()()2016f f ⎧==''⎪⎨⎪⎩,可得,a b ,最后可得结果. 【详解】由题可知:()'23f x ax b =+,则36,120,a b a b +=⎧⎨+=⎩解得23a =-,8b =. 经检验,当23a =-,8b =时,()f x 在2x =处取得极大值,所以223a b +=. 故选:C【点睛】 本题主要考查曲线在某点处的导数的几何意义,重在于计算以及理解,属基础题. 12.B【分析】根据变化率的知识,结合曲线在某点处导数的几何意义,可得结果.【详解】单位时间的供应量逐步提高时,供应量的增长速度越来越快,图象上切线的斜率随着自变量的增加会越来越大,则曲线是上升的,且越来越陡,故函数的图象应一直下凹的.故选B.【点睛】本题考查变化率的知识,实质上是考查曲线在某点处导数的几何意义,属基础题. 13.2-【分析】根据函数求导判断函数单调性,进而求得最值.【详解】由3()3f x x x =-,得2()33f x x '=-.令0f x ,解得11x =-,21x =.()f x 在区间[]1,1-上单调递减,在区间[]1,3上单调递增,所以最小值为(1)2f =-.故答案为:-2.【点睛】在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.14【分析】利用复数乘法运算法则化简()11z a a i =--+,结合复数对应的点在第三象限以及a 为整数求得0a =,再利用复数模的公式可得答案.【详解】复数()()()111i a i a a i --=--+,若复数在复平面内对应的点在第三象限,则()1010a a -<⎧⎨-+<⎩,解得11a -<<,又a 为整数,则0a =,()()11z i i i =--=--,z =.15.1y x =-【分析】求出导函数,得切线斜率后可得切线方程.【详解】 ln 1y x ,∴切线斜率为1|ln111x k y ='==+=,切线方程为1y x =-.故答案为:1y x =-.16.化学【分析】利用推理可得,乙、丙、丁均提到甲的信息,所以可以推得甲所获得的图书.【详解】因为甲、乙、丙、丁四个人的预测均不正确,乙不正确说明甲没有得到英语书;丙不正确说明甲没有得到数学书;丁不正确说明甲没有得到物理书,综上可知甲得到的是化学书.【点睛】本题主要考查合情推理,结合逻辑进行推理,属于简单题.17.①211y x x'=-;②21843y x x '=+-③11cos 2y x '=-;④y '=-sin cos x x ex +. 【分析】 对于①④,直接利用导数的加法和除法法则可求,②③需要先化简,再用求导公式和导数的运算法则可求.【详解】解:①()21111ln ln y x x x x x x''⎛⎫⎛⎫''=+=+=- ⎪ ⎪⎝⎭⎝⎭. ②因为()()23221316231y x x x x x =-+=+--, 所以()326231y x x x ''=+-- ()()()()32262311843x x x x x ''''=+--=+-.③因为1sin cos sin 222y x x x x x =-=-, 所以111sin sin 1cos 222y x x x x x ''⎛⎫⎛⎫''=-=-=- ⎪ ⎪⎝⎭⎝⎭. ④()()()2cos cos cos sin cos x x x x x x e x e x x x y e e e '''-+⎛⎫'===- ⎪⎝⎭ =-sin cos x x ex+. 【点睛】函数求导常用类型:(1) 基本初等函数:利用求导公式和导数四则运算法则;(2)复合函数:利用复合函数求导法则(3)一些复杂函数需要先化简,再求导.18.(1)区间()1,1-上单调递增;在区间(),1-∞-和()1,+∞上单调递减;(2)5和1【分析】(1)区间()1,1-上单调递增;在区间(),1-∞-和()1,+∞上单调递减(2)5和1【详解】(1)因为函数3()33f x x x =-++,则2()33f x x '=-+令2()033011f x x x '>⇒-+>⇒-<<,2()03301f x x x '<⇒-+<⇒<-或1x >故函数()f x 在区间()1,1-上单调递增;在区间(),1-∞-和()1,+∞上单调递减(2)由(1)可知函数()f x 在区间[]0,1上单调递增;在(]1,2上单调递减所以函数的极大值也为最大值3(1)13135f =-+⨯+=两端点3(0)03033f =-+⨯+=,3(2)23231f =-+⨯+=,即最小值为(2)1f = 故函数()f x 在[]0,2上的最大值和最小值分别为5和1【点睛】本题考查利用导数研究函数单调性以及求最值,属于基础题.19.(1)2m =;(2)()()1,23,7⋃.【分析】(1)根据纯虚数的概念可得出关于m 的等式与不等式,进而可求得实数m 的值;(2)将复数8z i -表示为一般形式,结合条件得出该复数的实部为正数、虚部为负数,可得出关于实数m 的不等式组,即可解得实数m 的取值范围.【详解】(1)由z 为纯虚数得225608150m m m m ⎧-+=⎨-+≠⎩,解得2m =; (2)复数()()2285687z i m m m m i -=-++-+, 因为复数8z i -位于第四象限,所以22560870m m m m ⎧-+>⎨-+<⎩,解得12m <<或37m <<. 故m 的取值范围为()()1,23,7⋃.【点睛】本题考查根据复数的概念与几何意义求参数,考查运算求解能力,属于基础题.20.(1)详见解析;(2)详见解析.【分析】(1)利用综合法,将两式做差,化简整理,即可证明(2)利用反证法,先假设原命题不成立,再推理证明,得出矛盾,即得原命题成立.【详解】(1)()()552332a b a ba b +-+ ()()532523a a b b a b =-+- ()()322322a a b b b a =-+- ()()2233a b a b =-- ()()()222a b a b a ab b =+-++因为a ,b 都是正数,所以0a b +>,220a ab b ++>又a b ≠,所以()20a b ->,所以()()()2220a b a b a ab b +-++>, 所以()()5523320a b a b a b +-+>,即552332a b a b a b +>+. (2)假设12x y +<和12y x +<都不成立,即12x y +≥和12y x+≥同时成立. 0x >且0y >,12x y ∴+≥,12y x +≥.两式相加得222x y x y ++≥+,即2x y +≤.此与已知条件2x y =>相矛盾,12x y +∴<和12y x +<中至少有一个成立. 【点睛】本题主要考查综合法和反证法证明,其中用反证法证明时,要从否定结论开始,经过正确的推理,得出矛盾,即假设不成立,原命题成立,进而得证.21.(1)()21010(7)4f x x x =+--;(2)当销售价格为5元/千克时,A 系列每日所获得的利润最大.【解析】分析:(1)根据题意已知销售价格为6元/千克时,每日可售出A 系列15千克.即可求出a 得到解析式;(2)设该商场每日销售A 系列所获得的利润为()h x ,然后根据利润计算式得出具体表达式,然后根据导数求最值思维求解即可.详解:(1)有题意可知,当6x =时,()15,f x =,即10152a +=, 解得10a =,所以()()2101074f x x x =+--. (2)设该商场每日销售A 系列所获得的利润为()h x ,则()()()23210=41071018010501950(47)4h x x x x x x x x ⎡⎤-+-=-+-<<⎢⎥-⎣⎦, ()2303601050h x x x =+'-,令()2303601050=0h x x x =+'-,得5x =或7x =(舍去), 所以当45x <<时,()()(]0,4,5h x h x >'在为增函数;当57x <<时,()()[)0,5,7h x h x <'在为减函数,故当=5x 时,函数()h x 在区间()4,7内有极大值点,也是最大值点,即=5x 时函数()h x 取得最大值50.所以当销售价格为5元/千克时,A 系列每日所获得的利润最大.点睛:考查函数的表示,导函数最值的应用,正确理解题意,写出具体表达式,然后借助导数分析思维求解是解题关键,做此类题要有耐心,认真审题,读懂题意,属于中档题. 22.(1)极大值为(1)3f -=,极小值为(1)1f =-(2)310x y +-=【详解】试题分析:(Ⅰ)由求导公式和法则求出f′(x ),求出方程f ′(x )=0的根,根据二次函数的图象求出f′(x )<0、f′(x )>0的解集,由导数与函数单调性关系求出f (x )的单调区间和极值;(Ⅱ)由导数的几何意义求出f′(0):切线的斜率,由解析式求出f (0)的值,根据点斜式求出曲线在点(0,f (0))处的切线方程,再化为一般式方程试题解析:(1)3()31f x x x =-+,/2()333(1)(1)f x x x x ∴=-=-+,/()011f x x x ===-设,可得,或.①当/()0f x >时,11x x ><-,或;②当/()0f x <时,11x -<<.当x 变化时,/()f x ,()f x 的变化情况如下表:当1x =-时,()f x 有极大值,并且极大值为(1)3f -=当1x =时,()f x 有极小值,并且极小值为(1)1f =-(2)2033|3x k x ==-=-,(0)1f =13(0)310y x x y ∴-=--⇒+-=.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值。

人教版高中数学选修2-2课后习题参考答案

人教版高中数学选修2-2课后习题参考答案

新课程标准数学选修2—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9)函数()r V =(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=.因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin33x y '=-; (6)y '=习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+.3、()r V '=4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++.5、()8f x '=-+. 由0()4f x '=有 048=-+,解得0x =.6、(1)ln 1y x '=+; (2)1y x =-.7、1xy π=-+.8、(1)氨气的散发速度()500ln0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增;当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+.(1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,注:图象形状不唯一.其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈. 因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>.因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减. 3、(1)图略. (2)加速度等于0. 4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值. 5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16; 当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略 2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<. 令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2Vh R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,(第3题)可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2x m ,半圆的面积为28x π2m , 矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.m 时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c c c x a x b b-=-+⨯=--,54b a x <<.令845()0c ac bcL x x b b+'=-+=,解得458a b x +=.当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<. 当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式 11()nni i i b af x b a n ξ==-∆==-∑∑, 从而 11lim nban i b adx b a n →∞=-==-∑⎰,说明:进一步熟悉定积分的概念.4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx-⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰; 49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l i l n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n-上质量2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55)(1)50; (2)503; (353-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =. 2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰; (3)21cos 2sin 2sin []224mx x mx mxdx dx mπππππππ----==-=⎰⎰; (4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰. 3、(1)0.202220()(1)[]49245245t kt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k ----=-=+=+-=+-⎰.(2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、42403(34)[4]402W x dx x x =+=+=⎰(J ). 习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 42400(4010)[405]80h t dt t t =-=-=⎰(m ).4、设t s 后两物体相遇,则 20(31)105t tt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为 523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60) 1、(1)a -⎰表示圆222x y a +=与x轴所围成的上半圆的面积,因此22aa π-=⎰(2)1]x dx ⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,21111]114242x dx ππ⨯=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b bh h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMm F r '=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略. 5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;(第2题)当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >. 由于所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a --=--,即1()1y x a a =--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--. 令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去.由于所以,当2a =,即直线AB 的倾斜角为135︒时,AOB ∆的面积最小,最小面积为2.9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3. 11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯ 23168.396655.9072 6.34x x=--,5.0898.38x <<.令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x x dx x x dx x x x xπππ-=-=+=+⎰⎰; (5)原式=22001cos sin 2[]224x x x dx πππ---==⎰. 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+时,()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4l r =是函数()S r 在(0,)2l内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h R =.容易知道,h R =是函数()V h 的极大值点,也是最大值点.所以,当3h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x >令0y '=,即29600160x -=,24x ≈.容易知道,24x =是函数y 的极小值点,也是最小值点. 当24x =时,960020(1624)()9412424⨯+÷≈(元/时)所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x =++⨯,50100x ≤≤ 令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xx x x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x=⎧⎨=-⎩得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得 11200()2k k S x x dx kxdx --=--⎰⎰ 31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=. 于是1k =说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程标准数学选修2—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O PQ R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列; ……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq ++==; ……………………………小前提所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈.2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n bb b bb b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形.(第6题)因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略. 2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos2θθθθθθθ-=+-=,所以,命题得证.2>22>,即证1313+>+>只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为 222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B ∠一定是锐角.2=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则 1ax b = ①2ax b = ②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为 (1tan )(1tan )2A B ++=展开得 1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B AB +=-. ① 假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A BA B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得tan tan 11tan tan A BA B +=-, 即tan()1A B +=. 又因为0A B π<+<,所以4A B π+=.说明:本题也可以把综合法和分析法综合使用完成证明.3、因为1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=. 另一方面,要证 3sin 24cos 2αα=-, 只要证226sin cos 4(cos sin )αααα=-- 即证 222sin 3sin cos 2cos 0αααα--=, 即证 (2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b a c=+. 假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得 2b ac = ① 2x a b =+,2y b c =+ ② 要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得 22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由 tan()2tan αβα+= 得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证 3sin sin(2)βαβ=+即证 3sin[()]sin[()]αβααβα+-=++即证 3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=, 因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=, 因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+. 那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++- 1(1)(1)[1]2k k a k d -=+++1(1)(1)2k kk a d +=++所以,当1n k =+时,命题也成立. 根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.习题2.3 A 组(P96) 1、(1)略.(2)证明:①当1n =时,左边=1,右边=211=, 因此,左边=右边. 所以,当1n =时,等式成立. ②假设当n k =时等式成立,即2135(21)k k ++++-=.那么,22135(21)(21)(21)(1)k k k k k ++++-++=++=+.所以,当1n k =+时,等式也成立.根据①和②,可知等式对任何n N *∈都成立.。

[精品]新人教A版选修2-2高中数学第一章 导数及其应用 综合检测和答案

[精品]新人教A版选修2-2高中数学第一章 导数及其应用 综合检测和答案

第一章导数及其应用综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1[答案] A[解析] y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1.2.一物体的运动方程为s=2t sin t+t,则它的速度方程为( ) A.v=2sin t+2t cos t+1B.v=2sin t+2t cos tC.v=2sin tD.v=2sin t+2cos t+1[答案] A[解析] 因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sin t+2t cos t+1,故选A.3.曲线y=x2+3x在点A(2,10)处的切线的斜率是( )A.4B.5C .6D .7 [答案] D[解析] 由导数的几何意义知,曲线y =x 2+3x 在点A (2,10)处的切线的斜率就是函数y =x 2+3x 在x =2时的导数,y ′|x =2=7,故选D.4.函数y =x |x (x -3)|+1( ) A .极大值为f (2)=5,极小值为f (0)=1 B .极大值为f (2)=5,极小值为f (3)=1 C .极大值为f (2)=5,极小值为f (0)=f (3)=1 D .极大值为f (2)=5,极小值为f (3)=1,f (-1)=-3 [答案] B[解析] y =x |x (x -3)|+1=⎩⎪⎨⎪⎧x 3-3x 2+1 (x <0或x >3)-x 3+3x 2+1 (0≤x ≤3)∴y ′=⎩⎪⎨⎪⎧3x 2-6x (x <0或x >3)-3x 2+6x (0≤x ≤3)x 变化时,f ′(x ),f (x )变化情况如下表:极大极小故应选B.5.(2009·安徽理,9)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( ) A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3[答案] A[解析] 本题考查函数解析式的求法、导数的几何意义及直线方程的点斜式.∵f(x)=2f(2-x)-x2+8x-8,∴f(2-x)=2f(x)-x2-4x+4,∴f(x)=x2,∴f′(x)=2x,∴曲线y=f(x)在点(1,f(1))处的切线斜率为2,切线方程为y -1=2(x-1),∴y=2x-1.6.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a等于( )A.2B.3C.4D.5[答案] D[解析] f′(x)=3x2+2ax+3,∵f(x)在x=-3时取得极值,∴x=-3是方程3x2+2ax+3=0的根,∴a=5,故选D.7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)[答案] D[解析] 令F(x)=f(x)·g(x),易知F(x)为奇函数,又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)内单调递增,又F(x)为奇函数,所以F(x)在(0,+∞)内也单调递增,且由奇函数知f(0)=0,∴F(0)=0.又由g(-3)=0,知g(3)=0∴F(-3)=0,进而F(3)=0于是F(x)=f(x)g(x)的大致图象如图所示∴F(x)=f(x)·g(x)<0的解集为(-∞,-3)∪(0,3),故应选D.8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④ [答案] B[解析] ③不正确;导函数过原点,但三次函数在x =0不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选B.9.(2010·湖南理,5)⎠⎜⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2 [答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎜⎛241x dx =ln x |42=ln4-ln2=ln2. 10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 [答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7)=64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.11.已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( )A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152[答案] B[解析] 由题意f ′(x )=3x 2+2bx +c 在[-1,2]上,f ′(x )≤0恒成立.所以⎩⎪⎨⎪⎧f ′(-1)≤0f ′(2)≤0即⎩⎪⎨⎪⎧2b -c -3≥04b +c +12≤0令b +c =z ,b =-c +z ,如图过A ⎝⎛⎭⎪⎫-6,-32得z 最大,最大值为b +c =-6-32=-152.故应选B.12.设f (x )、g (x )是定义域为R 的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (x ) [答案] C[解析] 令F (x )=f (x )g (x )则F ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0 f (x )、g (x )是定义域为R 恒大于零的实数∴F (x )在R 上为递减函数,当x ∈(a ,b )时,f (x )g (x )>f (b )g (b )∴f (x )g (b )>f (b )g (x ).故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.⎠⎜⎛-2-1d x(11+5x )3=________. [答案]772[解析] 取F (x )=-110(5x +11)2,从而F ′(x )=1(11+5x )3则⎠⎜⎛-2-1d x(11+5x )3=F (-1)-F (-2)=-110×62+110×12=110-1360=772.14.若函数f (x )=ax 2-1x的单调增区间为(0,+∞),则实数a 的取值范围是________.[答案] a ≥0[解析] f ′(x )=⎝⎛⎭⎪⎫ax -1x ′=a +1x 2,由题意得,a +1x2≥0,对x ∈(0,+∞)恒成立,∴a ≥-1x2,x ∈(0,+∞)恒成立,∴a ≥0.15.(2009·陕西理,16)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.[答案] -2[解析] 本小题主要考查导数的几何意义和对数函数的有关性质.k =y ′|x =1=n +1,∴切线l :y -1=(n +1)(x -1), 令y =0,x =nn +1,∴a n =lgnn +1,∴原式=lg 12+lg 23+…+lg 99100=lg 12×23×…×99100=lg 1100=-2.16.如图阴影部分是由曲线y =1x,y 2=x 与直线x =2,y =0围成,则其面积为________.[答案] 23+ln2[解析]由⎩⎪⎨⎪⎧y 2=x ,y =1x,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝⎛⎭⎪⎫2,12.故所求面积S =⎠⎜⎛01x d x +⎠⎜⎛121x d x =23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)(2010·江西理,19)设函数f (x )=ln x +ln(2-x )+ax (a >0).(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)求曲线y =2x -x 2,y =2x 2-4x 所围成图形的面积.[解析] 由⎩⎪⎨⎪⎧y =2x -x 2,y =2x 2-4x得x 1=0,x 2=2.由图可知,所求图形的面积为S =⎠⎜⎛02(2x -x 2)d x +|⎠⎜⎛02(2x 2-4x )d x |=⎠⎜⎛02(2x -x 2)d x -⎠⎜⎛02(2x 2-4x )d x . 因为⎝⎛⎭⎪⎫x 2-13x 3′=2x -x 2,⎝ ⎛⎭⎪⎫23x 3-2x 2′=2x 2-4x , 所以S =⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪⎪2-⎝ ⎛⎭⎪⎫23x 3-2x 2⎪⎪⎪⎪2=4.19.(本题满分12分)设函数f (x )=x 3-3ax +b (a ≠0). (1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值;(2)求函数f (x )的单调区间与极值点.[分析] 考查利用导数研究函数的单调性,极值点的性质,以及分类讨论思想.[解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增,此时函数f (x )没有极值点.当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. 20.(本题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.[解析] (1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=x +1x,故f ′(x )>0,∴f (x )的单调增区间为(0,+∞). (2)设g (x )=23x 3-12x 2-ln x ,∴g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0,∴g (x )在(1,+∞)上为增函数, ∴g (x )>g (1)=16>0,∴当x >1时,12x 2+ln x <23x 3.21.(本题满分12分)设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [分析] 本题主要考查导数的应用及转化思想,以及求参数的范围问题.[解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立.所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0.所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.22.(本题满分14分)已知函数f (x )=-x 3+ax 2+1(a ∈R ).(1)若函数y =f (x )在区间⎝ ⎛⎭⎪⎫0,23上递增,在区间⎣⎢⎡⎭⎪⎫23,+∞上递减,求a 的值;(2)当x ∈[0,1]时,设函数y =f (x )图象上任意一点处的切线的倾斜角为θ,若给定常数a ∈⎝ ⎛⎭⎪⎫32,+∞,求θ的取值范围;(3)在(1)的条件下,是否存在实数m ,使得函数g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象与函数y =f (x )的图象恰有三个交点.若存在,请求出实数m 的值;若不存在,试说明理由.[解析] (1)依题意f ′⎝ ⎛⎭⎪⎫23=0,由f ′(x )=-3x 2+2ax ,得-3⎝ ⎛⎭⎪⎫232+2a ·23=0,即a =1.(2)当x ∈[0,1]时,tan θ=f ′(x )=-3x 2+2ax =-3⎝⎛⎭⎪⎫x -a 32+a23.由a ∈⎝ ⎛⎭⎪⎫32,+∞,得a 3∈⎝ ⎛⎭⎪⎫12,+∞.①当a 3∈⎝ ⎛⎦⎥⎤12,1,即a ∈⎝ ⎛⎦⎥⎤32,3时,f ′(x )max =a 23,f (x )min =f ′(0)=0.此时0≤tan θ≤a 23.②当a3∈(1,+∞),即a ∈(3,+∞)时,f ′(x )max =f ′(1)=2a-3,f ′(x )min =f ′(0)=0,此时,0≤tan θ≤2a -3.又∵θ∈[0,π),∴当32<a ≤3时,θ∈⎣⎢⎡⎦⎥⎤0,arctan a 23,当a >3时,θ∈[0,arctan(2a -3)].(3)函数y =f (x )与g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象恰有3个交点,等价于方程-x 3+x 2+1=x 4-5x 3+(2-m )x 2+1恰有3个不等实根,∴x 4-4x 3+(1-m )x 2=0,显然x =0是其中一个根(二重根),方程x 2-4x +(1-m )=0有两个非零不等实根,则⎩⎪⎨⎪⎧Δ=16-4(1-m )>01-m ≠0∴m >-3且m ≠1故当m >-3且m ≠1时,函数y =f (x )与y =g (x )的图象恰有3个交点.。

《师说》2015-2016高中数学人教A版选修2-2课时作业3.1数系的扩充与复数的概念

《师说》2015-2016高中数学人教A版选修2-2课时作业3.1数系的扩充与复数的概念
解析:若z为实数,则sin =cosθ=0,
又∵θ∈ ,∴θ=± .
若z为纯虚数,则有 ⇒θ=0.
答案:± 0
9.已知x2+y2-6+(x-y-2)i=0,求实数x,y的值.
解析:由复数相等的概念,得 解得 或
10.若x、y∈R,且(x-1)+yi>2x,求x,y的取值范围.
解析:∵(x-1)+yi>2x,∴y=0且x-1>2x,
A. B. 或 π
C.2kπ+ (k∈Z) D.kπ+ (k∈Z)
解析:由复数相等定义得 ∴tanθ=1,∴θ=kπ+ (k∈Z),故选D.
答案:D
3.下列命题中:①若x,y∈C,则x+yi=1+i的充要条件是x=y=1;
②纯虚数集相对于复数集的补集是虚数集;
③若(z1-z2)2+(z2-z3)2=0,则z1=z2=z3;
∴x<-1,
∴x,y的取值范围分别为x<-1,y=0.
B组 能力提升
11.关于x的方程3x2- x-1=(10-x-2x2)i有实根,求实数a的值.
解析:设方程的实数根为x=m,
则原方程可化为3m2- m-1=(10-m-2m2)i,
∴ 解得a=11或a=- .
故实数a的值为11或- .
12.求满足条件2≤|z|<3的复数z在复平面上表示的图形.
解析:∵log2(x2-3x-2)+ilog2(x2+2x+1)>1,
∴ ∴x=-2.
答案:{-2}
7.z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i,且z1=z2,则实数m=__________,n=__________.
解析:由复数相等的充要条件有

答案:2±2
8.复数z=cos +isin ,且θ∈ ,若z是实数,则θ的值为__________;若z为纯虚数,则θ的值为__________.

高中数学新人教版选修2-2课时作业:第一章导数及其应用章末检测卷Word版含解析

高中数学新人教版选修2-2课时作业:第一章导数及其应用章末检测卷Word版含解析

2
3
23 3
6.已知曲线 y=x2+2x- 2 在点 M处的切线与 x 轴平行,则点 M的坐标是 ( )
A. ( -1,3)
B.( - 1,- 3)
C. ( -2,- 3)
D.( - 2,3)
答案 B
解析 ∵ f ′(x) = 2x+ 2= 0,∴ x=- 1. f ( - 1) = ( - 1) 2+2×( - 1) - 2=- 3.
C. ( -1,1)
D.( -∞,- 1) 和 (1 ,+∞)
答案 A
解析
y′= 4x3 -4x= 4x( x2- 1) ,令 y′<0 得 x 的范围为 ( -∞,- 1) ∪(0,1) ,故选 A.
3.函数 f ( x) = x3+ ax2+ 3x- 9,在 x=- 3 时取得极值,则 a 等于 ( )
综上所述, 当 2≤a≤4,每件产品的售价为 35 元时,该产品一年的利润最大, 最大利润为 500(5 - a)e 5 万元;当 4<a≤5,每件产品的售价为 (31 + a) 元时,该产品一年的利润最大,最大利润 为 500e9 -a 万元. 21. (12 分 ) 设 f ( x) = a( x- 5) 2+ 6ln x,其中 a∈ R,曲线 y= f ( x) 在点 (1 , f (1)) 处的切线与
1 =,
2 所以 f (1) + f ′(1) = 3.
9.曲线 y= sin
x, y= cos
x 与直线
x=
0,x=
π 2
所围成的平面区域的面积为
(
)
π
A.
2 0
(sin
x- cos x)d x
π
B.2
4 0

人教版高中数学选修2-2单元测试题全套带答案.doc

人教版高中数学选修2-2单元测试题全套带答案.doc

最新人教版高中数学选修2-2单元测试题全套带答案阶段质量检测(一)(B 卷能力素养提升)(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题5分,共50分)已知函数二1,则它的导函数是()y r2(x-l)心_12(x —l)2.设正弦函数y=sinx 在x=U 和x=号附近的瞬时变化率为灯k 2t 则k {f k 2的大小关系为(A ・ ki>k 2B ・ k\<k 2 C. k {=k 2D.不确定解析:选 A k\=y' |x-o =cosx|x -o =l, A 2 —y' |x=?=cosx|x=j=0, 所以 k\>ki.3. 函数/(x ) = 2x —sinx 在(一8, +8)上( )A.有最小值 B.是减函数 C.有最大值 D ・是增函数解析:选 D V/(x )=2x —sinx, :.f (x )=2—co$x;因为f (x )=2—cosx>0 恒成立,所以 fix )=2x — sin x 在(一8, +8)上是增函数.4. 曲线/(x )=x 3+x —2在°)处的切线平行于直线y=4x —1,则p ()的坐标为( )A. (1,0)B. (2,8)C. (1,0)或(一 1, -4)D. (2,8)或(一1, -4)解析:选C 由y=x^+x-2t 得” =3X 2+1,・.•切线平行于直线j=4x-l, A3x 2+1=4,解之得 x=±l,当x=l 时,j=0;当x= —1时,j=—4./.切点P ()的坐标为(1,0)和(一1, —4),故选C ・c.2心一 1 x —1 D-解析: 寸X[选B u=x-l f y f f d 书厂戸-2d)・5.求曲线j=x2与y=x所围成图形的面积,其中正确的是()A・S= i(x2—x)dxB.S=几(x—C.5= f i(y2~y)dyD.S= H(y—&dy解析:选B两函数图象的交点坐标是(0,0), (1,1),故积分上限是1,下限是0,由于在[0z l]±, x^x2, 故函数y=x2与y=x所围成图形的面积S= i(x—x2)dr.6.A.设/(x)=x2-2x-41nx,则/(x)的单调递增区间为( )(0, +°°)B.C.(-l,0)U(2, +8)(2, +°°)令 A x)=3x 2 _*'・ 则 f (x)=6x-x 2・ 当 f (x)=0 时,6x —x 2=0,Ax=0 或 x=6.D. (-ho)解析:选 C f (x)=2x-2 —g,由 2x — 2—£>0,即 ---- 公——>0,解得一 1 VxV0或X >29又因为x>0,所以x>2,故选C. AT7.己知实数a,b,c,(l 成等比数列,且函数j ;=ln(x+2)-x,当x=b 时取到极大值c,则加等于() A. —1B ・0 C. 1D ・2 二jR-l,令 j ;=0 得 x=-l,当一 2VxV-l 时,丿 >0;当 %> — 1 时,丿V0.A. 36C- 25解析:选A ・・・x+3j ,=9, B. 18 D. 42解析:选A y •\ad=bc=~\,故选 A.&已知xMO, yMO, x+3y=9,则兀■的最大值为(9—x 1 x^y =x而/(O)=o, /(6)=3X36-亍X216=36, /(9) = 0.・\Ax)辽大值=/(6)=36・9.已知函数/(X )=«X 3-3X 2+1,若金)存在唯一的零点X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求a1,a2,a3;
(2)猜想{an}的通项公式,并用数学归纳法证明.
高二理科数学周末辅导
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数2=()
A.-3-4iB.-3+4i
C.3-4i D.3+4i
解析:2==-3-4i.
答案:A
解析:(1)当m=1时,f(x)=-x3+x2,
f′(x)=-x2+2x,故f′(1)=1.
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m或x=1+m.
因为m>0,所以1+m>1-m.
当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,1-m)
1-m
(1-m,1+m)
1+m
(1+m,+∞)
f′(x)

0

0

f(x)

极小值

极大值

所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数.
函数f(x)在x=1-m处取得极小值f(1-m),且f(1-m)=-m3+m2-.
函数f(x)在x=1+m处取得极大值f(1+m),且
f′(x)=(x-a)(3x-a))
令f′(x)=0,得x=a或x=.
因为x=a时,f(a)=0≠-4,
所以f=y极小=-4,即a3=-4,a=-3.
所以x2+px+q=(x+3)2,所以p=6,q=9.
答案:C
第Ⅱ卷(非选择题,共70分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.设f(z)=,且z1=1+5i,z2=-3+2i,则f()的值是__________.
解析:∵z -z =(1+5i)-(-3+2i)=4+3i,
∴=4-3i.
∵f(z)=,∴f(4-3i)==4+3i.
答案:4+3i
14.设函数y=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0,则a+b的值为______.
解析:函数y=ax2+bx+k(k>0)在x=0处取得极值,得x=0是导函数2ax+b=0的解,则b=0,曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0,得2a+b=2,所以a=1,a+b=1.
A.极大值为,极小值为0
B.极大值为0,极小值为-
C.极小值为-,极大值为0
D.极小值为0,极大值为
解析:由题设条件知
所以所以
所以f(x)=x3-2x2+x,进而可求得f(1)是极小值,f是极大值.
答案:A
10.设函数f(x)=x3+x2+tanθ,其中θ∈,则导数f′(1)的取值范围是()
A.[-2,2] B.[,]
答案:B
4.下面几种推理中是演绎推理的为()
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列,,,…的通项公式为an=(n∈N+)
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值.
18.(本小题满分12分)在四棱锥P-ABCD中,底面ABCD是一个平行四边形,=(2,-1,-4),=(4,2,0),=(-1,2,-1).
(1)求证:PA⊥底面ABCD;
(2)求四棱锥P-ABCD的体积;
C.y′=3(sinx2)2cosx2
D.y′=6sinx2cosx2
3.设函数f(x)的导函数为f′(x),且f(x)=x2+2x·f′(1).则f′(0)等于()
A.0 B.-4
C.-2 D.2
4.下面几种推理中是演绎推理的为()
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列,,,…的通项公式为an=(n∈N+)
答案:1
15.由曲线y=(x-2)2+1,横坐标轴及直线x=3,x=5围成的图形的面积等于__________.
解析:S=[(x-2)2+1]dx
=(x2-4x+5)dx
==.
答案:
16.若函数f(x)=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是__________.
解析:f′(x)=3x2+2x+m要使f(x)是R上的单调函数,
19. (本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=x3-x+8(0<x≤120).已知甲、乙两地相距100千米.
(1)当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
由图可知f′(-2)=0,f′(3)=0,
∴12-4b+c=0,27+6b+c=0,
∴b=-1.5,c=-18.
∴y=x2-x-6,y′=2x-.
当x>时,y′>0,
∴y=x2-x-6的单调递增区间为.故选D.
答案:D
9.已知函数f(x)=x3-px2-qx的图象与x轴相切于点(1,0),则f(x)的()
答案:A
3.设函数f(x)的导函数为f′(x),且f(x)=x2+2x·f′(1).则f′(0)等于()
A.0 B.-4
C.-2 D.2
解析:因为f(x)=x2+2x·f′(1),所以f′(x)=2x+2f′(1),f′(0)=2f′(1).因为f′(1)=2+2f′(1),所以f′(1)=-2,故f′(0)=-4.
15.由曲线y=(x-2)2+1,横坐标轴及直线x=3,x=5围成的图形的面积等于__________.
16.若函数f(x)=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是__________.
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分10分)设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
C.[,2] D.[,2]
解析:∵f′(x)=sinθx2+cosθx,f′(1)=sinθ+cosθ=2sin,
∵θ∈,∴θ+∈.
∴sin∈.
∴2sin∈[,2].
答案:D
11.设m=exdx,n=dx,则m与n的大小关系为()
A.m<nB.m≤n
C.m>nD.m≥n
解析:m=exdx=ex=e-1>n=dx=lnx=1.
A.192B.202
C.212D.222
6.已知函数f(x)=asin2x-sin3x(a为常数)在x=处取得极值,则a等于()
A.0B.1
C.D.-
7.若f(x)=,0<a<b<e,则有()
A.f(a)>f(b) B.f(a)=f(b)
C.f(a)<f(b) D.f(a)·f(b)>1
8.函数f(x)=ax3+bx2+cx+d的图象如图,则函数y=ax2+bx+的单调递增区间是()
答案:C
5.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=()
A.192B.202
C.212D.222
解析:归纳得13+23+33+43+53+63=2=212.
答案:C
6.已知函数f(x)=asin2x-sin3x(a为常数)在x=处取得极值,则a等于()
A.[-2,2]B.[,]
C.[,2]D.[,2]
11.设m=exdx,n=dx,则m与n的大小关系为()
A.m<nB.m≤n
C.m>nD.m≥n
12.已知函数y=f(x)=x3+px2+qx的图象与x轴切于非原点的一点,且y极小=-4,那么p,q的值分别为()
A.p=3,q=8B.p=6,q=8
C.p=6,q=9D.p=4,q=9
高二理科数学周末辅导
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数2=()
A.-3-4iB.-3+4i
C.3-4i D.3+4i
2.函数y=(sinx2)3的导数是()
A.y′=3xsinx2·sin2x2
B.y′=3(sinx2)2
须使Δ=4-12m≤0,∴m≥.
答案:m≥
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分10分)设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值.
2.函数y=(sinx2)3的导数是()
A.y′=3xsinx2·sin2x2
B.y′=3(sinx2)2
C.y′=3(sinx2)2cosx2
D.y′=6sinx2cosx2
解析:y′=[(sinx2)3]′=3(sinx2)2·(sinx2)′=3(sinx2)2·cosx2·2x=3×2sinx2·cosx2·x·sinx2=3x·sinx2·sin2x2,故选A.
∴f(x)在(0,e)上为增函数.
∴f(a)<f(b).
答案:C
8.函数f(x)=ax3+bx2+cx+d的图象如图,则函数y=ax2+bx+的单调递增区间是()
A.(-∞,-2] B.
相关文档
最新文档