滑坡监测技术方案

合集下载

滑坡防治工程勘查规范中的监测技术与数据分析方法

滑坡防治工程勘查规范中的监测技术与数据分析方法

滑坡防治工程勘查规范中的监测技术与数据分析方法滑坡是一种地质灾害,常常给人们的生命财产安全带来极大的威胁。

为了及时预警和准确评估滑坡的危险性,滑坡防治工程勘查中的监测技术和数据分析方法非常重要。

本文将介绍滑坡防治工程勘查规范中的一些常用监测技术以及数据分析方法。

一、监测技术1. 岩土物理勘察技术岩土物理勘察技术是滑坡防治工程勘查中常用的技术之一。

通过对岩土体的物理特性进行测试和分析,可以确定滑坡体的内部结构、力学性质以及滑坡体与周围环境的相互关系。

常用的岩土物理勘察技术包括钻孔、电阻率测量、声波测量等。

2. 遥感技术遥感技术通过获取地表信息的照片、图像和数据等,以非接触的方式监测滑坡的动态变化。

遥感技术可以提供滑坡的空间分布、运动速度和滑坡体变形的信息,为滑坡防治工程提供有效数据支持。

常用的遥感技术包括航空遥感和卫星遥感。

3. 地下水位监测技术地下水位监测可以反映滑坡体内水分的含量和流动状况,对滑坡的稳定性分析具有重要意义。

常见的地下水位监测技术包括水位计测量、孔隙水压力计测量和土壤含水量测量等。

4. 高精度位移监测技术高精度位移监测技术可以实时监测滑坡体的位移和变形情况,为滑坡预警和防治工程提供重要依据。

常用的高精度位移监测技术包括全站仪测量、GPS测量和遥感测量等。

二、数据分析方法1. 监测数据的处理与分析监测数据的处理与分析是滑坡防治工程勘查中非常重要的一步。

在数据处理过程中,需要对数据进行校正和筛选,排除干扰因素,并进行数据归纳和整理。

在数据分析过程中,需要采用合适的数学模型和统计方法,以评估滑坡的稳定性和变形趋势。

2. 监测数据的时序分析监测数据的时序分析是指对滑坡监测数据按照时间序列进行分析,以掌握滑坡的动态变化特征。

常用的时序分析方法包括波形分析、周期性分析、功率谱分析和趋势分析等,通过对监测数据的时序分析,可以揭示滑坡体的运动规律和变形趋势。

3. 监测数据的空间分析监测数据的空间分析是指对滑坡监测数据按照空间位置进行分析,以掌握滑坡的空间分布特征。

山体滑坡监测方案

山体滑坡监测方案

山体滑坡监测方案1. 引言山体滑坡是一种突发性地质灾害,造成了巨大的人员伤亡和财产损失。

为了及时预警和采取有效的措施,需要建立山体滑坡的监测系统。

本文将介绍一种山体滑坡监测方案,包括系统的组成、监测指标和监测方法。

2. 监测系统组成山体滑坡监测系统由以下几个部分组成:2.1 传感器网络传感器网络是监测系统的核心部分,用于收集山体滑坡相关的数据。

传感器可以包括倾斜度传感器、温度传感器、湿度传感器等。

这些传感器将定期或实时地采集数据,并通过无线通信传输给数据控制中心。

2.2 数据控制中心数据控制中心是监测系统的数据处理和分析中心。

它接收来自传感器网络的数据,并对数据进行处理和分析。

数据控制中心还负责生成预警信号和发送给相关部门。

2.3 数据存储和备份为了确保数据的安全性和可靠性,监测系统需要建立数据存储和备份机制。

数据存储可以使用云存储或本地服务器进行,同时需要定期进行数据备份,以防止数据丢失。

2.4 数据展示界面为了方便用户查看监测数据和预警信息,监测系统需要提供数据展示界面。

数据展示界面可以包括数据图表、地图等,使用户可以清晰地了解山体滑坡的监测情况。

3. 监测指标山体滑坡监测的指标主要包括以下几个方面:3.1 倾斜度倾斜度是山体滑坡的重要监测指标。

通过倾斜度传感器可以实时测量山体的倾斜角度,并告知相关部门。

3.2 温度和湿度温度和湿度也是山体滑坡监测的关键指标。

温度和湿度传感器可用于监测山体内部的温度和湿度变化,进而判断可能出现滑坡的风险。

3.3 地下水位地下水位的变化对山体滑坡具有重要影响。

通过地下水位监测仪可以实时监测地下水位的变化,提前预警滑坡的发生。

4. 监测方法为了实现山体滑坡的监测,可以采用以下几种方法:4.1 遥感技术遥感技术可以通过卫星图像等来监测大范围的山体滑坡情况。

这种方法可以帮助快速发现和识别潜在的滑坡风险区域。

4.2 GIS技术GIS技术可以将山体滑坡的监测数据进行空间分析和展示。

滑坡监测方案

滑坡监测方案

滑坡监测方案滑坡是指地表或坡面上的土石物质因重力作用而发生向下滑动的现象。

滑坡频繁发生的地区对土地使用和人类居住产生了严重的影响,因此滑坡监测和预警方案的制定对于保障人民的生命财产安全至关重要。

本文将介绍一个滑坡监测方案,并阐述其主要内容和实施步骤。

一、方案目标滑坡监测方案的目标是实时监测滑坡的发生和演变过程,及时预警并采取相应的措施,以减少滑坡对生命财产和环境造成的损害。

二、监测方法1. 地形监测:利用高精度GPS、激光测距等技术对滑坡区域及其周边地形进行定期监测,以了解地形变化情况。

2. 环境监测:监测降雨量、地下水位、土壤湿度等环境因素的变化,以判断滑坡发生的可能性。

3. 应力监测:利用应变计和压力传感器等设备监测滑坡区域的地下水压力和土体应力,以评估滑坡的发生风险。

4. 预警监测:将监测到的数据信息传输至监测中心,通过数据分析和模型预测,及时发出滑坡预警,通知相关的部门和人员。

三、监测设备和技术1. 高精度GPS:用于地形监测,能够准确测量地表的位置和高度,并与历史数据进行比较,判断地形的变化情况。

2. 激光测距仪:用于地形监测,能够通过激光束测量地面或其他物体的距离,实现高精度的地形测量。

3. 应变计:用于应力监测,能够测量土体的应变变化情况,判断土体的稳定性。

4. 压力传感器:用于应力监测,能够测量地下水的压力,并监测水位变化,为判断滑坡风险提供参考。

5. 数据传输系统:通过无线技术或者互联网将监测数据传输至监测中心,保证数据的准确和及时性。

四、实施步骤1. 选择监测区域:根据滑坡的历史数据和地质条件,选择潜在的滑坡区域进行监测。

2. 安装监测设备:在选定的监测区域安装GPS、激光测距仪、应变计、压力传感器等监测设备,并将其与数据传输系统连接。

3. 数据监测和分析:定期收集和存储监测数据,并进行数据分析和模型预测,以判断滑坡的发生风险。

4. 预警和应对措施:根据监测数据和预测结果,及时发出滑坡预警,并通知相关的部门和人员采取相应的措施,如疏散人员、修复道路等。

滑坡变形监测实施方案

滑坡变形监测实施方案

滑坡变形监测实施方案一、引言。

滑坡是地质灾害中常见的一种,其对人类生命财产造成的危害不可小觑。

为了及时发现滑坡变形的迹象,采取有效的监测措施,制定一套科学合理的监测实施方案显得尤为重要。

本文将就滑坡变形监测的实施方案进行探讨,以期为相关工作者提供参考。

二、滑坡变形监测技术。

1. 定位监测技术。

定位监测技术是通过全球定位系统(GPS)和卫星雷达干涉技术等手段,实现对滑坡位置的精确定位。

通过定期对滑坡位置进行监测,可以及时掌握滑坡的位置变化情况,为后续的监测工作提供数据支持。

2. 地面变形监测技术。

地面变形监测技术是通过地面变形监测仪器,如倾斜仪、位移仪等,对滑坡周边地面的变形情况进行监测。

这些监测仪器可以实时监测地面的倾斜角度和位移情况,一旦发现异常变化,就能及时报警,为滑坡的防范和治理提供重要数据支持。

3. 遥感监测技术。

遥感监测技术是通过卫星遥感和无人机遥感等手段,对滑坡区域进行高分辨率的影像监测。

通过对滑坡区域的遥感监测,可以获取大范围、全方位的滑坡信息,为滑坡变形的监测和预警提供重要数据支持。

三、滑坡变形监测实施方案。

1. 确定监测区域。

首先需要对滑坡区域进行详细的调查和分析,确定监测的范围和重点区域。

根据滑坡的规模和地质条件,合理划分监测区域,确定监测点位和监测方案。

2. 建立监测网络。

在确定监测区域后,需要建立完善的监测网络,包括定位监测点、地面变形监测点和遥感监测点。

通过这些监测点的布设,可以实现对滑坡区域的全方位监测,为滑坡变形的及时监测提供数据支持。

3. 确定监测频次。

根据滑坡的特点和监测需求,确定监测的频次和监测时间。

一般情况下,对于高危险性的滑坡区域,监测频次可以适当增加,以确保对滑坡变形的及时监测和预警。

4. 建立监测预警机制。

在监测实施过程中,需要建立健全的监测预警机制,一旦发现滑坡变形的异常情况,及时启动预警机制,通知相关部门和人员进行应急处理和处置,最大限度减少滑坡灾害对人类生命财产的危害。

滑坡防治工程勘查规范中的监测与预警技术及措施

滑坡防治工程勘查规范中的监测与预警技术及措施

滑坡防治工程勘查规范中的监测与预警技术及措施滑坡是一种重大地质灾害,给人们的生命和财产造成了巨大的损失。

为保障公众的安全,滑坡防治工程的勘查、监测与预警是其中至关重要的一环。

本文将介绍滑坡防治工程勘查规范中的监测与预警技术及措施。

一、勘查阶段的滑坡监测与预警技术1. 采集地质、地形和水文数据在滑坡防治工程的勘查阶段,需要获取地质、地形和水文数据。

通过地形观测、地质调查以及水文数据采集,可以全面了解滑坡发生的可能原因和机制,为后续的监测与预警提供依据。

2. 应用遥感技术遥感技术是一种跨越时间和空间的快速获取地面信息的方法。

利用卫星、飞机等载体传感器获取的图像数据,可以对滑坡进行监测与预警。

遥感技术可以检测滑坡的位移、形态变化等,提供及时准确的监测数据。

3. 地面测量与雷达监测地面测量与雷达监测是滑坡监测中常用的技术手段。

通过现场的测量和监测设备,可以实时检测滑坡的位移和地应力变化等。

同时,雷达监测可以通过无线电波对土体进行探测,得到土壤中的湿度和密度等信息,为滑坡预警提供数据支持。

二、施工阶段的滑坡监测与预警技术1. 数据采集与处理在施工阶段,需要采集和处理滑坡相关的各项数据。

包括滑坡位移、地应力、地下水位和降雨等数据,通过数据比对和分析,可以及时发现滑坡风险。

2. 建立监测预警系统在施工阶段,可以建立滑坡监测预警系统。

该系统包括数据采集仪器、监测点布设、数据传输与处理等设备和技术手段。

通过实时监测和预警,可以及时采取防治措施,保障工程的安全施工。

三、运营阶段的滑坡监测与预警技术1. 实时监测滑坡位移在运营阶段,需要实时监测滑坡的位移状况。

通过安装位移传感器等设备,可以实时采集滑坡的位移数据,及时掌握滑坡的变化趋势,为预警和防治措施提供依据。

2. 多参数综合监测除了位移监测之外,还可以进行多参数的综合监测。

包括地应力、地下水位、降雨量等多个因素的监测,通过综合分析,可以更加准确地判断滑坡的风险,并及时采取相应的预警措施。

滑坡变形监测方案

滑坡变形监测方案

滑坡变形监测方案1. 简介滑坡是一种常见的地质灾害,其发生通常与地表的巨大滑动、失稳和破坏有关。

为了及时掌握滑坡的变形状况,保护人民生命财产安全,采取监测滑坡变形的措施十分必要。

本文将介绍一种滑坡变形监测方案,包括监测方法、监测设备和数据处理等方面的内容。

2. 监测方法2.1 动态监测动态监测是通过实时采集滑坡变形数据,通过分析数据的变化趋势,判断滑坡的稳定性和可能发生的危险性。

常用的动态监测方法包括:•连续位移监测:使用位移传感器或卫星定位技术,定期测量滑坡的位移变化,以便实时掌握滑坡的变形情况。

•GPS监测:通过安装GPS接收器,测量滑坡上各测点的三维位移,可以实时监测滑坡的变形变化。

•遥感监测:利用遥感技术获取滑坡区域的高分辨率遥感影像,通过对影像的比对分析,判断滑坡的变形情况。

•声波监测:通过在滑坡区域埋设声波传感器,并结合声波测量仪器,实时监测滑坡区域的声波振动情况,以判断滑坡的变形情况。

2.2 静态监测静态监测是通过定期采集滑坡变形数据,对数据进行分析和处理,以评估滑坡的稳定性和可能的风险。

常用的静态监测方法包括:•光纤测温监测:通过在滑坡区域埋设光纤传感器,利用传感器对温度的敏感性,测量滑坡的表面温度变化,以判断滑坡的变形情况。

•声波监测:通过在滑坡区域埋设声波传感器,并结合声波测量仪器,定期监测滑坡区域的声波振动情况,以评估滑坡的变形情况。

•遥感监测:利用遥感技术获取滑坡区域的高分辨率遥感影像,通过对影像的比对分析,评估滑坡的变形情况。

3. 监测设备3.1 位移传感器位移传感器是监测滑坡位移变化的重要设备,常用的位移传感器有:•激光位移传感器:通过激光测距技术,测量滑坡上测点的位移变化。

•压电位移传感器:通过测量压电位移传感器的电阻变化,来判断滑坡位移的变化情况。

•GPS位移传感器:通过GPS定位技术,测量滑坡上测点的三维位移变化。

3.2 声波传感器声波传感器可以实时监测滑坡区域的声波振动情况,以判断滑坡的变形情况。

滑坡防治工程勘查规范中的监测与预警措施设计

滑坡防治工程勘查规范中的监测与预警措施设计

滑坡防治工程勘查规范中的监测与预警措施设计滑坡是指地表或地下的土体或岩石在受到外部力作用下,发生不稳定运动并沿着一定倾向面发展的地质灾害。

为了有效预防和减轻滑坡灾害,滑坡防治工程的勘查规范中必须包含监测与预警措施设计。

一、监测措施设计1.表面位移监测表面位移监测是滑坡工程监测的基础,它能提供滑坡体的位移变化情况。

在滑坡防治工程勘查中,应布置一定数量和密度的位移监测点以监测滑坡的活动情况。

常用的表面位移监测方法包括全站仪法、GPS法、遥感监测等。

在设计监测方案时,应考虑滑坡的特点和规模,确定监测点的位置和布设方式。

2.地下水位监测地下水位是引起滑坡的主要因素之一,因此地下水位监测是滑坡防治工程中重要的监测指标。

监测地下水位可以采用孔内压力计、水位计等设备,并确定监测孔的位置和数量。

通过连续监测地下水位的变化,可以了解滑坡体的水分动态变化,及时采取相应的防治措施。

3.地表水位监测地表水位监测用于了解滑坡附近河流、湖泊等水体的水位变化情况。

可以利用水位计、压力传感器等设备进行监测,通过监测结果可以判断地表水位升高是否对滑坡产生影响,及时预警并采取相应的措施。

4.地表变形监测地表变形监测是指通过测量地表的倾斜、收敛、扩张等变形情况,判断滑坡体的变形活动情况。

常用的地表变形监测方法包括测斜仪、GNSS监测等。

在滑坡防治工程勘查中,应根据滑坡的规模和特点确定监测点位置和密度,并选择合适的监测设备。

二、预警措施设计1.预警指标的确定根据滑坡的特点和监测结果,需要确定一些预警指标,从而实现对滑坡发展态势的监测与预警。

预警指标的选择应具备敏感性、稳定性和可操作性,能够提前预测滑坡发展的危险性和可能发生的时间点。

常见的预警指标包括位移速率、倾斜率、地下水位等。

2.预警级别的划分根据预警指标的监测结果,应划分不同的预警级别,以便及时采取对应的措施。

预警级别划分应考虑滑坡规模、稳定性和威胁程度等因素。

常见的预警级别划分为一级、二级、三级等,不同级别对应不同的应急措施和疏散预案。

滑坡位移监测方案

滑坡位移监测方案

背景和目的滑坡是一种常见的地质灾害,它对人类的生活和财产安全造成了严重威胁。

为了及时发现并监测滑坡的位移变化,制定一套完善的滑坡位移监测方案是非常必要的。

本文将介绍一种滑坡位移监测方案,旨在帮助相关地质工作者进行滑坡位移监测工作。

方案概述本方案结合地质工作实践,采用多种监测手段相结合的方式,将滑坡位移监测工作划分为实地调查、监测点布设、数据采集和数据分析四个阶段进行。

具体方案如下:1. 实地调查在开始滑坡位移监测之前,必须对滑坡进行充分的实地调查。

实地调查的目的是了解滑坡的地质特征、变形机制和环境因素等信息,为后续的监测点布设和数据分析提供依据。

实地调查应包括以下内容:•滑坡的地质构造特征:包括岩性、断裂带、节理、岩层倾角等。

•滑坡的地形特征:包括坡度、坡向、地貌等。

•滑坡的变形特征:包括已知或可观测到的裂缝、滑带、滑坡体变形等。

•滑坡周围的环境因素:包括水文地质条件、降雨情况、植被状况等。

2. 监测点布设根据实地调查结果和滑坡的特征,选择合适的监测点进行布设。

监测点的位置应涵盖滑坡的关键部位,以便及时掌握滑坡的位移情况。

监测点布设应符合以下原则:•选择稳定的地质体作为监测点,避免选择存在滑动倾向的地质体。

•监测点的周围环境稳定,不受其他因素的干扰。

•监测点之间要覆盖滑坡的关键部位,以保证所监测的位移数据具有代表性。

3. 数据采集采用多种手段对监测点进行数据采集,以获得准确的位移信息。

常用的数据采集手段包括:•GNSS(全球导航卫星系统)测量:利用GNSS接收器对监测点进行实时定位,获得位移信息。

•高精度测距仪测量:利用高精度测距仪对监测点进行定距测量,获得位移信息。

•断面测量:定期对滑坡体进行断面测量,获得位移信息。

•摄像监测:利用摄像设备对监测点进行长期拍摄,获得位移信息。

数据采集应定期进行,采集频率应根据滑坡的变化情况进行调整。

4. 数据分析通过对采集到的位移数据进行分析,得出滑坡的位移状态和变化趋势,为预测滑坡的发展趋势提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滑坡监测技术方案版权所有©广州中海达测绘仪器有限公司香港理工大学土地测量与地理资讯学系2009年3月15日目录1.背景 (4)2.滑坡监测目的、方案设计依据与原则 (4)2.1监测目的 (4)2.2监测方案设计依据 (5)2.3监测方案设计原则 (5)3.滑坡监测内容、方法和仪器 (6)3.1地表变形监测 (6)3.1.1常规精密大地测量技术 (6)3.1.2 GPS测量技术 (7)3.1.3 GPS与全站仪混合监测技术 (8)3.1.4实施与规范要求 (8)3.2滑坡深部位移监测 (11)3.2.1深部位移监测的方法与作用 (11)3.2.2测斜仪器 (12)3.2.3测斜仪的布置 (12)3.3地下水位动态监测 (13)3.4孔隙水压力监测 (14)3.5支护结构应力应变监测 (15)3.5.1 抗滑桩钢筋应力应变监测 (15)3.5.2抗滑桩侧土压力监测 (16)3.5.3 锚索应力监测 (17)3.6水库水位监测 (18)3.7地表裂缝位错监测 (18)3.8宏观地质调查 (19)4.集成GPS的多传感器滑坡自动化监测方案设计 (19)4.1系统框架结构 (19)4.2仪器的选择与布设 (20)4.3自动化采集系统方案 (22)4.4滑坡监测信息管理与分析系统 (24)4.4.1系统总体功能结构 (24)4.4.2地质地理信息管理 (25)4.4.3监测信息管理 (26)4.4.4监测信息分析 (26)5.GPS变形监测子系统 (27)5.1监测模式的选择 (27)5.2监测网的布设 (28)5.3系统结构设计 (29)5.3.1数据接收部分 (30)5.3.2数据传输与数据采集部分 (31)5.3.3数据处理部分 (32)5.4监测设备配置及其技术指标 (34)5.4.1测站设备配置 (34)5.4.2监控中心设备配置 (34)5.5安装与施工 (35)5.6测量更新频率及测量精度 (36)6.总结 (36)附录1:香港理工大学安科GPS变形监测软件系统(GDMS) (38)附录2:多天线开关控制器 (1)附录3:滑坡监测系统的远程数据采集解决方案 (2)附录4:CX-3C型测斜仪使用技术要求 (6)附录5:VI-600型固定式测斜仪使用技术要求 (10)滑坡监测技术方案2009年3月25日(V 1.0)1.背景滑坡是指场地由于地层结构、河流冲刷、地下水活动、人工切坡几各种震动等因素的影响,致使部分或全部土体(或岩体)在重力作用下,沿着地层软弱面(或软弱带)整体向下滑动的不良地质现象。

滑坡是工程地质问题中常见的一种自然灾害,在山区及河谷地带尤为常见。

许多重要的工厂和居民区就建在滑坡上或是靠近滑坡的地方,滑坡引起的山体垮塌及暴雨后形成的泥石流常给国家建设和人民生命财产造成严重损害。

我国是一个崩塌、滑坡、泥石流等地质灾害发生十分频繁和灾害损失极为严重的国家,尤其是西部地区。

根据中国地质环境监测院地质灾害调查监测室的数据,2006年发生地质灾害102804起,其中滑坡占87%;2007发生25364,其中滑坡占61%;2008年1-3月发生3106,其中滑坡占67.42%。

每年由此造成的直接经济损失约200亿人民币,其造成的人员伤亡高达数百人。

因此,做好地质灾害监测和预警,特别是滑坡体的监测和预警,对于有效减少直接经济损失和人员伤亡显得尤为重要。

滑坡之所以能造成严重损害,是因为难以事先准确预报发生的地点、时间和强度。

滑坡灾害预防,重在监测。

为防患于未然,必须对滑坡进行监测,实现滑坡危害的早期预报。

2.滑坡监测目的、方案设计依据与原则2.1监测目的主要任务是通过各种测量手段,建立地表和地下深部的3维立体监测网,对边(滑)坡进行系统、可靠的变形监测。

主要目的为确定边(滑)坡变形动态(包括滑坡体变形方向、变形速度、变形范围等) ,并对变形发展和变形趋势作出预测,判断边坡稳定状态,给出边坡失稳预警值,指导施工、反馈设计和检验治理效果,了解工程实施后边坡的变化特征,为最优化设计、施工提供科学依据。

以处治边(滑)坡为对象的边坡变形监测主要分为:(1)施工期安全监测在施工期对边坡位移(地表水平位移、垂直位移、深部位移)、支护结构应力应变、地下水和库水位等的监测;(2)处治效果监测是检验边坡处治设计与施工效果,是判断处治后边坡稳定性的最具说服力的手段;(3)长期动态监测结合施工期监测结果,保持监测数据的连贯性,在防治工程后期开始,对边坡体进行动态跟踪,以掌握处治边坡稳定性的变化情况和特征,据此评价和预测处治后的边坡长期稳定性。

2.2监测方案设计依据监测工作主要依据以下技术规范和资料:(1)技术规范1、《建筑变形测量规程》(JGJ 8-2007);2、《滑坡防治工程勘察规范》(DZ×××-2005)(征求意见稿);3、《建筑边坡工程技术规范》(GB 50330-2002);4、《公路路基设计规范》(JTG F10-2004);5、《公路工程地质勘察规范》(JTJ 064—98);6、《工程测量规范》(GB50026—93);7、《混凝土坝安全监测技术规范》(DL/T5178——2003);8、《全球定位系统(GPS)测量规范》(GB/T18314—2001);9、《土石坝安全监测技术规范》。

(2)勘察、设计资料工程地质勘察、整治工程设计资料2.3监测方案设计原则(1) 监测工作的布置应基本上能控制整个边坡可能的变形,监测设施的布置应考虑长久、稳定、可靠、不易被破坏,测量基准控制点应在边坡范围以外稳定的基岩上。

(2) 方法和仪器的选择要能反映出边破的变形动态,且仪器维护方便、费用节省的原则。

监测仪器的选择原则是:仪器性能可靠、精度足够、使用简易且不易损坏。

(3) 施工前监测、施工期监测、处治效果监测和长期监测相结合的原则。

(4)避免或减少施工干扰。

应尽量采用勘探洞和排水洞预埋仪器;施工活动应各方通气,进行文件会签;应尽量采用抗干扰能力强的仪器,保护设施力求可靠。

(5)监测设计应留有余地。

监测过程中可能存在一些不确定的因素,如地质条件不十分清楚,随施工开挖可能发现一些地质缺陷、设计时未估计到的不稳定契体,即可能出现一些设计中未能考虑到的问题,那时,需要修改和补充。

3.滑坡监测内容、方法和仪器滑坡稳定性的监测涉及到一系列特定的参数及其随时间的变化量,如降雨量、土壤湿度、地下水位及移动特征。

其中最重要的两个参数是地下水位和移动特征。

滑坡的移动特征由滑动面的深度、方向、移动量和移动速度来表征。

通过监测这些参数中的一项或多项就能达到监测滑坡的目的。

根据有关规范,对滑坡危害程度属于一级的滑坡,应建立以地表变形、裂缝位错、深部位移、地下水位、库水水位、支护结构应力应变变化的立体监测系统,监控滑坡整体变形。

3.1地表变形监测3.1.1常规精密大地测量技术用常规精密大地测量方法进行水平位移监测时,一般是在滑坡监测区外建立平面控制网,使用精密测距仪、电子经纬仪或电子全站仪进行观测,以获取滑坡平面位移监测的参考基准。

平面控制网一般包括基准网、校核网、监测网,控制点分为基准点、校核点、工作基点、监测点等,为了保持点位的稳定性,均需要建造一定尺寸的钢筋混凝土墩标。

首先对基准网进行观测,在判断基准网稳定的情况下,通过对监测点的多期观测,可计算监测点的坐标变化量,进而分析监测点的滑移量、滑移方向、滑移速度等。

常规精密大地测量方法测量精度高,观测量通过组网,可以进行测量结果的校核与精度评定该方法灵活多变,适用于不同形状、不同精度要求和不同外界条件的滑坡监测。

用常规精密大地测量方法进行滑坡监测,通常布设测边测角控制网。

常规精密大地测量方法监测水平位移,技术手段成熟,适应性强,但有时网形复杂,观测条件较多,观测周期长、费用高、工效低,适合中小型滑坡的水平位移监测。

通常用精密水准测量方法对滑坡进行垂直位移监测,又称沉降观测,该方法属于一维变形测量。

根据监测精度要求不同,通常采用一等水准测量或二等水准测量的精度要求进行。

观测采用精密水准仪或电子水准仪,配用因瓦水准尺。

进行沉降监测一般是须设置基岩标,作为地面沉降观测的基准点,再在沉降地域布设沉降观测点,以一定周期重复进行水准测量,经过多期水准测量和地面沉降观测资料的分析研究,计算出各沉降观测点的各期沉降量、累计沉降量、沉降速率等数据,从而为沉降区域的治理提供科学依据。

3.1.2 GPS测量技术GPS在测量中的应用主要有两种方式:绝对定位和相对定位。

差分相对定位至少需要两台接收机,差分的目的主要是为了消除接收机钟差、卫星钟差以及削弱空间相关的大气延迟误差,通过相应得GPS后处理软件进行数据处理,可使GPS测量精度达到毫米级,这种模式称为静态测量模式。

Real Time Kinematic (简称RTK)GPS 定位技术是一种基于载波相位观测值的实时动态相对定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,这种模式成为动态测量模式,其测量精度约为1~2厘米。

与常规的方法相比,利用GPS 进行变形监测具有以下主要优点:①不受气候条件的限制,能在台风、大雾、暴风雨等恶劣天气条件下全天候进行工作;②监测点与已知参考点间无需通视;③能够直接测定监测点的三维坐标值;④自动化程度高,能够进行实时动态监测;⑤不同监测点可以进行同步测量。

作为一种全新的自动变形监测方法,GPS 具有其独特的优越性,它克服了传统的变形监测方法的众多缺陷。

由于滑坡的变形比较缓慢,所以GPS用于滑坡变形监测常采用周期性重复测量和连续静态测量方式。

前者按照一定周期(如:一月一次)进行野外采集数据,然后回到室内下载数据并进行静态后处理;后一种方式则是从数据采集、数据传输到数据处理全部自动处理,一旦系统建立,无需人工到现场进行作业,非常适用于处于危险期或在恶劣天气及监测环境条件下的滑坡监测,达到近实时的监测要求。

3.1.3 GPS与全站仪混合监测技术用传统边角测量方法的地表位移监测一般需要在稳定的地段,设置测量基准点,布设基准网,并在被监测地段设置若干监测点,利用基准点监测监测点的位移,所以要求监测点与附近基准点应通视。

有时很难在边坡附近稳定区域内找到通视条件好的位置布设基准点,基准网难以采用常规的边角网进行布设;另外边坡位移监测点之间通视也很困难,常规边角网形式的变形监测网也难以布设,交会法与极坐标法也因基准点及监测点的通视条件限制而无法应用。

而GPS静态测量无需基准点与工作基点间相互通视,只需要每个观测点上空有较大的可视天空即可,基准点可选在远离变形影响范围的稳定区域,保证监测结果的可靠性,故可考虑采用整体大范围内布设GPS变形监测网,局部小范围内用全站仪极坐标法监测的综合监测方法,既方便了监测工作的开展,又极大地减少了监测成本。

相关文档
最新文档