浮法玻璃的退火

合集下载

浮法玻璃退火

浮法玻璃退火
力状态,中间则处于张应力状态 ---玻璃表面和中间的温度差异决定了厚度方向
上的残余应力
应力的分类
❖ 宽度方向上 ---在浮法玻璃厚度方向上沿板宽方向所产生 的残余应力 ---玻璃带边部处于压应力状态(尺寸较长), 中部处于张应力状态 (尺寸较短), 因为边部 比中部更早通过应变点 (482℃)
退火窑各区的设置
或降低发生炸裂区的中部温度(加大风量) ❖ 注意:炸板后一定要检查炸板区下面是否有碎玻璃
在玻璃板下或辊子中间,并将其及时清掉,以防止 这些碎玻璃造成玻璃板下表面划伤。
ห้องสมุดไป่ตู้
应力的产生说明
应力的产生说明
❖ 在温度低于应力点时,处于弹性变形温度范 围内(即脆性状态)的玻璃在经受不均匀的 温度变化时所产生的热应力,随温度梯度的 存在而存在,随温度梯度的消失而消失,这 种应力称为暂时应力。
应力的分类
❖ 厚度方向上 在浮法玻璃厚度方向上沿玻璃前进方向
所产生的残余应力 ---玻璃上表面和下表面首先通过应变点 ---持续的冷却使玻璃上表面和下表面处于压应
退火窑各区的设置
❖ E区 : RET2区和F1区之间的过渡区 。 ❖ F区: —目的是实现对玻璃的最后的直接强制冷却。 —每个区都配备有风管喷嘴,喷嘴布置在玻璃板的上、
下方,由2台电动风机供给冷却风。 —风管喷嘴布置在离玻璃板固定远处。 —这些区域的窑顶横向分成5个可单独调节的区域。 —这些区域窑底没有横向分区,但总流量可手动调节。
或降低边部温度。
退火窑的应急事故处理
❖ 暂时退火状况 ❖ 所有由暂时应力引起的问题均可通过调整C、
D区或强制冷却区来解决。哪个区发生问题 就调整哪个区。若问题是出在D区或是E区, 则对C区进行调节。

浮法玻璃退火

浮法玻璃退火

浮法玻璃退火温度对玻璃的影响
浮法玻璃重新加热到开始塑性变形时才有可能消除应力,玻璃只有在低于退火下线温度下冷却,永久应力才不会产生,因为此时黏度已经增大,热弹力不可能再松弛。

玻璃带在退火区(B区)温差过大,玻璃冷却太快,造成永久内应力超标,导致切割、搬运时容易破裂。

如果冷却太慢,又会使离窑温度过高,暂时应力得不到消除,导致玻璃带不好切割而造成破裂。

玻璃带上下冷却不对称在玻璃板上表现为:
上面较下面冷的快则上面压应力大,板面向下弯曲。

下面较上面冷的快则下面压应力大,板面向上弯曲。

玻璃带横向冷却不匀在玻璃板上表现为:
平板玻璃在退火窑冷却区,如果玻璃边部呈波状而且很容易被抬起(边松),这时,边部温度较中间高,相对中部处于膨胀状态,边部产生张应力而承受压应力,而玻璃中部温度较边部低,相对边部处于收缩状态,此时,中部产生压应力而承受张应力,易在室温下发生掉边和横向破裂。

如果边部很紧不易抬起,这时边部温度较中间低,相对中部处于收缩状态,边部产生压应力而承受张应力,而玻璃中部温度较边部高,相对边部处于膨胀状态,此时,中部产生张应力而承受压应力。

苏愚。

浮法玻璃退火窑的颗粒流动与均匀化分析

浮法玻璃退火窑的颗粒流动与均匀化分析

浮法玻璃退火窑的颗粒流动与均匀化分析随着人们对于玻璃品质的不断提高,浮法玻璃退火窑的设计和操作变得至关重要。

浮法玻璃是一种广泛应用于建筑、汽车和家电等领域的高透明度玻璃。

在制造过程中,退火窑是不可或缺的环节,它能够通过控制玻璃的冷却速度和温度分布来优化玻璃的机械性能和光学质量。

而窑内颗粒流动和均匀化是影响退火效果的重要因素。

首先,让我们了解一下浮法玻璃退火窑的基本原理。

浮法玻璃在玻璃液区被连续挤压出来后,进入退火窑。

退火窑通常由多个加热区域和冷却区域组成,每个区域的温度都经过精确控制。

玻璃经过连续的冷却和加热过程,以达到理想的退火效果。

这个过程中,颗粒的流动是决定玻璃均匀化的关键因素之一。

在退火窑中,玻璃颗粒会受到重力和热传导的影响而发生流动。

颗粒在窑内的流动方式通常分为两种,一种是层流流动,即颗粒在退火窑底部形成水平层流;另一种是湍流流动,即颗粒在窑内形成湍流状态。

一般来说,湍流流动可以更好地促进颗粒之间的混合和均匀化,从而提高玻璃品质。

在实际操作中,设计和优化退火窑的关键是要使得颗粒能够均匀地流动。

如果颗粒流动不均匀,将会导致玻璃产生不均匀的应力和温度分布,从而影响玻璃的品质。

为了保证颗粒流动的均匀性,可以通过以下方法进行分析和优化:首先是对于窑内流场的模拟和计算。

利用流体力学模型,可以对颗粒流动进行数值模拟,从而获得颗粒的速度和流动方向信息。

通过模拟和计算,可以发现可能存在的流动死角和流动堵塞等问题,并进行相应的调整和改进。

此外,还可以通过模拟计算来优化窑内的温度分布,以提高退火效果。

其次是通过实验验证模拟结果。

虽然数值模拟可以提供很多有用的信息,但是实验数据仍然是不可或缺的。

实验可以通过对窑内放置探测器来获得颗粒流动和温度分布的实际数据。

通过对比实验结果和模拟数据,可以验证模拟的准确性,并进行必要的修正和调整。

另外,窑内的结构和设备也对颗粒的流动和均匀化起着重要的影响。

合理设计窑内结构,例如燃烧器的位置和排放口的设置,能够改善流场分布,并促进颗粒的流动。

浮法玻璃的退火

浮法玻璃的退火

浮法玻璃的退火(2008-07-05 08:28:59)分类:专业技术标签:应力玻璃板退火区冷却区杂谈1 浮法玻璃退火的原理和目的玻璃液在锡槽成形后经过退火窑退火,由高温可塑性状态转变为室温固态玻璃的过程是逐步控制的降温过程。

在此过程中,由于玻璃是热的不良导体,其不同部位及内外层会产生温度梯度,造成硬化速度不一样,将引起玻璃板产生不均匀的内应力,这种热应力如果超过了玻璃板的极限强度,便会产生炸裂。

同时,内应力分布不均也易引起切割上的困难。

浮法玻璃退火的目和就是消除和均衡这种内应力,防止玻璃板的炸裂和利于玻璃板的切割。

浮法玻璃的应变点温度即退火下限温度是一个关键的温度点,通常情况下在470℃左右。

退火窑在此温度之前称为退火区,玻璃板处在塑性状态;在此温度之后称为冷却区,玻璃板处于弹性状态。

玻璃板在塑性状态和弹性状态下会产生不同的应力(张应力和压应力),调整方向正好相反。

由于浮法玻璃是连续性的生产,玻璃板是连续运动的玻璃带,其退火与传统退火理论有所不同。

如:玻璃板下由于紧贴辊道,散热空间较板上小,相同的情况下,板上的散热量要高于板下,浮法玻璃的退火我们主要考虑玻璃板横向和上下表面的温度控制,退火后理想的状态是;玻璃板有一定的应力曲线分布(边部受压应力、中部受张应力、板上受张应力、板下受压应力),使其具有一定的强度,又不易破碎和有利于切割。

2 退火窑的主要结构和分区现在浮法退火窑是全钢电加热风冷型,主要的结构有两种:比利时的克纳德冷风工艺和法国的斯坦茵热风工艺。

现在国内大多数采用克纳德结构,我们主要讨论此结构的退火窑。

退火窑一般分力7个区,从前至后分别是A区、B区、C区、D区、E区、Ret区和F区,有的区还可分成几个小区。

A区:又称加热均热区,温度范围在600~550℃,在此区玻璃板尽可能均化开,自动控制达到退火前的温度范围,此区设有上、下电加热抽屉及管束式辐射冷却器,冷却方式为风机抽风,辐射换热冷却。

浮法玻璃退火窑常规操作

浮法玻璃退火窑常规操作

浮法玻璃退火窑常规操作3 常规操作3.1边松边部压应力大,12mm以下玻璃边部用手能抬起来,玻璃太厚了抬不动。

玻璃易横炸。

调整:开大退火后区边部风量,或升高退火前区边部温度。

3.2边紧边部张应力大,12mm以下玻璃边部用手很难抬起来,玻璃易纵炸。

调整:关小退火后区边部风量,或降低退火前区边部温度。

3.3退火温度调整方法 :A 、B 、C 三区以调整温度设定值为主 , 如切手动控制 , 则直接调整风阀开度 , 对温度的调节幅度每次应控制在 2 ℃以内 ; RET区、 F 区及冷端边部吹风则调整风阀开度或变频器频率值;退火调整应从后往前 , 即先调敞开区风阀 , 如无效再往前调 C、B、A 三区的温度;3.4 发现异物的处理 :在锡槽吹扫清洗水包及故障应急处理时应坚守在敞开区后 , 观察板面上是否有硅碳棒等异物 , 锡槽工操作时如发现有异物落于板面上应及时通知退火工;跟踪异物 , 若在退火窑内炸裂 , 应记下位置 , 事后找出异物交生产科处理 ( 如未找到应汇报 ); 若异物至F 区仍未炸 , 则应敲下异物交生产科处理 ; 严禁异物进入碎玻璃系统;3.5 改品种时的操作应注意及时调整退火温度,防止玻璃炸裂,如薄改厚,要及时关小RET区F区的风阀。

4 应急处理4.1停电停电时的处理 :关风机风阀,关风机,进行尽可能的保温;如主传动未停应在RET 区水炸玻璃;4.2断板锡槽断板后的处理 :关闭各区风阀 , 护送残余玻璃安全通过退火窑 , 如玻璃变形严重 , 则应将热电偶提起 ;关退火窑各风机 , 适当开启电加热维持窑内温度 ;检查并清理退火窑内碎玻璃 , 尤其是卡在退火窑辊子间的碎玻璃。

4.3风机停转当出现风机停机时会在中控室盘面上报警 , 应在盘面上予以确认 , 然后到现场找到该风机及相应控制柜和操作盘面 , 重新启动; 如退火窑风机ABC不能启动,应将该风机闸板关死,将中间闸板打开,用一台风机抽板上板下的风,同时通知动仪人员维修.若是F区风机,如一用一备都不能启动,则通知动仪人员维修,加大其他区的风阀开度.4.4退火缺陷4.4.1纵炸 :原因 : 由于玻璃边部呈张应力或中部呈压应力 , 即边部较紧所致 ;处理 :退火区 ( 指 A 、 B 区 , 下同 ) 降低边部温度或增加中部温度 ;退火后区 ( 指 C 区及其后各区 , 下同 ) 提高边部温度或降低中部温度 ; 关闭退火窑两侧门窗 , 在 F 区两侧设挡风板。

浮法玻璃退火产生的缺陷及控制

浮法玻璃退火产生的缺陷及控制

浮法玻璃中退火产生的缺陷及控制河南理工大学张战营一、玻璃的退火玻璃退火的目的是减弱和防止玻璃制品中出现过大的残余内应力和光学不均匀性,稳定玻璃内部的结构。

玻璃的退火可分成两个主要过程:一是玻璃中内应力的减弱或消失,二是防止内应力的重新产生。

玻璃中内应力的减弱和消除是以松弛理论为基础的,所谓内应力松弛是指材料在分子热运动的作用下使内应力消散的过程,内应力的松弛速度在很大程度上决定于玻璃所处的温度。

玻璃在加热或冷却过程中,由于其导热性较差,在其表面层和内层之间必然产生温度梯度,因而在内外层之间产生应力。

这种由于温度梯度存在而产生的内应力称为温度应力或热应力,此种内应力的大小,既取决于玻璃中的温度梯度,又与玻璃的热膨胀系数有关(玻璃的化学成分决定玻璃的热膨胀系数)。

热应力按其存在的特点可分为暂时应力和永久应力。

暂时应力,当玻璃受不均匀的温度变化时产生的热应力,随着温度差的存在而存在,随温度差的消失而消失,被称为暂时应力。

应力的建立和消失过程。

当制品冷却开始时,因为玻璃的外层冷却速度快,所以外部温度比内部温度低,外层收缩大,而这时内层温度较高,且力求阻碍外层收缩,这样造成玻璃外层产生张应力,内部产生压应力。

在张应力过渡到压应力之间存在着中间层,其应力值为零。

当冷却接近结束时,外层体积几乎不再收缩,但此时玻璃内部仍有一定的温度,其体积力求收缩,此时造成外部受压应力,内层受张应力。

由此可见,在冷却结束时,产生的应力恰好和冷却开始时产生的应力性质相反,两者可以得到部分抵消。

冷却全部结束时,即当玻璃的外层温度和内层温度趋向完全一致时,上述两种应力恰好抵消。

我们称这种应力为暂时应力。

永久应力,当温度消失时(制品的表面和内部温度均等于常温时),残留在玻璃中的热应力称为永久应力,又称为内应力。

玻璃中永久应力的成因,是由于在高温的弹塑性阶段热应力松弛而形成的温度变形被“冻结”下来的缘故。

当玻璃板逐渐冷却到室温均衡时,玻璃中残存的应力实际等于玻璃在高温阶段松弛掉的热弹应力,但方向相反。

浮法玻璃退火窑的烟气冷却与酸洗工艺

浮法玻璃退火窑的烟气冷却与酸洗工艺

浮法玻璃退火窑的烟气冷却与酸洗工艺浮法玻璃是一种常用的工业玻璃制造方法,其制备过程中需要经历退火、冷却和酸洗等环节。

本文将重点讨论浮法玻璃退火窑的烟气冷却与酸洗工艺,介绍其原理、过程和影响因素,并提出优化措施。

一、浮法玻璃退火窑的烟气冷却工艺1. 工艺原理浮法玻璃退火窑烟气冷却工艺的目的是将高温烟气冷却至适宜的温度范围,以保证后续酸洗环节的进行。

通过冷却,可使烟气中的酸性物质与浮法玻璃表面产生反应,降低玻璃表面的杂质含量,提高产品质量。

2. 工艺过程浮法玻璃退火窑的烟气冷却工艺一般分为三个步骤:预冷、主冷和尾气冷却。

首先是预冷,即将高温烟气通过设备预冷至200℃左右。

预冷的目的是为了防止高温烟气直接进入主冷设备,减轻主冷设备的负荷,同时也有助于降低烟气中的粉尘含量。

接下来是主冷,主要通过传热设备(如烟气换热器)将烟气冷却至100℃以下。

主冷设备可以选择不同的形式,如水冷却器、空气冷却器等,具体根据工艺要求和设备性能进行选择。

最后是尾气冷却,即将主冷设备出口处的烟气再次冷却至30℃左右。

尾气冷却有利于降低排放温度,保护环境,并可回收烟气中的热量,提高能源利用效率。

3. 工艺影响因素浮法玻璃退火窑的烟气冷却工艺受多个因素的影响,包括原料质量、冷却设备性能及操作参数等。

首先是原料质量,原料中的杂质含量、粒度大小等都会影响烟气冷却工艺的效果。

较高的杂质含量和较大的粒度会增加烟气冷却设备的堵塞风险,降低换热效率。

其次是冷却设备性能,包括冷却器的传热效率、换热面积等参数。

冷却器传热效率的高低直接影响烟气冷却的效果。

传热面积的大小与冷却效果密切相关,它取决于冷却器的设计和操作参数。

最后是操作参数,如烟气流速、冷却介质的流量与温度,都会影响烟气冷却的效果。

适当提高烟气流速和冷却介质流量可以增加换热强度,加快烟气冷却速度。

二、浮法玻璃退火窑的酸洗工艺1. 工艺原理浮法玻璃退火窑的酸洗工艺的目的是去除玻璃表面的杂质,使玻璃表面更加干净,提高产品质量。

浮法玻璃退火工艺

浮法玻璃退火工艺

浮法玻璃退火工艺
永久应力产生原因分析
永久应力大小和产生是分子位移的结果 玻璃是热的不良导体,在冷却过程中,相邻的地方不可能是 同一个降温速度,这就注定在过程中会存在温差,这个温 差,决定了谁先进行到刚性体的先后顺序,最终反映出有的 地方分子停止位移,有的地方还可以位移,这种位移差将, 导致在同一块玻璃上的应力松弛的不同,从而产生永久应力。
1.75:1冷却 速度
退火冷却速度按6mm计算一般选18.52℃/min
各区长度就 可以算出了
浮法玻璃退火工艺
CUND退火窑的结构
电加热
上部辐射管
传动辊道
风机
下部辐射管
热电偶
进风口
出风口
A区的结构
浮法玻璃退火工艺
CUND退火窑的结构
电加热
上部双辐射管
风机
传动辊道
下部双辐射管
热电偶
出风口
进风口
B/C区的结构
6、退火下限:玻璃在此温度保持 3min,应力消除5%的温度范围,450480℃
弹性体 刚性
永久应力与上下限温度范围内的降温速度有太大的关系
浮法玻璃退火工艺
1 退火基本原理
自由流动的熔体
玻璃在冷却过程中,黏度呈指数剧 增。温度由516.05 ℃降至常温, Δt 成型前 =486.05℃,物理特性却呈现出连续、
30℃ 在
应力合-10+7=-3=应力松弛的量
450℃以上产生永久应力,以下不 会
板边长于板中部
无论何应力都不能超过极限,包括两者应力的叠加
浮法玻璃退火工艺
永久应力与什么有关
1.与厚度有关 2.与退火区纵向冷却速度有关 3.与退火区横向冷却速度有关 4.与退火区上下冷却速度有关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浮法玻璃的退火(2008-07-05 08:28:59)分类:专业技术标签:应力玻璃板退火区冷却区杂谈1 浮法玻璃退火的原理和目的玻璃液在锡槽成形后经过退火窑退火,由高温可塑性状态转变为室温固态玻璃的过程是逐步控制的降温过程。

在此过程中,由于玻璃是热的不良导体,其不同部位及内外层会产生温度梯度,造成硬化速度不一样,将引起玻璃板产生不均匀的内应力,这种热应力如果超过了玻璃板的极限强度,便会产生炸裂。

同时,内应力分布不均也易引起切割上的困难。

浮法玻璃退火的目和就是消除和均衡这种内应力,防止玻璃板的炸裂和利于玻璃板的切割。

浮法玻璃的应变点温度即退火下限温度是一个关键的温度点,通常情况下在470℃左右。

退火窑在此温度之前称为退火区,玻璃板处在塑性状态;在此温度之后称为冷却区,玻璃板处于弹性状态。

玻璃板在塑性状态和弹性状态下会产生不同的应力(张应力和压应力),调整方向正好相反。

由于浮法玻璃是连续性的生产,玻璃板是连续运动的玻璃带,其退火与传统退火理论有所不同。

如:玻璃板下由于紧贴辊道,散热空间较板上小,相同的情况下,板上的散热量要高于板下,浮法玻璃的退火我们主要考虑玻璃板横向和上下表面的温度控制,退火后理想的状态是;玻璃板有一定的应力曲线分布(边部受压应力、中部受张应力、板上受张应力、板下受压应力),使其具有一定的强度,又不易破碎和有利于切割。

2 退火窑的主要结构和分区现在浮法退火窑是全钢电加热风冷型,主要的结构有两种:比利时的克纳德冷风工艺和法国的斯坦茵热风工艺。

现在国内大多数采用克纳德结构,我们主要讨论此结构的退火窑。

退火窑一般分力7个区,从前至后分别是A区、B区、C区、D区、E区、Ret区和F区,有的区还可分成几个小区。

A区:又称加热均热区,温度范围在600~550℃,在此区玻璃板尽可能均化开,自动控制达到退火前的温度范围,此区设有上、下电加热抽屉及管束式辐射冷却器,冷却方式为风机抽风,辐射换热冷却。

B区:又称重要退火区,温度范围在550~450℃。

此区是玻璃板产生永久应力区。

控制好冷却速度,可以减少永久应力。

此区每节内装有板上边部电加热箱与管束辐射冷却器,冷却方式为抽风,辐射换热冷却。

C区:又称缓慢冷却区,温度范围在450~270℃,此区在不产生过大的暂时应力条件下,提高冷却速度,使玻璃板温度降低,此区装有板上边部电加热箱与多层管束辐射冷却器, 冷却方式为风机抽风辐射换热冷却。

以上三区为保温区,壳体内一般充填硅酸铝纤维毡,故要求其密闭性和保温性能要好。

通常,浮法玻璃应变点在B区后部,A区、B区也称为退火区,C区以后称为冷却区。

D区:又称为封闭或自然冷却区。

E区:为一敞开过渡区。

Ret区:又称为热风循环强制对流冷却区。

此区对玻璃板的冷却采用可调温的热风进行强制直接对流冷却,分为Retl区和Ret2区两个区。

F区:又称为快速冷却区。

温度范围在120—60℃。

此区对玻璃板的冷却采用室温空气强制接触对流冷却。

C区以后为非保温区,炸裂一般发生在D区以后。

3 玻璃板在退火过程中出现的问题和解决方法。

玻璃板在退火过程中容易出现的问题主要是炸裂和切割困难,从炸裂的成因上又分为在退火区和冷却区产生的炸裂,主要形成是纵炸和横炸。

主要发生的地点在D区以后,切割困难主要包括横切掰断不齐和纵刀掰边多角少角,以下分别论述。

3.1 炸裂3.1.1 纵炸:是指沿玻璃板拉引方向上发生的纵向裂纹,一般较长会损失较多的玻璃。

原因:发生炸裂的一侧受张应力过大,如果存在结石或微裂纹等薄弱点,炸口易从此开始向前延伸。

玻璃板具体表现为边紧,用手很难将玻璃板边部从辊道上掂起(指薄玻璃,厚玻璃不明显)。

纵炸一般是从退火窑后区向前区延伸发生,调整一般在炸裂端的前一区开始调整。

调整方法:(1)如果裂纹延伸到Ret区、D区内a.裂纹靠近边部,说明此侧的张应力大(图1) 适当降低A区此侧温度设定值或升C 区此侧温度设定值。

b.若裂纹在板中部,说明板两侧张应力大。

适量降低A区板两侧温度设定值或升C区板两侧温度设定值或按相反方向调整板下部的温度。

(2) 若裂纹在F区以后a.若裂纹在板边部,说明此侧的张应力大,减少Ret区此侧的吹风量,或增加Ret1区中部和另一侧的吹风量。

b.裂纹在板中部,说明板两侧的张应力大,增加板中部的吹风量或减少板两侧的吹风量。

3.1.2 横炸是指玻璃板宽度方向上的炸裂,一般影响几米长的玻璃,有时仅为一条炸线。

原因:主要是受压应力影响,表现为边松,玻璃板运行时有打辊子的现象,用手很容易能将玻璃板边部掂起。

(1)调整方法s.第一种情况:如图2,通常仅为一条炸线,出现在玻璃板有薄弱点的地方(例如:夹杂物),这样的炸裂是正常的,可不必作调整。

图2b.第:二种情况:如图3,呈“丫”字型,“丫”字方一侧压应力过高,增加“丫”字形一侧的吹风量,如不行可在B区或C区做相应的调整。

图3C第三种情况:如图4,炸裂呈“X”型,说明板两侧压应力高,增加板两侧的吹风量或减少板中的吹风量或在A区、C区做相应的调整。

图4(2)切割当中遇到的问题浮法玻璃出退火窑后进入切割区,如确认非切割刀具问题,仍出现横断不齐和掰边多角少角现象,说明是退火原因造成的。

浮法玻璃理想的切割状态是:板两侧受压应力,中间受张应力;板上受张应力,板下受压应力。

故在设定各区温度时,可在不产生炸裂的情况下,人为考虑以上因素,例如:A区板中温度可设定高于板边,C区板下温度高于板上温度。

3.2.1 横断时出现的退火问题a.掰断时,玻璃板为“丫”形,如图5,说明此侧的压应力过大。

调整:适量增加F区此侧的吹风量。

图5b.第二种情况如图6,玻璃板中部压应力大。

调整:增加F区中部吹风量。

图6c.第三种情况如图7,玻璃板中部张应力大。

调整:减少F区中部吹风量或增加边部吹风量。

图7d.第四种情况。

当出现掰断不沿刀痕或掰断声响,这时上表面压应力过大。

调整方法:增加F区上表面吹风量或减少F区下表面吹风量。

3.2.2 纵切时出现的退火问题a.难切割,刀过不好掰。

原因:玻璃板在重要冷却区板上降温过快,板下受过大的张应力造成的,或是Rct 区或F区下部吹风量大造成的。

调整方法:适量提高退火区板上温度,或提高F区或Ret区板上吹风量,减少板下吹风量。

b.掰断时,沿刀痕自动裂开。

说明边部受张应力过大,减少F区此侧的吹风量。

在生产厚玻璃或薄玻璃时,由于成形的特殊性,会造成玻璃板边部和中部相比过薄和过厚的情况,影响退火温度,这就需要在退火温度设定时加以考虑,有时玻璃板运行偏斜或摆动,设备故障如蝶阀坏,均会影响退火。

以上讨论的均是热应力对退火的影响,结构应力和机械应力有时也会对退火造成影响。

例如;原料配错料或大量使用碎玻璃,有时会造成玻璃板在退火窑长时间的不规则状的炸裂;退火窑辊子材质不好,因停闪电次数多受热不均匀而弯曲变形,玻璃板经过这样的辊子时会造成破碎,遇到这种情况,可针对具体条件采取相应的措施。

例如对于辊子问题,对弯曲严重的可校正或更换,也可把辊子加工成带有凹凸槽的花辊子,以消除机械应力的影响。

以上退火的操作,往往凭借的是实际的工作经验,具有较大的主观性,建议在退火窑F区后,横切机前安装在线应力分析仪,应力仪能对玻璃板退火的情况进行直观及时的观测分析,能够尽早发现问题及时做调整。

对浮法玻璃的退火阶段出现的问题,要针对实际情况做具体的分析,不能一概而论,需要强调指出的是,退火窑在新建和冷修时,需加强壳体的密封性和保温性,特别是辊子轴头的密封。

退火浮法玻璃市场上常见的大部分窗玻璃都是退火平板玻璃或简单退火玻璃。

退火浮法玻璃的生产是熔化的玻璃连续不断地流到溶融的锡槽上,并漂浮在锡槽的表面上形成一个平板。

玻璃的厚度取决于熔化玻璃的流动速度。

如果流动速度小,玻璃就厚。

由于锡的熔点低于玻璃,所以熔化玻璃到了锡槽内就慢慢冷却变成固体。

一旦玻璃凝固,就被装进退火炉慢慢变冷使残余应力降到最小。

使用这种制造方法,就可以得到上下两面近似平行的平板玻璃。

尽管退火玻璃具有较小的残余表面应力,但仍然易碎。

退火玻璃是所有工业生产的玻璃中最易碎的,包括强烈的空气、人的撞击以及由于温度的变化产生的热应力变化(热应力破碎将在这章后面详细讨论)。

退火玻璃破碎时,会破碎成许多大小不一的、尖锐的、不规则的碎片。

不同的破碎原因有可能会使这些碎片以很快的速度飞溅,造成一系列身体上的伤害甚至死亡(尤其是在爆炸、地震和强暴风时)。

热处理玻璃该玻璃与钢化玻璃(下面讨论)的生产过程相似,不过,这种玻璃仅仅被加热到1150℉并缓慢冷却,其结果呈内部是张力而外部是压力状态。

这种玻璃比钢化玻璃的弯曲和翘曲能力更小,但它的强度相当于退火玻璃的两倍。

由于它的破碎机理与退火玻璃相似,因此虽然经过热处理提高了强度,但通常仍不被作为安全窗用玻璃。

除了弯曲性(或翘曲性)外,玻璃的所有原始性能都被保留下来没有变化,这就意味着通过加热降低玻璃的应力,使得玻璃能够抵抗更强烈的风沙和冰雹的撞击。

钢化玻璃和热处理玻璃都是热处理的结果,这可以通过边缘或表面压力的大小来定义。

表面压力是热处理过程(强化)的最终结果:玻璃的外表面保持高压状态,中间则为张力状态。

热处理玻璃不防火。

就象钢化玻璃一样,热处理玻璃按固定尺寸生产,在热处理后不能进行切割、钻孔或磨边。

钢化玻璃钢化玻璃是通过加热并快速冷却获得的产品,其内部结构发生了变化并提高了强度。

退火玻璃原片加热到1200℉左右,开始软化,将外表面快速冷却,从而表面产生了很高的压力。

钢化玻璃的强度是普通退火玻璃的四倍,结构的变化带来了重大的好处。

首先,玻璃强度更高了;其次,在破碎时成为非常小的碎片而不是退火玻璃那种较大的碎片,这对于因为人的意外撞击带来的风险大大降低:如滑动门、商店前门或玻璃窗。

其他的例子如汽车的侧玻璃窗和后风挡等。

钢化玻璃还有一个更大的好处,就是可以抵抗由于温度的变化产生的玻璃裂纹。

这种现象就是所谓的热破裂,通常温差较大时发生在玻璃中央和边部,这也可能是由于环境的不同而引起的。

如玻璃被不均匀的阴影或局部阴影罩住引起温度的不同,这种温差导致玻璃内部应力不同,从而产生破碎(裂纹)。

如果是钢化玻璃就不可能出现这样的问题。

如果是镀膜或染色钢化玻璃,这些镀膜或颜色会加大玻璃的吸热量,从而增加玻璃的应力。

对这类玻璃来说,也有一些不足的地方:不是一种安防产品,因而不能保护商店橱窗里的物品,比如不能阻挡或延缓入侵者通过玻璃窗进入室内;发生爆炸时,这种产品也不能阻挡就象霰弹一样的数千爆炸碎片进入室内。

当然,比退火玻璃的抗冲击波性能要好。

在很多情况下,在高风险区域必须使用钢化玻璃及其同类产品,以确保符合当地建筑法规。

化学强化玻璃是另一种类型的玻璃产品,将玻璃浸入低于退火温度的熔融盐池中,玻璃表面会产生离子交换,这是一个复杂的过程,超出了我们的探讨范围。

相关文档
最新文档