求轨迹方程的常用方法

合集下载

求轨迹方程的五种方法

求轨迹方程的五种方法

求轨迹方程的五种方法
1.参数方程法:利用参数方程表示曲线上任意一点的坐标,一般形式为x=f(t),y=g(t),其中t为参数。

2. 一般式法:将曲线的一般式y=ax^2+bx+c和y=k(x-h)^2+v表示成标准式,然后进行配凑,求得曲线的轨迹方程。

3.隐式方程法:将曲线的形状表示成一些等式或者不等式,通过解方程或者判断不等式的不等关系确定曲线的轨迹方程。

4.极坐标方程法:对于极坐标系下的曲线,可通过极坐标方程
r=f(θ)来表示其轨迹方程。

5.向量函数法:将曲线表示为向量函数,即曲线上的任意一点p处的位置矢量可以表示为一个向量f(t),则曲线的轨迹方程可以表示为
r(t)=f(t)。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。

求轨迹方程的常用方法

求轨迹方程的常用方法
5.(2010年上海)动点P到点F(2,0)的距离与它到直线x+2=0的 距离相等,则P的轨迹方程为__y_2_=__8_x_.
精选课件
5
方法技能形成与突破
考点1 利用直接法求轨迹方程 例1:如图 12-4-1 所示,过点 P(2,4)作互相垂直的直线 l1, l2.若 l1 交 x 轴于 A,l2 交 y 轴于 B,求线段 AB 中点 M 的轨迹方程.
圆、双曲线、抛物线、圆等),可用定义直接探求.
精选课件
2
(4)相关点法:动点 P(x,y)依赖于另一动点 Q(x0,y0)的变化而 变化,并且 Q(x0,y0)又在某已知曲线上,则可先用 x,y 的代数式 表示 x0,y0,再将 x0,y0 代入已知曲线得要求的轨迹方程.
(5)参数法:当动点 P(x,y)坐标之间的关系不易直接找到,也 没有相关动点可用时,可考虑将 x,y 均用一中间变量(参数)表示, 得参数方程,再消去参数得普通方程.
C.双曲线 D.抛物线
精选课件
7
考点2 利用定义法求轨迹方程
例 2:(2011 年广东)设圆 C 与两圆(x+ 5)2+y2=4,(x- 5)2 +y2=4 中的一个内切,另一个外切.
(1)求 C 的圆心轨迹 L 的方程;
(2)已知点
M3
5
5,4
5
5,F(
5,0),且 P 为 L 上动点,求
||MP|-|FP||的最大值及此时点 P 的坐标.
图 D21
精选课件
12
因为|MA|=|MB|, 所以|MC2|-|MC1|=|BC2|-|AC1|=3-1=2. 这表明动点 M 到两定点 C2,C1 的距离之差是常数 2. 根据双曲线的定义,动点 M 的轨迹为双曲线的左支(点 M 到 C2 的距离大,到 C1 的距离小). 这里 a=1,c=3,则 b2=8. 设点 M 的坐标为(x,y),其轨迹方程为 x2-y82=1(x≤-1).

轨迹方程的求法.

轨迹方程的求法.

3.定义法:
1.用几何方法论证动点的轨迹是某种圆锥曲线. 2.根据已知坐标判定该曲线的方程是标准方程. 3. 算出标准方程中所需的数据. 4. 写出方程,注意范围.
定义法求轨迹
如图,在△ABC中边BC=a,若三内角满足 sinC- sinB=(1/2) sinA,求点 A的轨迹方程。
解:以BC所在的直线为x轴,BC中 点为坐标原点,建立如图所示的直 角坐标系,则 B(-a/2 , 0) , C(a/2 , 0),设A(x,y)则
轨迹方程的求法
1.直接法
2.代入法
3.定义法 4.参数法
5.点差法
1.直接法
①建立合适的坐标系 ②设轨迹上任一点M(x,y)
③找出M所满足的几何条件 ④将几何条件转化为代数式
⑤化简整理
⑥证明或检验
直接法求轨迹 解:易知已知动直线过定点
y
A(0,1)
C O B
(0,1),该点也在已知圆上, 故A、B中有一点为(0,1), 不妨设A (0,1)
练习:
设定点M(-3,4),动点N在圆x2+y2=4上运动, 以OM、ON为两边做平行四边形MONP,求点 P的轨迹。
已知椭圆b2x2+a2y2=a2b2,直线L:x+2y-2=0交 椭圆于A、B两点, AB 5 ,且弦AB的中 点为(m,1/2),求椭圆的方程。

x
∵OC⊥AC ∴C在以OA为直径的 圆:x2+(y-0.5)2=0.25上
又依题意知直线AB的斜率必存在,故x≠0 ∴ x2+(y-0.5)2=0.25(x≠0)即为所求
2.代入法
当动点M(x,y)的坐标x,y间关系难以建立,
而动点M(从动点)又随着已知方程的曲线上的

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

高中求轨迹方程的方法

高中求轨迹方程的方法

高中求轨迹方程的方法
答案:
1.直译法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直译法。

用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

3.待定系数法:若动点轨迹题意已直接告知,即为椭圆、双曲线、抛物线、圆或直线,则据题意直接用待定系数法求解。

4.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P (x,y)却随另一动点Q(x',y')的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x',y'表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。

5.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。

6.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。

可以说是参数法的一种变种。

求轨迹方程的常用方法

求轨迹方程的常用方法

轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
BC CD DA
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发 ______ 动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x, y 与该参数t的函数关系x = f (t),y= g (t),进而通过消参化为轨迹的普通方程F (x, y)= 0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x, y),用(x , y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC 的顶点A , B 的坐标分别为(-4 , 0), (4, 0), C 为 动点,且满足5sin B sin A sin C, 求点C 的轨迹。

4【变式】:已知圆(呂+知°4■护=2于的圆心为M ,圆価一4尸斗尸=1的圆心为M ,—动圆与 这两个圆外切,求动圆圆心 P 的轨迹方程。

的比等于2(即储2)'求动点P 的轨迹方程? 三:用参数法求轨迹方程 此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为 普通方程。

注意参数的取值范围。

例3.过点P (2, 4)作两条互相垂直的直线I 1, 12,若I i 交x 轴于A 点,I 2交y 轴于B 点,求线 段AB 的中点M 的轨迹方程。

四:用代入法求轨迹方程轨迹方程。

【变式】如图所示,已知P(4, 0)是圆x 2+y 2=36内的一点, A 、B 是圆上两动点,且满足/APB=90°,求矩形APBQ 的顶点Q 的轨迹方程五、 用交轨法求轨迹方程2 2 例5.已知椭圆冷与1 (a > b >0)的两个顶点为A( a,0), A 2(a,0), a b 例4. 2 2点B 是椭呻古 1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 y.R与y轴平行的直线交椭圆于R、P2,求AR与AP2交点M的轨迹方程.六、用点差法求轨迹方程2例6.已知椭圆-y2 3 41 ,2(1)求过点P -,-且被P平分的弦所在直线的方程;2 2(2)求斜率为2的平行弦的中点轨迹方程;(3)过A 2,引椭圆的割线,求截得的弦的中点的轨迹方程;练习1. 在ABC中,B, C坐标分别为(-3 , 0), (3, 0),且三角形周长为16,则点A的轨迹方程是____________________________________ .2. 两条直线x my 1 0与mx y 1 0的交点的轨迹方程是. _ 2 2 . , . _3 已知圆的方程为(x-1) +y =1,过原点O作圆的弦0A,则弦的中点M的轨迹方程是________4 当参数m随意变化时,则抛物线y x22m 1 x m21的顶点的轨迹方程为_______ 。

5:点M到点F (4, 0)的距离比它到直线x 5 0的距离小1,则点M的轨迹方程为 _________ 。

6:求与两定点OO l , 0、A3, 0距离的比为1 : 2的点的轨迹方程为 7. 抛物线y 5 6 4x 的通径(过焦点且垂直于对称轴的弦) 与抛物线交于 A B 两点,动点C 在抛物线上,求△ ABC 重心P 的轨迹方程。

8. 已知动点P 到定点F ( 1,0)和直线x=3的距离之和等于4,求点P 的轨迹方程。

9. 过原点作直线I 和抛物线y x 2 4x 6交于A 、B 两点,求线段AB 的中点M 的轨迹方程。

则轨迹方程为2 2 x y【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。

(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离) (3) 双曲线:至俩定点距离之差的绝对值为常数(小于两定点的距离)5 ( x25 9 高二(上)求轨迹方程的常用方法答案 例1:已知ABC 的顶点A ,B 的坐标分别为(-4,0),(4, 0), 动点,且满足sin B sin A §sinc,求点C 的轨迹。

4sin A 5sin C,可知 b 4 【解析】由sin B 即|AC | |BC | 满足椭圆的定义 令椭圆方程为x 2 '2 a a -c 10, 42 1,则 a 5, c 4 b b '10,5),图形为椭圆 (不含左,右顶点)。

(4)到定点与定直线距离相等。

【变式1 ] : 1:已知圆(只+好十戸=2吉的圆心为M ,圆伍一 4)"+护=1的圆心为M, 动圆与这两个圆外切,求动圆圆心 P 的轨迹方程。

解:设动圆的半径为R,由两圆外切的条件可得:出叭1■尺十5,。

/.IPM! |-5=| PM. |-LIPMjI-IPMah^•••动圆圆心P 的轨迹是以M 、M 为焦点的双曲线的右支,c=4, a=2, b 2=12。

2: 一动圆与圆O : x 2 y 2 1外切,而与圆C : x 2 y 2 6x 8 0内切, 那么动圆的圆心M 的轨迹是:A :抛物线B:圆C :椭圆D :双曲线一支R,则有 |M ;| R 1,则 |MO H MC|=2,满足双曲线定义。

故选D 。

轨迹方程? 解 设M 点的坐标为(x,y)由平几的中线定理:在直角三角形AOB中,0M=AB 12a a, 2 2M 点的轨迹是以0为圆心,a 为半径的圆周.【点评]此题中找到了 OM ^AB 这一等量关系是此题成功的关键所2故所求轨迹方程为【解答]令动圆半径为二:用直译法求曲线轨迹方程此类问题重在寻找数量关系。

例2: 一条线段AB 的长等于和B 分别在x 轴和y 轴上滑动,求AB 中点P 的1空耳在。

一般直译法有下列几种情况:1) 代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。

2) 列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。

3) 运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

4) 借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式2】:动点P(x,y )到两定点A (-3, 0)和B (3, 0)的距离的比等于2 (即巴12),求动点P的轨迹方程?I PB|【解答】T | PA=,匕―3)Ly2,| PB | , (x—3)Ly2代入2得2 (x 3)2y24(x 3)24y2|PB| .(x 3)2y2化简得(x —5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.三:用参数法求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。

注意参数的取值范围。

例3.过点P (2, 4)作两条互相垂直的直线12,若l i交x轴于A点,丨2交y轴于B点,求线段AB的中点M的轨迹方程。

【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x,y)满足的参数方程。

解法1:设M(x, y),设直线11的方程为y —4= k (x —2), (k丰0)T M为AB的中点,消去k,得x + 2y —5= 0。

另外,当k= 0时,AB中点为M( 1, 2),满足上述轨迹方程;当k不存在时,AB中点为M( 1, 2),也满足上述轨迹方程。

综上所述,M的轨迹方程为x+ 2y —5 = 0。

分析2:解法1中在利用k1k2= —1时,需注意k1、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用厶PAB为直角三角形的几何特性:解法2:设M (x , y),连结MP 则A (2x , 0) , B (0 , 2y),T I1丄12,二△ PAB为直角三角形化简,得x + 2y —5= 0,此即M的轨迹方程。

分析3::设M(x , y),由已知丨1丄|2 ,联想到两直线垂直的充要条件:k1k2=—1,即可列出轨迹方程,关键是如何用M点坐标表示A B两点坐标。

事实上,由M为AB的中点,易找出它们的坐标之间的联系解法3:设M( x, y), T M 为 AB中点,二A (2x, 0), B (0, 2y)。

又I 1, 12过点P (2, 4),且I 1 丄l 2PAL PB,从而k pA • k pB=—1,注意到I i丄x轴时,I 2丄y轴,此时A (2, 0), B (0, 4)中点M( 1, 2),经检验,它也满足方程x + 2y —5= 0 综上可知,点M 的轨迹方程为x+ 2y—5= 0。

【点评】1) 解法1用了参数法,消参时应注意取值范围。

解法2, 3为直译法,运用了k PA • k PB=—1 , |MP | 1 | AB|这些等量关系。

用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横,纵坐标等。

也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x2+y 2= 4外一点A (4, 0),作圆的割线,求割线被圆截得的弦BC的中点M的轨迹。

解法一:“几何法”设点M的坐标为(x,y ),因为点M是弦BC的中点,所以OMLBC,所以|OM| $+1 MA「= | OA | 2, ?即(x2+y2)+(x —4 )2+y2化简得:(x—2) 2+ y2=4 .............................................................. ①=16由方程① 与方程X2+y2= 4得两圆的交点的横坐标为1,所以点M的轨迹方程为(x-2) 2+ y2=4 (0<x V 1)。

相关文档
最新文档