动点轨迹方程求解的常见方法
求动点轨迹方程的几种方法

1、求曲线方程的一般步骤:建系、设点、列式、化简、确定点的范围.2、求动点轨迹方程的几种方法:(1)直接法:(2)定义法:(3)相关点代入法:(4)待定系数法;(5)交轨法;(6)参数法:(7)点差法: 典型例题一:直接法: 此类问题重在寻找数量关系。
当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.二:定义法:熟悉一些基本曲线的定义是用定义法求曲线方程的关键.1)圆:到定点的距离等于定长;2)椭圆:到两定点的距离之和为常数(大于两定点的距离);3)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离);4)抛物线:到定点与定直线距离相等.(定点不在定直线上).例1.已知点()1,0F ,点A 是直线1:1l x =-上的动点,过A 作直线2l ,12l l ⊥,线段AF 的垂直平分线与2l 交于点P .求点P 的轨迹C 的方程.例2: 一条线段AB 的长等于a 2,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点M 的轨迹方程?例3:已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.求曲线Γ的方程.例4:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
5:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支三:相关点代入法 “相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f (x ,y ),y 1=g (x ,y ); (3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.例1:点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )例2:已知抛物线2 4C y x =: 焦点为F .点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 轨迹方程.3.已知A 为曲线2:410C x y 上的动点,定点(2,0)M ,若2AT TM ,求动点T 的轨迹方程.四、交轨法 1.求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程. 2.若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的轨迹方程,也可以解方程组先求出交点坐标的参数方程,再化为普通方程.例:两条直线10x my --=和10mx y +-=的交点的轨迹方程是( )五、待定系数法六、参数法此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
动点轨迹方程的常见求法

动点轨迹方程的常见求法湖南省临澧县第一中学 朱福文 胡鸥 415200一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。
其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。
例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。
求椭圆和双曲线的方程。
解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22b y = 1,双曲线的方程为22m x -22ny = 1。
2c = 213 , ∴c = 13 .a – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。
二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。
它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。
例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。
解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2α 3-x y = K PB = tg(π-2α) = - tg2α=αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。
动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。
怎样求动点的轨迹方程

思路探寻在解题时,我们经常会遇到求动点的轨迹方程问题.此类问题主要考查圆锥曲线的定义、图形以及几何性质,对同学们的想象与计算能力都有较高的要求.在解答此类问题时,需根据题目中所给的条件建立起各个变量之间的联系,得到关于动点的关系式,进而求得动点的轨迹方程.本文主要谈一谈动点的轨迹方程的几种求法.一、直接法直接法是求动点的轨迹方程的基本方法.通常要先设出动点的坐标;然后根据题目中所给的条件,利用相关的公式、定义、性质列出有关动点坐标的关系式;再通过化简、消元、变形,得到动点的轨迹方程;最后验证所得的结果是否满足题目的条件.例1.已知两定点A (-2,0),B (2,0),动点P 满足 PA ∙PB =0.由点P 向x 轴作垂线PQ ,垂足为Q ,若 PM = MQ ,求点M 的轨迹方程.解:设M (x ,y ),P (x 1,y 1),则Q (x 1,0),因为 PA ∙PB =0,所以x 12+y 12=4.因为PM ⊥x 轴, PM = MQ ,所以x 1=x ,y 1=2y ,所以点P 的坐标为(x ,2y ).又因为点P在圆x 12+y 12=4上,所以x 2+4y 2=4,所以点M 的轨迹方程为x 24+y 2=1.本题较为简单,可采用直接法求解.题目的条件中已明确给出了动点的几何关系,只要设出动点的坐标,根据已知条件建立关于点M 的坐标的关系式,即可得到点M 的轨迹方程.二、相关点法若一动点P 随着另一动点Q 的变化而变化,且已知另一动点Q 的运动轨迹,就可以利用相关点法,根据另一动点Q 的轨迹来求得动点P 的轨迹方程.在解题时,需先建立两个动点坐标之间的联系,求得另一动点Q 的轨迹方程;然后用动点P 的坐标表示相关点Q 的坐标,将其代入相关点Q 的轨迹方程,即可求得动点P 的轨迹方程.例2.从圆x 2+y 2=1上的任意一点P 向y 轴作垂线,求该垂线段中点M 的轨迹方程.解:设点P 为(x 0,y 0),点M 为(x ,y ),由题意知:ìíîïïx =x 02,y =y 0,即{x 0=2x ,y 0=y .因为点P 在圆上,所以x 02+y 02=1,可得4x 2+y 2=1,所以点M 的轨迹为椭圆,其轨迹方程为4x 2+y 2=1.分析题意可知,点M 随着点P 的变化而变化,需采用相关点法解答.先设出点M 和P 的坐标,并根据二者之间的联系建立关系式;然后用点M 的坐标表示P 点,通过P 点的轨迹方程间接求得M 点的轨迹方程.三、交轨法如果动点是两条曲线的交点,就可以采用交轨法来求动点的轨迹方程.先选出一个适当的参数表示动点;再根据题目中的条件建立关于参数的式子;然后通过恒等变换,逐步消去参数,得到所求点的轨迹方程.例3.已知动点P 在直线l :x -y -2=0上运动,过P 点作抛物线C :y =x 2的两条切线PA ,PB ,与抛物线C分别相切于A ,B 两点,求△APB 的重心G 的轨迹方程.解:设切点A ,B 的坐标分别为(x 1,x 12)和(x 2,x 22),则切线PA ,PB 的方程分别为:2x 1x -y -x 12=0,2x 2x -y -x 22=0,可得x p =x 1+x 22,y p =x 1x 2.设G 的坐标为(x ,y ),根据三角形重心的坐标公式可得:x =x 1+x 2+xp 3=x p ①,y =y 1+y 2+y p 3=4x p 2-y p3②.又因为点P 在直线l :x -y -2=0上运动,所以x p -y p -2=0③,由①②③可得△APB 的重心G 的轨迹方程是:y =43x 2-13x +23.解答本题,首先要根据题目中所给的条件设出切点的坐标,通过对抛物线的方程求导,得到切线的方程,并求出点P 的坐标;然后设出重心G 的坐标,根据中点的坐标公式和重心的坐标公式建立关系式,即可利用交轨法求得重心G 的轨迹方程.求动点的轨迹方程问题的难度往往不大,但解题时的计算量较大,同学们在解题时要谨慎计算,注意检验,避免出错.(作者单位:江苏省南通市海门四甲中学)史玉蕾48Copyright ©博看网. All Rights Reserved.。
例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。
高考动点轨迹方程的常用求法含练习题及答案

轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,那么有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 二、直接法:直接根据等量关系式建立方程.例1:点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,那么点P 的轨迹是〔 〕 A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---,,(3)PB x y =--,,由2PA PB x =·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.应选D .三、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题.例3:△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、待定系数法:当曲线的形状时,一般可用待定系数法解决.例5:A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.〔1〕求E 点轨迹方程;〔2〕过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:〔1〕设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,那么22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; 〔2〕设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量〔参数〕,把x ,y 联系起来 例4:线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OPOP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 那么由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.配套训练一、选择题1.椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,那么直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y 二、填空题3.△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,那么动点A 的轨迹方程为_________.4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7.双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y 〕,A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y 〕,依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0〕(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),那么Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),那么A 1P 的方程为:y =)(11m x mx y ++① A 2Q 的方程为:y =-)(11m x mx y --② ①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0〕,Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,那么(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
求动点的轨迹方程常用的四种方法

O
x
这个式子说明动点P到定点O , A的距离之差的绝 对值等于2(小于|OA|);所以点P的轨迹是双曲线。
该双曲线的两焦点为O , A(4, 0) ,中心在线段OA的中点 O(2, 0) 此时c = 2 , a = 1,所以 b 3 所以所求的双曲线方程为:
O
2
y
y ( x 2) 1 3
这样就有点M到点A的距离等于点M到 直线 x 2 的距离,这符合抛物线的定 O 义,所以点M的轨迹就是以点A为焦点, x 2 以直线 x 2为准线的抛物线。
A
x
即所求的轨迹方程为: y 2 8x( x 0)
或 y 0( x 0)
三、代入法
当主动点P在某曲线 f ( x, y ) 0 上移动时,与P具备相关 关系的因动点M随其移动而形成曲线,求动点M的轨迹 方程 g ( x, y) 0的方法叫代入法。分析关系如下:
例1 已知A、B为两定点,动点M到A与到B的距离比为
Y
1、如图所示建立直角坐标系
2、利用命题所给条件建立等量关系
| MA | | MB |
M ( x, y )
A(a,0)
( x a)2 y 2 ( x a) y
2 2
O
B(a, 0) x
3、把|MA|,|MB|转换代数式
a 2 4c 2 a 2c | CD | 4c c c 2 2 3 3 ( x 1) ( y 2) 1 2 F ( x, 2 y) 2 2 4 2 9( y 3 ) 2 ( x 1) 1 化简得: 4
二、定义法
1、熟练掌握椭圆、双曲线、抛物线的第一、第 二定义;以及初三时学习的六种基本轨迹定义。 2、分析命题给出的条件符合那种曲线的定义。 3、解题步骤:①定形——利用定义确定曲线类型 ②定位——利用条件确定曲线位置 (此时可确定曲线的待定系数方程) ③定大小——求方程中的待定系数。
求动点轨迹方程的三种基本方法

求动点轨迹方程的三种基本方法梁关化,2015,6,16高考数学的解几题中有一类是求动点轨迹方程题。
有的复习资料归纳这类题的解法过细,其实从历届的高考题来看,主要是下面三种:一是直接法,二是消参法,三是定义法。
直接法就是根据题目提供的明的和暗的条件,把动点的坐标满足的等式直接写出。
消参法就是分析动点的变动是因什么变动而引起,是另一动点,还是动直线,还是动曲线?如是另一动点引起,就把动点的坐标设为参数。
如是动直线引起,就把动直线方程的有关参数设为参数。
如是动曲线引起,就把动曲线方程的有关参数设为参数,接着根据题目提供的明的和暗的条件,把动点的坐标和参数满足的等式列出,最后把参数消去。
理论上,n 个参数需要(n+1)个等式才能把参数消去。
消参方法很奇妙,要通过解题,总结消参的技巧。
定义法就是分析动点满足的条件是否就是某一轨迹满足的条件,符合某一轨迹的定义,如是,就可以用待定法求解。
三法当中,高考解几大题考得最多的是消参法,难度也较大。
我在一篇消参法的小文中说到消参的许多具体做法,如代入法,加减法,平方后加减法,两式相乘法,两式相除法等等。
下面以2015年广东高考数学的解几大题为例,详细述说这三种方法。
(2015年广东高考数学的解几大题,文理同题,本小题满分14分)已知过原点的动直线l 与圆C 1:05622=+-+x y x 相交于不同的两点A ,B .(1) 求圆C 1的圆心坐标;(解略,答案:(3,0)) (2) 求线段AB 的中点M 的轨迹C 的方程;(答案:492322=+⎪⎭⎫ ⎝⎛-y x ⎪⎭⎫ ⎝⎛≤<335x ) (3) 是否存在实数k ,使得直线L :)4(-=x k y 与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由。
(解略,答案:存在,752752≤≤-k 或34±=k )12221112222211(,),,,333,1,)(),322,,334,)()225,03,3y y M x y C M x x y y C M y x x C A B C C M C y y x -⊥⋅=-+=-+<+=<≤解法一(直接法):设则动直线l 的斜率为直线的斜率为由图易知l 从而有化简变形得(x-但由于动直线l 与圆相交于两个不同的点故圆心到直线l 的距离(即线段的长度)小于圆的半径,因此有(x-3)与(x-联立解得x>同时由图易知所以222112222222253,,3335)()(3)223(:)(,),(,),(,),650)65093620()0,5x y x M x y A x y B x y y kx x y x y x x x <≤+=<≤=⎧⎨+-+=⎩-+=∆=->⇒<因此动点M 的轨迹方程为(x-说明此法中用到平面几何的垂径分弦定理解法二(消参法):设动直线l 的方程为y=kx(这里的k 与第三小题中的k不同).解方程组消后整理得(1+k 于是有1+k 1+k 12222222222263(1)3(2)33)()2295503,3533335)()(3)223(:(,),x x k y y x x y x y xM x y +=⎧=⎪⎪∴⎨⎪=⎪⎩+=<<≤∴<≤+=<≤∆1+k 1+k 1+k 消去k 后,再变形得(x-由1+k ,得x>,同时由图易知因此,动点M 的轨迹方程为(x-说明消k 是分两步进行,先(2)式除以(1)式,求出k=,再代入(1)即可)解法三(定义法):设由图易知OMC 12222223,0),233,,22335)()3,223335,)()(3)223(:MC y x y x =+=<≤+=<≤是一个直角三角形,其斜边中点C 的坐标为(所以动点M 的轨迹以C 为圆心,为半径的圆.因此动点M 的轨迹方程为(x-,用解法一的方法同样可以求出x 的取值范围:因此动点M 的轨迹方程为(x-说明此法中用到平面几何直角三角形斜边上的中线等于斜边的一半的性质) 虽然此题三法都可以解,但不是所有的题都是如此,我们要具体问题具体分析,选用最好的方法求解.此题还涉及到轨迹的完备性问题,如果考生不注意,肯定被扣分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点轨迹方程求解的常见方法符合一定条件的动点所形成的图形,或者说,符合一定条件的点
的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
轨迹方程就是与几何轨迹对应的代数描述。
轨迹方程就是与几何轨迹对应的代数描述。
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
重点要掌握常用求轨迹方法,难点是轨迹的定型及其纯粹性和完备性的讨论。
动点轨迹方程求解的常见方法
一、动点轨迹方程解题步骤
1、建系——建立适当的坐标系,设出动点M的坐标;
2、设点——设轨迹上的任一点P(x,y),写出点P的集合;
3、列式——列出动点p所满足的关系式;
4、代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,化简方程为最简形式;
5、证明——证明所求方程即为符合条件的动点轨迹方程。
二、动点轨迹方程求解常见的6种方法
动点轨迹方程的求解方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1、直译求解法:
直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
2、定义求解法:
如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
3、相关点求解法(代入法):
用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
4、参数求解法:
当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过"坐标互化"将其转化为寻求变量间的关系。
在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。
5、交轨求解法:
在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。
6、几何求解法:
若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
三、求轨迹方程的注意事项
1、求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。
2、轨迹方程既可用普通方程表示,又可用参数方程来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3、求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。
(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。
检验方法:研究运动中的特殊情形或极端情形。
四、总结归纳
1、要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围、由曲线和方程的概念可知,在求曲线方程时一定要注意它的"完备性"和"纯粹性",即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
2、"轨迹"与"轨迹方程"既有区别又有联系,求"轨迹"时首先要求出"轨迹方程",然后再说明方程的轨迹图形,最后"补漏"和"去掉增多"的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性。