岩石力学论文
岩石力学论文

对岩石力学的认识指导老师:路世豹摘要:人类改造地球的能力日新月异,各项工程蓬勃发展,这就需要我们对岩石工程有一定认识,岩石工程分析和设计的重点是对岩石工程条件的评价,岩石工程工程变形、破坏的预测以及相应工程措施的决策。
关键词:物理力学指标全应力-应变曲线脆性塑性1引言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
岩石属于固体,岩石力学应属于固体力学的范畴。
一般从宏观的意义上,把固体看做连续介质。
岩石工程的计算中存在大量不确定性因素,如岩石的结构、性质、节理、裂隙分布、工程地质条件等均存在大量不确定性,所以传统连续介质理论作为一种确定性研究方法是不适合用于解决岩石工程问题的2岩石的物理力学指标2.1岩石的工程性质自然界中有各种各样的岩石,不同成因的岩石具有不同的力学特性,因此有必要根据不同成因对岩石进行分类。
根据地质学的岩石成因分类可把岩石分为岩浆岩、沉积岩、和变质岩三大类。
2.1.1岩浆岩的性质岩浆岩具有较高的力学强度,可作为各种建筑物良好的地基及天然建筑石料。
但各类岩石的工程性质差异很大。
深成岩具结晶联结,晶粒粗大均匀,孔隙度小、裂隙较不发育,岩块大、整体稳定性好,但值得注意的是这类岩石往往由多种矿物结晶组成,抗风化能力较差,特别是含铁镁质较多的基性岩,则更易风化破碎,故应注意对其风化程度和深度的调查研究。
浅成岩中细晶质和隐晶质结构的岩石透水性小、抗风化性能较深成岩强,但斑状结构岩石的透水性和力学强度变化较大,特别是脉岩类,岩体小。
喷出岩常具有气孔构造、流纹构造和原生裂隙,透水性较大。
此外,喷出岩多呈岩流状产出,岩体厚度小,岩相变化大,对地基的均一性和整体稳定性影响较大。
2.1.2 沉积岩的性质碎屑岩的工程地质性质一般较好,但其胶结物的成分和胶结类型影响显著。
此外,碎屑的成分、粒度、级配对工程性质也有一定的影响。
粘土岩和页岩的性质相近,抗压强度和抗剪强度低,受力后变形量大,浸水后易软化和泥化。
岩石力学 论文

岩石力学的研究现状和工程应用摘要:岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他广泛应用于设计采矿。
土木工程铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
关键词:岩石力学、现状、应用、On The Present State and engineering application of Rock mechanics inChinaAbstract:Modern rock mechanics is a rising and edge discipline, is a highly applied and practical application of basic science. Itis widely used in mining、civil engineering、railways、roads、geology、petroleum、underground engineering、marineengineering and many other related engineering fields. Keywords:rock mechanics、current situation、Applications、1、前言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他的应用范围设计采矿。
土木工程。
水里工程。
铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
中国的岩石力学与工程有着长时期的发展历史。
在当时,先辈们凭借丰富的实践经验设计施工,还没有建立岩土力学的概念。
近几十年,各项经济建设事业取得了极大的发展,同时,也遇到了许多与工程地质及岩土力学密切相关的技术难题。
交通、能源、水利水电与采矿工业各个经济领域的需要对岩石力学与工程学科在中国的发展起到了有力的促进作用。
岩石力学课程论文

岩石力学课程论文题目:地应力测量方法(这是一篇很优秀的课程论文)适合于岩石力学课程论文。
姓名:学号: 3131611151班级:土木135日期: 2016年6月27日地应力测量方法一绪论1选题的背景与意义岩体介质有许多区别于其他介质的重要特性,由于岩体的自重和历史上地壳构造运动引起并残留至今的构造应力等因素导致岩体具有初始地应力(或简称地应力)是其最有特色的性质之一。
其成因有两种解释:一是地壳运动或是岩石本身的重量发生变化,由此保留下来的构造应力;二是岩体发生了某些化学物理反应,或受到岩浆等多种因素作用,又称为绝对应力,即岩体初始应力。
随着我国建设事业的蓬勃发展,在道路、水电、采矿等行业中出现了很多深部岩体工程,如长大深埋隧道、深采矿巷道等,高地应力已经成为广大工程技术人员所关注的问题。
天然应力能影响人们的基础设施建设,比如开挖隧洞、兴修水利、修建铁路、山体爆破、采矿作业等。
就岩体工程而言,若不考虑岩体地应力这一因素,就难以进行合理正确的分析和提出符合实际的结论,也就无法做到经济合理耐久安全。
举个例子,地下空间的开挖必然使围岩应力场和变形场重新分布并引起围岩损伤,严重时导致失稳、坍塌和破坏,原因就是岩体中具有初始地应力,因为这种开挖荷载通常是地下工程问题中的重要荷载。
因此,在岩体工程建设中,为了合理利用岩体中地应力状态的有利方面、克服其不利方面,合理地确定地下洞室轴线、坝轴线及人工边坡走向,较准确地预测岩体中应力重分布应力和岩体的变形,使设计更合理,施工更科学,常常需要进行天然地应力实测工作。
由此可见,如何测定和评估岩体的地应力,是岩石力学与工程中不可回避的重要问题。
2岩体中的地应力2.1地应力的成因地应力的产生原因非常复杂,人们虽然对地应力做了长时间的深入研究,但仍未研究出地应力产生的真实原因。
但多年来的实测和理论分析表明,地应力的形成主要与地球的各种动力运动过程有关。
其中构造应力场和自重应力场为现今地应力场的重要组成部分。
岩体力学结课论文

岩体力学结课论文题目:岩体力学与工程班级: 城市地下空间工程姓名:学号:2016年6月目录第一章绪论 (1)1.1 简介 (1)1.2形成与发展 (1)1.3岩质边坡的研究背景和意义 (1)第二章边坡稳定性分析 (3)2.1 概述 (3)2.2岩石边坡的破坏类型 (3)2.3 边坡稳定性的计算方法 (4)2.4 岩石边坡的加固方法 (5)第三章初始地应力场分析 (7)3.1 概述 (7)3.2 天然应力测试方法 (7)3.3 雅砻江锦屏一级水电站高地应力现象 (8)第四章总结与展望 (9)参考文献 (10)第一章绪论1.1 简介岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。
国际上往往把岩体力学称为岩石力学。
它是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,属于应用型基础学科。
主要研究经过变形和破坏的岩体在地应力条件改变时产生再变形和再破坏的力学规律的学科。
是力学、地质学与工程学之间的一门边缘学科。
岩体力学是一门十分年轻的学科。
第二次世界大战以后,土木工程建设规模不断扩大,高坝,深埋长隧道、大跨度高边墙地下建筑相继出现,对岩体力学理论和技术的需求日益迫切,岩体力学工作逐步发展起来。
1.2形成与发展岩体力学的形成和发展,是与岩体工程建设的发展和岩体工程事故分不开的。
岩块物理力学性质的试验,地下洞室受天然水平应力作用的研究,可以追溯到19世纪的下半叶。
20世纪初,出现了岩块三轴试验,课题内容主要集中在地下工程的围岩压力和支护方面。
1920年,瑞士联合铁路公司采用水压洞室法,在阿尔卑斯山区的阿姆斯特格隧道中,进行原位岩体力学试验,首次证明岩体具有弹性变形性质。
不久,弹性力学被引入岩体力学的研究,并成为解决岩体工程问题的重要理论基础。
1.3岩质边坡的研究背景和意义随着国民经济的发展,矿山开采、交通运输、水利和人防等建设工程中所遇到的岩质边坡问题越来越多,这些边坡工程的稳定性及其对周边环境的影响已引起了人们的极大关注。
岩石力学课程论文

百度文库- 让每个人平等地提升自我************《岩石力学》课程论文专业 *******年级班别 ******学号 *******姓名 ******土木工程与建设管岩体的强度在检测中的应用摘要:随着地球板块的运动越来越剧烈,地震等多种地质灾害的发生,人们 清晰地认识到岩体强度的重要性。
故此,岩体强度的确定方法尤其重要。
本 文介绍试验确定法以及及估算法。
关键字:试验确定法;估算法;岩体强度引言目前在岩石力学与工程领域中广泛采用了数值模拟技术,但是在进行数值模拟时遇到的最主要的困难之一就是如何准确地确定岩体强度参数以开展模拟计算。
公认比较准确的仅限于室内岩石力学试验参数,同时现场岩体原位试验成本都十分昂贵,因此寻找适合的岩体强度估算方法就成为摆在众多研究人员面前的一个问题。
1 岩体强度的确定方法1.试验的确定法(一)岩体单轴抗压强度的测定切割成的试件。
在拟加压的试件表面抹一层水泥砂浆,将表面抹平,并在其上放置方木和工字钢组成的垫层,以便把千斤顶施加的荷载经垫层均匀传给试体。
根据试体受载截面积,计算岩体的单轴抗压强度。
(二)岩体的抗剪强度的测定一般采用双千斤顶法:一个垂直千斤顶施加的正压力,另一个千斤顶施加的横推力。
为使剪切面上不产生力矩效应,合力通过剪切面中心,使其接近于纯剪切破坏,另外一个千斤顶成倾斜布置。
一般采取倾角a=15°。
试验时,每组试体应有5个以上,剪切面上应力按式(1-1)计算。
然后根据τ、σ绘制岩体的强度曲线。
F a T P sin +=σ a ft cos =τ (1-1)(三)岩体三轴压缩强度试验地下工程的受力状态是思维的,所以做三轴力学试验非常重要。
但由于现场原位三轴力学实验在技术上很复杂,只在非常必要时才进行。
现场岩体三轴试验装置,用千斤顶施加轴向荷载,用压力枕施加围压荷载。
根据围压情况可分为等围压三轴试验(32σσ=)和真三轴试验(321σσσ>>)。
岩石工程关键理论与技术论文(锦集15篇)

岩石工程关键理论与技术论文(锦集15篇)篇1:岩石工程关键理论与技术论文岩石工程关键理论与技术论文为纪念中国岩石力学与工程学科的奠基人陈宗基院士,《岩石力学与工程学报》自年设立“陈宗基讲座”,每年邀请一位著名专家全面介绍各自领域的研究成果。
至今已举办 6 次,讲座内容主要以当前岩石工程的关键理论为主线,其主要研究成果。
值得指出的是,年以何满潮和钱七虎为首席主持了“深部岩体力学基础研究与应用”第一个涉及岩石工程的国家自然科学基金委重大项目,围绕“深部构造及地应力场分布特征与变异规律”、“深部岩体力学特性与时效特征”、“深部开采围岩变形破坏机制”、“深部多相多场耦合作用机制”、“深部采场瓦斯渗流及相关的非线性动力学机制”等五大科学问题开展了系统、深入的研究工作。
主要创新性成果包括:(1)系统研究了矿山开采的深部岩体力学问题,初步形成了以深部地质构造精细探测理论与方法、深部岩体力学特性和工程响应特征、深部采动覆岩移动规律及巷道稳定性控制理论、深部多相多场耦合作用及其灾害发生机制、深部工程围岩分破裂化理论为主体的深部岩体力学理论框架;(2)探索了深部开采工程稳定性及灾害防治技术,包括深部煤岩精细构造探测技术、深部地应力测试技术、深部采场覆岩隔水关键层防水技术、深部开采围岩控制技术、深部采空区探测与灾害防治技术、深部煤和瓦斯突出预测技术等;(3)研发了适用于深部矿山开采的原创性试验平台及软件系统,包括硬岩岩爆过程试验系统、破碎岩体渗透性及软岩水理作用测试系统、巷道工程破坏过程及新型真三轴巷道模型试验系统、动静组合加载与卸载试验系统、煤与瓦斯突出测试仪器、岩体区域化交替破裂模型试验装置及深部软岩工程大变形力学分析设计软件等。
1孙钧/岩石流变力学及其工程应用研究的若干进展/上海。
流变模型辨识及其参数确定;岩石弹C非线性黏塑性流变模型及其蠕变状态方程;考虑岩体非线性流变效应的隧洞围岩C支护系统有限元法分析。
软岩和节理裂隙发育岩体的流变试验研究、流变模型辨识与参数估计、流变力学手段在收敛约束法及隧道结构设计优化中的应用、高地应力隧洞围岩非线性流变及其对洞室衬护的力学效应,以及岩石流变损伤与断裂研究。
岩石力学论文

岩石力学之浅谈边坡通过10周的岩石力学课程学习,对岩石力学及岩土工程有了初略的了解。
首先,岩石力学是一门研究岩石在外界因素(如荷载、水流、温度变化等)作用下的应力、应变、破坏、稳定性及加固的学科。
又称岩体力学,是力学的一个分支。
研究目的在于解决水利、土木工程等建设中的岩石工程问题。
它是一门新兴的,与有关学科相互交叉的工程学科,需要应用数学、固体力学、流体力学、地质学、土力学、土木工程学等知识,并与这些学科相互渗透。
岩石和岩体是岩石力学的直接研究对象。
要学习和研究岩石力学,首先要建立岩石(或岩块)和岩体的基本概念。
岩石是组成地壳的基本物质,它是由矿物或岩屑在地质作用下按一定规律凝聚而成的自然地质体。
例如,我们通常所见到的花岗岩、石灰岩、片麻岩,都是具有一定成因、一定矿物成分及结构构造的岩石。
岩体是地质历史的产物,在长期的成岩及变形过程中形成了他们特有的结构。
人类生活在地球上,很多活动都离不开利用岩石进行工程建设。
随着我国经济建设的蓬勃发展,出现了大量岩石工程的建设与开发,从而岩石力学在建筑、矿山、水工、铁路和国防等领域得到日益广泛的应用和深入研究。
例如,在很多工程建设中,会遇到岩石边坡。
如公路或铁路的路堑边坡,露天开采的矿山边坡,水利水电工程的库岸边坡,渠道边坡,隧道进出口边坡等。
边坡稳定性问题是工程中常见的问题之一。
众所周知,岩体常被各种方位的地质结构面切割成不同形状的块体。
因此,工程实践中所遇到的岩坡,多为岩块组成。
在一般情况下,结构面的强度远远低于完整岩体的强度,岩坡中结构面的规模、性质以及组合方式在很大程度上决定着岩坡失稳时的破坏形式。
结构面的性质或形状稍有改变,则边坡的稳定性将会受到显著的影响。
我国位于世界两大地震带:环太平洋地震带与欧亚地震带之间,地震断裂带十分发育,是一个地震灾害严重的国家。
同时,我国地形地貌复杂的地区,面积大,分布广,高山河谷数量众多,山地面积占国土面积1/4,从而客观上决定了我国有大量的自然边坡。
岩石力学动、静态参数关系研究

岩石力学动、静态参数关系研究在石油勘探开发过程中,岩石的力学性质及地层应力起着重要的指导作用。
因此,岩石力学在石油勘探和开发领域内的应用越来越受到人们的重视,它在解决油气藏勘探开发中的复杂技术问题的同时,也促进了与油气开发相关的岩石力学的快速发展。
在勘探开发领域,通过对岩石力学性质的一系列研究,得到了岩石力学的相关参数。
岩石力学参数分为动力学参数和静力学参数,彼此之间存在必然的联系和差异。
建立动态、静态岩石力学参数之间的关系,得到符合石油工程要求的岩石力学参数,对油气勘探开发都有着重要的意义。
因此,本论文以准噶尔盆地腹部及西北边缘的克拉玛依、滴西、百口泉、石西等油田的18口井的岩心样品为研究目标,以不同种类的岩心实验数据和测井资料为基础,来研究岩石力学动、静态参数之间的关系。
论文中以岩心实验测定法来确定岩石力学参数,在实验室模拟地层的温度和压力条件对地层岩心进行三轴岩石力学实验可得到杨氏模量、泊松比、抗压强度、抗张强度、有效应力系数等静态的岩石力学参数。
利用测井资料计算处理的岩石力学参数可提供连续可靠的动态力学参数,且获取方便、经济可靠。
可是在实际应用中,如钻井工程、压裂工程等所采用、获取到的参数是从岩石静态参数计算处理得到的,静态岩石力学参数能较真实的反映地层岩石机械特性,所以需要的却是静力学参数。
因此最好的方法是在搞清动、静力学参数性质的基础上,利用有限的实验数据和大量的测井资料,得到岩石力学参数之间的动静态转换关系及岩石力学参数之间的相互关系。
利用数据绘制出岩石力学参数关系的交会图,求得他们之间的关系式,经过岩石力学参数转换,建立了研究工区岩石力学参数的测井计算关系式,由此获得研究井的连续岩石力学参数剖面,从而推广应用到工区其他井,为整个准噶尔盆地腹部及西北边缘的油气勘探、开发钻井工程设计提供可靠的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 突水事故趋于严重 自1984年6月2日开滦矿务局范各庄矿发生井下岩溶陷落柱特大突水灾害以来,先后在淮北杨庄矿、义马新安矿、峰峰梧桐矿、皖北任楼矿、徐州张集矿又相继发生特大型奥灰岩岩溶突水淹井事故,初步估计,经济损失超过27亿元,同时产生了若干地质环境负效应。
(1) 岩爆频率和强度均明显增加 有关统计资料表明,岩爆多发生在强度高、厚度大的坚硬岩(煤)层中,主要影响因素包括煤层顶底板条件、原岩应力、埋深、煤层物理力学特性、厚度及倾角等。目前的统计资料显示,尽管在极浅的硬煤层中(深度小于100 m,有即随着开采深度的增加,岩爆的发生次数、强度和规模也会随之上升。
(5) 地温升高、作业环境恶化 深部开采条件下,岩层温度将达到摄氏几十度的高温,如俄罗斯千米平均地温为30 ℃~40 ℃,个别达52 ℃,南非某金矿3 000 m时地温达70 ℃。地温升高造成井下工人注意力分散、劳动率减低,甚至无法工作。
参考文献:
[1]何满潮,钱七虎.深部岩体力学基础.北京:科学出版社,2010年
岩石力学读书报告
学 院:土木工程学院
专业班级:道桥10-03班
姓 名:方昆
学 号:************
岩石力学研究新进展
————深部岩体力学问题
方昆
道桥2010-3班
摘要:随着浅部资源的逐渐减少和枯竭,地下开采的深度越来越大,目前我国已有大批矿井进入千米以下开采深度。开采深度增加,地质环境趋于复杂,高地应力、高地温、高瓦斯、高水压等引起的突发性工程灾害和重大恶性事故增加、作业环境恶化和生产成本急剧增加等一系列问题,对深部资源开采提出了严峻挑战。地下空间开发不断走向深部——逾千米至数千米的矿山,水电工程埋深逾千米的引水隧道,核废料的深层处置,深层地下防护工程等。伴随着深部岩体工程发生了一系列新的岩体力学问题,这与浅部岩体工程相比具有较大的差异,而用传统的连续介质力学理论无法圆满解决,引起来全世界岩石力学工程领域专家学者的极大关注,成为了当前研究的热点。
(3)深部地下工程设计施工特点: 采用二次支护稳定性控制设计理论 大变形支护的主要特点是柔性屈服支护 调动深部围岩强度,控制深部大变形隧道地压 缩小开挖断面 按照分区破裂化设置不同深度锚杆,调动不同深度未破裂区围岩强度。
5、大灾害表现形式
由于深部岩石力学行为具有明显区别于浅部岩石力学的这些重要特征,再加上赋存环境的复杂性,致使深部资源开采中以岩爆、突水、顶板大面积来压和采空区失稳为代表的一系列灾害性事故与浅部工程灾害相比较,程度上加剧,频度上提高,成灾机理更加复杂,具体表现如下:
(3)深部开采岩体破碎机理。
研究“三高”环境下矿岩诱导破碎机制、动态特征、能量耗散过程及其控制,重点研究高应力条件下矿岩采动的应力转移与诱导破碎工程的耦合,为实施深部矿岩诱导破碎的深井采矿技术创新提供理论与科学依据。
4、深部岩体工程施工设计特点
深部岩石力学关于岩爆、大变形以及分区破裂化的机理和发生发展规律尚是一个正在研究的课题,因此,关于岩爆、大变形以及分区破裂化条件下的设计计算理论尚未形成。
(4) 巷道围岩变形量大、破坏具有区域性 与浅部一样,深部巷道支护的目的仍是尽量保持围岩的完整性以及避免破碎岩体进一步产生位移。深部开采一方面自重应力逐渐增加,同时由于深部岩层的构造一般比较发育,其构造应力十分突出,致使巷道围岩压力大,巷道支护成本增加。据煤炭行业的有关资料,近10 a巷道支护成本增加了1.4倍,巷道翻修量占整个巷道掘进量的40%。 另外,浅部围岩在临近破坏时往往出现加速变形的现象,工程技术人员常常根据这一现象进行破坏之前的预测预报,且浅部围岩的破坏一般发生在比较局部的范围内。而深部围岩在破坏之前近乎处于不变形状态,破坏前兆非常不明显,使破坏预测预报十分困难,从而造成深部围岩的破坏往往是大面积的发生,具有区域性,如巷道大面积的冒顶垮落等。
(2)冲击地压动力现象
自18世纪以来,人们在矿山工程中已熟悉了以岩块弹射和岩块冒落为表现形式的岩爆现象,岩块弹射的速度可达10m/s,足以损伤人员和设备。这一类的岩爆主要发生在开挖面,但在围岩内部以及岩体深部,也会发生冲击动力现象,它们的本质都是相同的,即岩体失衡导致岩体位移和运动。岩体在应力脉冲或冲击荷载作用下,以应力波传播的形式使得岩石破裂的现象是冲击动力现象。冲击动力现象据现在的理论可知道是由于岩体中高地应力以及岩体内储存的变性能引起的。动力冲量作用于岩体时,由于岩体的共振,岩石间的相对压紧程度会随时间发生变化。如岩块间的间隙过大时,岩块会发生大的变形,进而引发一系列的深部岩体的地质灾害。
(3)深部岩体力学特性和工程响应
(1)深部开采岩体的基本力学行为。
研究深部岩体在“三高”环境和强烈开采扰动作用下的变形性质、本构模型、强度特征、破坏准则和时间效应,重点研究深部开采岩体峰后和破坏后力学行为。
(2)深部开采工程岩体动力学特性及成灾机理。
以深部开采岩体力学行为为基础,重点研究掘进、回采等工程活动诱致岩爆、突水、煤与瓦斯突出等工程灾害的演化过程和成灾机理,为深部工程灾害预测预报与防治提供必要的理论基础。这部分研究将以灾变理论、演化诱致突变理论等非线性科学为基础,突出以能量理论为基础的灾害发生判据与准则。
(5)深部岩体具有块系结构特点。变形的非协调、非连续特点、高应力状态的临界特点以及介质的含能特点充分反映在深部岩体动载作用下的特异动力反应现象,包括岩体的变号反应现象现象、超长的岩体低摩擦现象、岩体的低频共振现象等等。
深部岩体的这些特点需要用新理论新方法来验证,则主要解决的科学问题有:深部岩中积聚能量的份额大小及主要影响因素并建立相应的物理模型;深部岩体峰值后变形及其残余强度的一般理论和数学描述方法;分区破裂化现象下的巷道的开挖、支护原理以及优化方法;深部岩体爆炸近区运动学、动力参数的刻画;深部岩体介质的变形和运动模型等。
3、深部岩体工程力学特性
(1)分区破裂化现象
在深部岩石力学中除了岩爆和围岩挤压变形以外,围岩的分区破裂化现象也是研究的重要的一方面。在深部岩体中开挖洞石或巷道时,在其两侧和工作面前的围岩中,会产生逐次交替的破裂区和未破裂区,我们称这种现象为分区破裂化现象。最早是在南非深部金矿的巷道围岩中被发现的,近几年,在我国院士钱七虎的倡导下,我国也对分区破裂问题进行了深入的大量研究。国内外专家、教授通过定性研究、弹塑性理论方法、非经典弹塑性理论、现场观测与试验研究、机制研究等方法最终归纳出了分区破裂化现象产生的条件及变化规律:分区破裂化现象一般发生在深部岩体围岩中的初始垂直地应力大于岩体单轴压塑强度极限的情况下;分区破裂化现象中的破裂区的数量取决于比值 /Rc,比值越大,破裂区越多;分区破裂区化现象不仅发生在巷道钻爆法施工时,也发在巷道机械化掘进时;巷道机械法掘进时开始发生分区破裂化现象时岩体初始应力一般高于钻爆发掘进时开始发生分区破裂化 现象时的地应力。
[2]张永兴,贺永年.岩石力学.第二版.北京:中国建筑工业出版社,2008年
[3]何满潮,谢和平,彭苏萍等.煤矿支护.北京:中国矿业大学,2007年
[4]沈明荣,岩体力学,上海:同济大学出版社,1999年
关键词:深部岩体、特点、特性、施工设计特点、大灾害表现形式
1、引言
深部岩体开采工程岩石力学主要是指在进行深部资源开采过程中而引发的与巷道工程及采场工程有关的岩石力学问题。 随着对能源需求量的增加和开采强度的不断加大,浅部资源日益减少,国内外矿山都相继进入深部资源开采状态。随着开采深度的不断增加,工程灾害日趋增多,如矿井冲击地压、瓦斯爆炸、矿压显现加剧、巷道围岩大变形、流变、地温升高等,对深部资源的安全高效开采造成了巨大威胁。因此,深部资源开采过程中所产生的岩石力学问题已成为国内外研究的焦点
2、深部岩体的特点
(1)深部岩体具有非均匀、非连续性的特点。由于地下深处的岩体分布多种多样,各种岩体相互交错,因而使得岩体构造复杂多变,我们在研究深部岩体时必须掌握所研究的岩体在地质场中的宏观和微观结构特性。
(2)深部岩体具有非协调的特点。岩体是由各种形状的的岩块和结构面组成的地质体,因此其变形必受岩块本身和结构面的控制,但一般情况下,岩体的变形是有结构面引起的。一般结构的弱化区,即裂缝处的影响使得岩体结构面的变形变得不协调。
(1)对浅部地下工程,地应力水平低,按照传统的岩石力学弹塑性理论,洞室周围依次出现塑性、弹性应力区和未扰动区。地下工程设计理论就是及时支护,与围岩共同作用,使围岩应力小于岩石强度,允许围岩形变,防止围岩破坏,所以在岩石应力应变曲线上工作在峰值强度前加荷断上。
(2)前部地下工程开挖后,围岩一般不会破坏,因此采用一次支护即可实现工程的稳定性,而深部开挖后,围岩即破坏,因此一次支护就不能满足工程稳定性要求,必须采用二次支护或多次支护才能实现工程的稳定性。
(3)深部岩体具有非常高的应力状态。应力分为岩体的自重应力和结构应力。岩体的的自重应力是由岩体本身的自重引起的。构造应力是由于不同地区不同深度的构造运动和发展引起的。有因为岩体的变形是由岩块和结构面引起的,而岩块和结构面多会产生应力,因此,深部岩体的应力状态非常高。
(4)深部岩体具有储能的特点。深部岩体的粘结力、内摩擦和剪胀性以及结构面的摩擦和粘结,使得岩体在地质构造运动和自重应力作用下产生了变性能和位能。当扰动破坏约束条件改变时,变性能转变为动能。