岩石力学结课论文
岩体力学优秀论文

岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。
国际上往往把岩体力学称为岩石力学。
它是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,属于应用型基础学科。
主要研究经过变形和破坏的岩体在地应力条件改变时产生再变形和再破坏的力学规律的学科。
是力学、地质学与工程学之间的一门边缘学科。
岩体力学研究的核心内容,是定量预测和评价岩体的稳定性,岩体的改造和加固措施。
它除了要研究岩体结构、岩体的基本特性、岩体所处的地质环境等因素以外,还要充分考虑工程因素,如工程规模、爆破、开挖程序和加固措施等的影响。
岩体力学研究可大致归纳为9个方面:岩体的结构型式岩体的地质特征,包括岩体的物质组成、岩体结构、岩体中的天然应力、岩体中水的状态以及岩体温度的研究;岩体的物理与水理性质,包括空隙性、渗透性、膨胀性、崩解性以及溶蚀性的研究;岩体的力学性质,包括岩体的变形和强度特性与测试方法,特别是不连续面力学效应和岩体结构力学效应的研究;岩体的动力特性与测试方法的研究;岩体的变形、破坏机制、本构关系与破坏判据的研究;岩体的稳定性,包括地基、边坡与地下工程围岩变形、失稳的预测、评价的理论和技术途径的研究;岩体性质改造和加固的研究;模型模拟试验,包括室内模型模拟试验和原位岩体工程模拟试验技术、理论与应用的研究;原型观测、施工监测、反分析,以及工程事故的分析与应用研究。
岩体力学的研究内容决定了在岩体力学研究中必须采用如下几种研究方法。
(1)工程地质研究法。
目的是研究岩块和岩体的地质与结构特征,为岩体力学的进一步研究提供地质模型和地质资料。
如用岩矿鉴定方法,了解岩体的岩石类型、矿物组成及结构构造特征;用地层学方法、构造地质学方法及工程勘察方法等,了解岩体的成因、空间分布及岩体中各种结构面的发育情况等;用水文地质学方法了解赋存于岩体中地下水的形成与运移规律,等等。
岩石力学论文

对岩石力学的认识指导老师:路世豹摘要:人类改造地球的能力日新月异,各项工程蓬勃发展,这就需要我们对岩石工程有一定认识,岩石工程分析和设计的重点是对岩石工程条件的评价,岩石工程工程变形、破坏的预测以及相应工程措施的决策。
关键词:物理力学指标全应力-应变曲线脆性塑性1引言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
岩石属于固体,岩石力学应属于固体力学的范畴。
一般从宏观的意义上,把固体看做连续介质。
岩石工程的计算中存在大量不确定性因素,如岩石的结构、性质、节理、裂隙分布、工程地质条件等均存在大量不确定性,所以传统连续介质理论作为一种确定性研究方法是不适合用于解决岩石工程问题的2岩石的物理力学指标2.1岩石的工程性质自然界中有各种各样的岩石,不同成因的岩石具有不同的力学特性,因此有必要根据不同成因对岩石进行分类。
根据地质学的岩石成因分类可把岩石分为岩浆岩、沉积岩、和变质岩三大类。
2.1.1岩浆岩的性质岩浆岩具有较高的力学强度,可作为各种建筑物良好的地基及天然建筑石料。
但各类岩石的工程性质差异很大。
深成岩具结晶联结,晶粒粗大均匀,孔隙度小、裂隙较不发育,岩块大、整体稳定性好,但值得注意的是这类岩石往往由多种矿物结晶组成,抗风化能力较差,特别是含铁镁质较多的基性岩,则更易风化破碎,故应注意对其风化程度和深度的调查研究。
浅成岩中细晶质和隐晶质结构的岩石透水性小、抗风化性能较深成岩强,但斑状结构岩石的透水性和力学强度变化较大,特别是脉岩类,岩体小。
喷出岩常具有气孔构造、流纹构造和原生裂隙,透水性较大。
此外,喷出岩多呈岩流状产出,岩体厚度小,岩相变化大,对地基的均一性和整体稳定性影响较大。
2.1.2 沉积岩的性质碎屑岩的工程地质性质一般较好,但其胶结物的成分和胶结类型影响显著。
此外,碎屑的成分、粒度、级配对工程性质也有一定的影响。
粘土岩和页岩的性质相近,抗压强度和抗剪强度低,受力后变形量大,浸水后易软化和泥化。
岩石力学 论文

岩石力学的研究现状和工程应用摘要:岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他广泛应用于设计采矿。
土木工程铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
关键词:岩石力学、现状、应用、On The Present State and engineering application of Rock mechanics inChinaAbstract:Modern rock mechanics is a rising and edge discipline, is a highly applied and practical application of basic science. Itis widely used in mining、civil engineering、railways、roads、geology、petroleum、underground engineering、marineengineering and many other related engineering fields. Keywords:rock mechanics、current situation、Applications、1、前言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他的应用范围设计采矿。
土木工程。
水里工程。
铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
中国的岩石力学与工程有着长时期的发展历史。
在当时,先辈们凭借丰富的实践经验设计施工,还没有建立岩土力学的概念。
近几十年,各项经济建设事业取得了极大的发展,同时,也遇到了许多与工程地质及岩土力学密切相关的技术难题。
交通、能源、水利水电与采矿工业各个经济领域的需要对岩石力学与工程学科在中国的发展起到了有力的促进作用。
岩石力学课程论文

岩石力学课程论文题目:地应力测量方法(这是一篇很优秀的课程论文)适合于岩石力学课程论文。
姓名:学号: 3131611151班级:土木135日期: 2016年6月27日地应力测量方法一绪论1选题的背景与意义岩体介质有许多区别于其他介质的重要特性,由于岩体的自重和历史上地壳构造运动引起并残留至今的构造应力等因素导致岩体具有初始地应力(或简称地应力)是其最有特色的性质之一。
其成因有两种解释:一是地壳运动或是岩石本身的重量发生变化,由此保留下来的构造应力;二是岩体发生了某些化学物理反应,或受到岩浆等多种因素作用,又称为绝对应力,即岩体初始应力。
随着我国建设事业的蓬勃发展,在道路、水电、采矿等行业中出现了很多深部岩体工程,如长大深埋隧道、深采矿巷道等,高地应力已经成为广大工程技术人员所关注的问题。
天然应力能影响人们的基础设施建设,比如开挖隧洞、兴修水利、修建铁路、山体爆破、采矿作业等。
就岩体工程而言,若不考虑岩体地应力这一因素,就难以进行合理正确的分析和提出符合实际的结论,也就无法做到经济合理耐久安全。
举个例子,地下空间的开挖必然使围岩应力场和变形场重新分布并引起围岩损伤,严重时导致失稳、坍塌和破坏,原因就是岩体中具有初始地应力,因为这种开挖荷载通常是地下工程问题中的重要荷载。
因此,在岩体工程建设中,为了合理利用岩体中地应力状态的有利方面、克服其不利方面,合理地确定地下洞室轴线、坝轴线及人工边坡走向,较准确地预测岩体中应力重分布应力和岩体的变形,使设计更合理,施工更科学,常常需要进行天然地应力实测工作。
由此可见,如何测定和评估岩体的地应力,是岩石力学与工程中不可回避的重要问题。
2岩体中的地应力2.1地应力的成因地应力的产生原因非常复杂,人们虽然对地应力做了长时间的深入研究,但仍未研究出地应力产生的真实原因。
但多年来的实测和理论分析表明,地应力的形成主要与地球的各种动力运动过程有关。
其中构造应力场和自重应力场为现今地应力场的重要组成部分。
岩石力学结课论文

岩体分级与其在工程上应用摘要:工程岩体分类在工程建设中起着重要作用。
近年来,国内外专家通常采用各种方法来评价岩体工程性质,并根据其工程类型和使用目对工程岩体进行分类。
本文主要介绍RQD分类方法,Q系统分类方法,RMR 分类方法和中国国家标准《工程岩体分级标准》四种分类方法,并分析其在工程中应用。
关键词:工程岩体;岩体分类;应用Abstract: Engineering rock mass classification plays an important role in engineering construction. In recent years, domestic and foreign experts usually employ a variety of methods to evaluate the engineering properties of rock, and according to their type and purpose of the project engineering rock mass classification. This paper describes the RQD classification, Q system classification, RMR classification and Chinese national standard "of engineering rock classification standard" four classification methods, and analyzes its application in engineering.Keywords: engineering rock; rock mass classification; application 1、引言岩体是指在地质历史过程中形成,由岩石单元体和结构面网络组成,具有一定结构并赋存于一定天然应力状态和地下水等地质环境中地质体。
高等岩体力学课程论文

一.引言地下洞室围岩稳定性的研究是岩体力学的重要应用课题之一。
由于该课题是一个较为复杂的非线性力学问题,通常伴随着变形非均匀性、非连续性和大位移等特点。
而且影响洞室稳定的因素很多,要建立一种能适应各种条件的理论,随时得到定量的解答,几乎是不可能的。
因而,使其到目前为止还缺乏比较成熟的理论和方法。
但是,近年来,随着岩体力学理论和测试技术的发展,电子计算机和有限元的推广与应用,以及广大的科研工作者的不懈努力,不断涌现出新的研究方法,在研究岩体的构造和力学特性、地下工程围岩失稳机理和支护结构的受力机理、探讨新的设计理论和方法等方面取得了许多成果【1】,为围岩稳定性评价方法提供更多的选择和改进。
为了正确的指导实践,有必要对目前地下洞室稳定分析方法进行总结,了解其优点和不足。
迄今对该问题的评判方法主要可以总结为以下几类:力学分析方法(弹性力学理论、塑性力学理论等)、围岩分类方法(RQD、R MR分类等) 、数值计算方法(限差分法、有限元法、离散元法等)、块体平衡理论法等。
为了使问题的解答更精确,现阶段比较合理方法是将问题分类解决。
每种特征不同的课题,突出主要矛盾,将问题适当简化,使之得到近似的解答。
在不能严格定量的情况下,至少得到定性或半定量的结果,特别是对工程设计能提出科学的指导原则。
二.影响洞室围岩稳定性因素影响洞室围岩稳定性因素比较多,这里着重阐述其中主要几中。
(1)岩石性质及岩体地质结构围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。
从岩性的角度,粘土质岩石、破碎松散岩石以及吸水易膨胀的岩石对隧道围岩的稳定最为不利;脆性围岩,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。
从岩体的结构角度,可将岩体结构划分为整体块状结构(整体结构和块状结构) 、层状结构(薄层状结构和厚层状结构) 、碎裂结构(构镶嵌结构和层状碎裂结构) 、散体结构(破碎结构和松散结构) 。
岩体力学结课论文

岩体力学结课论文题目:岩体力学与工程班级: 城市地下空间工程姓名:学号:2016年6月目录第一章绪论 (1)1.1 简介 (1)1.2形成与发展 (1)1.3岩质边坡的研究背景和意义 (1)第二章边坡稳定性分析 (3)2.1 概述 (3)2.2岩石边坡的破坏类型 (3)2.3 边坡稳定性的计算方法 (4)2.4 岩石边坡的加固方法 (5)第三章初始地应力场分析 (7)3.1 概述 (7)3.2 天然应力测试方法 (7)3.3 雅砻江锦屏一级水电站高地应力现象 (8)第四章总结与展望 (9)参考文献 (10)第一章绪论1.1 简介岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。
国际上往往把岩体力学称为岩石力学。
它是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,属于应用型基础学科。
主要研究经过变形和破坏的岩体在地应力条件改变时产生再变形和再破坏的力学规律的学科。
是力学、地质学与工程学之间的一门边缘学科。
岩体力学是一门十分年轻的学科。
第二次世界大战以后,土木工程建设规模不断扩大,高坝,深埋长隧道、大跨度高边墙地下建筑相继出现,对岩体力学理论和技术的需求日益迫切,岩体力学工作逐步发展起来。
1.2形成与发展岩体力学的形成和发展,是与岩体工程建设的发展和岩体工程事故分不开的。
岩块物理力学性质的试验,地下洞室受天然水平应力作用的研究,可以追溯到19世纪的下半叶。
20世纪初,出现了岩块三轴试验,课题内容主要集中在地下工程的围岩压力和支护方面。
1920年,瑞士联合铁路公司采用水压洞室法,在阿尔卑斯山区的阿姆斯特格隧道中,进行原位岩体力学试验,首次证明岩体具有弹性变形性质。
不久,弹性力学被引入岩体力学的研究,并成为解决岩体工程问题的重要理论基础。
1.3岩质边坡的研究背景和意义随着国民经济的发展,矿山开采、交通运输、水利和人防等建设工程中所遇到的岩质边坡问题越来越多,这些边坡工程的稳定性及其对周边环境的影响已引起了人们的极大关注。
岩土试验力学课程论文

岩土试验力学课程论文第一篇:岩土试验力学课程论文岩土试验力学课程论文题目:岩土试验力学发展现状和前景专业:岩土工程一、岩土力学试验1.岩土力学试验概况要很好的解决岩土工程问题、防灾、治灾,必须首先进行勘察与测试、试验与分析,并利用土力学、岩石力学、基础工程、工程地质学等的理论与方法,对各类工程进行系统研究。
因此,岩土力学试验是岩土工程规划设计、防灾的前期工程,也是地基与基础设计,治理地质灾害的不可缺少的重要环节。
2.岩土力学试验目的(1)了解岩石本身的物理和力学性质;(2)岩体质量分级、工程地质条件与问题评价;(3)边坡、地基和隧道围岩变形及稳定性分析,地质灾害防治工程方案论证等;(4)为岩土工程设计与施工提供参数和依据;(5)揭示岩土的变形规律和强度特征及破裂机理,建立其数学力学模型,进行岩土工程结构的力学分析。
3.岩土力学试验内容(1)岩石物理性质试验含水率、颗粒密度、块体密度;(2)岩石水理性质试验吸水性、渗透性、膨胀性、耐崩解性和冻融性。
(3)岩石力学性质试验单轴压缩强度和变形试验、三轴压缩强度和变形试验、抗拉强度试验、直剪强度试验和点荷载强度。
二、岩土试验力学概况岩土试验力学是土木工程岩土专业的一个分支,它是一门十分重要的技术基础课。
它主要包括学习岩土实验力学的基本理论,知道岩土的物理力学性质、强度变形计算、稳定性分析、挡土墙及基坑围护的设计与计算、地基承载力等岩土力学基本理论与方法。
结合有关交通土建、建筑工程、土木工程的理论和施工知识,分析和解决岩体工程及地基基础问题。
三、岩土试验力学的发展现状1.计算方面由于岩土材料比较特殊,那么在研究岩土试验力学方面就会比较复杂。
岩土体本身就是一个复杂的系统,具有不确定性,不规则性和不明确性。
目前,我国的岩土试验力学工作者倾向于采用理想数学模型和力学模型建立和描述岩土的各类特性,结果往往不是很理想,甚至出现很大的偏差。
那么,为解决这一现状,为突破创新,新的方法和技术是必不可少的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩石力学结课论文班级城地142姓名蔡少雯学号*********深部岩石地下工程摘要随着经济建设的不断推进,地下空间工程的开展不断深入,其开发深度也愈来愈深--逾数千米的各种矿山(如南非金矿和金川镍矿等),水电工程埋深逾数千米的引水隧道,核废料深层处理,深层地下防护工程(如700米防护岩层下的北美防空司令部)等。
岩石地下工程越深,相应地也会产生一些新的问题。
本文将会结合在岩石力学课程中所学的知识,对深部岩石地下工程展开研究。
关键词研究现状地应力岩爆力学特征支护设计1.深部岩石地下工程的定义深部岩石地下工程的发展伴随着深部采矿工程和深部隧道工程的不断深入发展。
为了建立深部工程的概念,我们在此引入国际岩石力学学会所定义的硬岩发生软换的深度作为界定深部岩石地下工程的界限。
即假设覆岩的容重为2500kg/m3,则硬岩发生软化的临界深度为500m。
因此,我们可以视大于500m深度范围的岩石地下工程称为深部岩石地下工程,反之将小于500m深度范围的岩石地下工程称为浅部岩石地下工程。
并且,我们可以依据不同深度下发生的岩石力学破坏现象,将深部岩石地下工程进一步地细分为较深岩石地下工程、超深岩石地下工程和极深岩石地下工程三类。
2.国内外深部岩石地下工程的现状能源和矿产资源制约着国民经济的发展。
随着前部资源的日益枯竭,国内外都陆续开始进入深部岩石地下工程对深部资源进行开采。
2.1国内现状根据目前资源开采情况,我国的煤矿开采深度正以每年8-12m的深度增加,东部矿井正以100-250m/(10年)的速度发展。
近年来已经有一批矿山进入深部开采。
其中,在煤炭开采方面,沈阳采屯矿开采深度为1197m、北京门头沟开采深度为1008m、长广矿开采深度为1000m、徐州张小楼矿开采深度为1100m、开滦赵各庄矿开采深度为1159m、北京冠山矿开采深度为1059m。
在金属矿开采方面,冬瓜山铜矿目前开采深度为900-1100m,红透山铜矿开采深度已进入900m,弓长岭铁矿设计深度为1000m。
此外还有例如金川镍矿、寿王坟铜矿、凡口铅钵矿等多做矿山矿井都已进入或将要开始进行深部岩石地下工程进行深部开采。
因此我们可以预计在未来20年内我国很多矿藏都将进入到1000-1500m的深部开采。
我国国有重点煤矿的平均开采深度变化趋势如图2.1所示。
2.2国外现状据不完全统计,国外开采超千米深的金属矿山有80多座,其中最多为南非。
南非绝大多数金矿的开采深度大都在1000m以下。
其中,Anglogold有限公司的西部深井金矿,采矿深度达3700m,West Driefovten金矿矿体赋存于地下600m,并一直延伸至6000m以下。
印度的Kolar金矿区,已有三座金矿采矿深度超2400m,其中钱皮恩里夫金矿共开拓112个阶段,总深达到了3260m。
俄罗斯的克里沃罗格铁矿区,已有捷尔任斯基、基洛夫、国产国际等8座矿山采准深度达910m,开拓深度达1570m,预计未来将达到2000-2500m。
另外,加拿大、美国、澳大利亚的一些有色金属矿山采深亦超过1000m。
国外一些主要产煤国家从20世纪60年代开始就进入深部岩石地下工程。
1960年前,西德平均开采深度就已经达到650m,1987年已将近900m;前苏联在20世纪80年代末就有一半以上产量来自600m以下深部。
国外深部岩石地下工程开采现状如图2.2所示。
3.基于岩石力学的深部岩石地下工程分析3.1 “高地应力强扰动”的恶略环境3.1.1地应力测量随深度变化的趋势地应力,又称为原岩应力,可以概要定义为存在于岩体中未受扰动的自然应力。
它是引起各种地下或露天岩石开挖工程变形和破坏的根本动力。
地应力场呈三维状态有规律地分布于岩体中。
当工程开挖后,应力受开挖扰动的影响而重新分布,重分布后形成的应力则称为二次应力或诱导应力。
地应力可以通过水压致裂法、应力接触法、应力恢复法、声发射法等方法进行测定。
霍克和布朗于1978年对全球地应力测量资料进行了分析,从中选择出由地表到2500m 深度的120个测量点进行统计,如图3.1所示。
结果表明,垂直应力普遍具有以下简单关系式所表示的趋势:δv=0.278Z (1) 其中Z为深度,δv为垂直应力。
同时他们也绘制出水平应力与垂直应力的比值K随深度变化的关系曲线(图3.2)图3.2表明的平均水平应力与垂直应力的比值K,通常处于下式所限定的范围内:100/Z+0.3《K《1500/Z+0.5 (2) 将K=δh,av/δv=δh,av/0.278Z带入方程式(2),得出δh,av的范围界限为:27+0.08Z《δh,av《405+0.14Z (3) 图3.2表明的基本特征为:在某个给定的深度上,尤其是在比较浅的情况下,K值是相当宽广的。
例如,Z=500m时,K可能从0.5变化到3.5。
当Z=2000m时,K可能从0.35变化到1.25。
很明显,只有对同一地区同一地质环境里取得的结果进行比较,这一变化范围才能缩小,例如,N.C.Gay对南非应力计算的结果可用方程(1)和下式相当完美地表达出来:K=248/Z+0.45 (4) 显然,在Z、K和δv之间的相应关系已经建立的地区,对于地下工程的初步设计来说是有意义的。
从总体看,地壳水平应力与垂直应力随深度变化的关系是非常清楚的,地壳上部(一般为600-1000m以上)的平均水平应力比垂直应力大,而地壳深部(超出1000m)的平均水平应力则小于垂直应力。
3.1.2深部岩石地下工程的高地应力进入深部岩石地下工程后,仅重力引起的垂直原岩应力通常就超过工程岩体的抗压强度(>20MPa),而由于工程开挖所引起的应力集中水平则更是远远大于工程岩体的强度(>40MPa)。
同时,据已有的地应力资料显示,深部岩体形成历史久远,留有远古构造运动的痕迹,其中存有构造应力场或残余构造应力场。
二者的叠加累积为高应力,在深部岩体中形成了异常的地应力场。
据南非地应力测定,在3500-5000的深度,地应力水平为95——135MPa。
如此高的地应力必然会对深部岩石地下工程的实施带来严峻的挑战。
3.1.3深部岩石地下工程中的强采矿扰动采矿扰动主要是指强烈的开采扰动。
进入深部开采后,在承受高地应力的同时,大多数巷道要经受硕大的回采空间引起强烈的支撑压力作用,使受采动影响的巷道围岩压力数倍、甚至近十倍于原岩应力,从而造成在浅部表现为普通坚硬的岩石,在深部却可能表现出软岩大变形、大地压、难支护的特征;浅部的原岩体大多处于弹性应力状态,而进入深部以后则可能处于塑性状态,即有各向不等压的原岩应力引起的压、剪应力超过岩石的强度,造成岩石的破坏。
3.2深部岩石地下工程的3个力学特性进入深部以后,受“高地应力强扰动”的作用,深部岩石地下工程围岩的地质力学环境较浅部发生了巨大的变化,从而使深部巷道围岩表现出其特有的力学特征现象,主要包括以下几个方面。
(1)深部岩石地下工程应力场的复杂性众所周知,浅部岩石地下工程围岩状态往往可以分为三个区域,即破裂带、塑性极限平衡区、弹性区和原岩应力区,可使用现有的弹塑性力学理论进行分析。
而深部岩石地下工程围岩的应力状态就十分复杂,深部围岩状态有时发生膨胀带和压缩带交替出现的情形,且其几何尺寸(宽度)按一等比数列递增,这一现象被称为区域破裂现象(Zonal disintegration),因此深部岩石地下工程围岩应力场具有多样性和复杂性。
(2)围岩的大变形和强流变性特性研究表明,进入深部后岩体变形具有两周完全不同的趋势,一种是岩体表现为持续的强流变特性,即不仅变形量大,而且具有明显的“时间效应”,如煤矿中有的巷道20年底鼓不止,累计底鼓量达数十米。
学者们在对南非金矿深部围岩的流变性进行了系统研究后,发现其围岩流变性十分明显,巷道围岩最大移动速度达到500mm/月。
另外一种是岩体并没有发生明显变形,但十分破碎,处于破裂状态,按传统的岩体破坏、失稳的概念,这种岩体已不再具有承载特性,但事实上,仍然具有承载和再次稳定的能力,借助这一特性,有些巷道还特地将其布置在破碎岩体中,如沿空掘巷。
(3)动力响应的突变型浅部岩体破坏通常表现为一个渐进的过程,具有明显的破坏前兆(变形加剧)。
而深部岩体的动力响应过程往往是突发的、无前兆的突变过程,具有强烈的冲击破坏特性,宏观表现为巷道顶板或周边围岩的大范围的突然失稳、坍塌等。
4.深部岩石地下工程的需要注意的6大灾害由于深部岩石力学行为具有明显区别于浅部岩石力学的这些重要特征,再加上赋存环境的复杂性,致使深部资源开采中以岩爆、突水、顶板大面积来压和采空区失稳为代表的一系列灾害性事故与浅部工程灾害相比较,程度上加剧,频度上提高,成灾机理更加复杂,作为地下城市空间工程的学生,有必要了解这些已经发生的灾难,并分析其成因,从空间设计的角度设计更加合理的地下空间工程,以避免这些灾难的发生。
具体灾难如下:(1)岩爆频率和强度均明显增加岩爆是围岩各种失稳现象中反应最强烈的一种,它是地下施工的一大地质灾害。
由于它的突发性,在地下工程中对施工人员和施工设备威胁最为严重。
如果处理不当,就会给施工安全、岩体及建筑物的稳定性造成影响,甚至引发重大工程事故。
岩爆可以分为应变型、屈服型及岩块突出型等,如图4.1所示。
“应变型”指坑道周边坚硬岩体产生应力集中,在脆性演示中发生激烈的破坏,是最一般的岩爆现象;“屈服型”指在有相互平行裂隙的坑道中,坑道壁的岩石屈服,发生突然破坏,常常是由爆破震动所诱发;“岩块突出型”是因被裂隙或节理等分离的岩块突然突出的现象,也是因爆破或地震等诱发。
岩爆的规模基本可以分为三类,即小规模,中规模和大规模,如图4.2所示。
小规模指的是在壁面附近浅层部分(厚度小于25cm)的破坏,破坏区域仍然是弹性的,岩块的质量通常在1t以下;中规模指形成厚度在0.25-0.75m的环状松弛区域的破坏,但空洞本身仍然是稳定的;大规模指超过0.75m以上的岩体显著突出,很大的岩块弹射出来,这种情况一般的支护是不能防止的。
图4.1 岩爆发生机理图4.2岩爆规模划分有关统计资料表明,岩爆多发生在强度高、厚度大的坚硬岩(媒)层中,主要影响因素包括煤层顶底板条件、原岩应力、埋深、煤层物理力学特性、厚度及倾角等。
目前的统计资料表明,尽管在极浅的硬煤层中(深度小于100m,有的甚至在30-50m)也有发生岩爆的记载,但总的来看,岩爆与采深有密切关系,即随着开采深度的增加,岩爆的发生次数、强度和规模也会随之上升。
(2)采场矿压显现剧烈随着采深的增加引起的覆岩自重压力的增大和构造应力的增强,表现为围岩发生剧烈变形、巷道和采场失稳、并易发生破坏性的冲击地压,给顶板管理带来许多困难。
(3)突水事故趋于严重自1984年6月2日开滦矿务局范各庄矿发生井下岩溶陷落柱特大突水灾害以来,先后在淮北杨庄矿、义马新安矿、峰峰梧桐矿、皖北任楼矿、徐州张集矿又相继发生特大型奥灰岩岩溶突水岩井事故,初步估计,经济损失超过了27亿元,同时产生了若干地质环境负效应等。