岩石力学结课论文
岩体力学优秀论文

岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。
国际上往往把岩体力学称为岩石力学。
它是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,属于应用型基础学科。
主要研究经过变形和破坏的岩体在地应力条件改变时产生再变形和再破坏的力学规律的学科。
是力学、地质学与工程学之间的一门边缘学科。
岩体力学研究的核心内容,是定量预测和评价岩体的稳定性,岩体的改造和加固措施。
它除了要研究岩体结构、岩体的基本特性、岩体所处的地质环境等因素以外,还要充分考虑工程因素,如工程规模、爆破、开挖程序和加固措施等的影响。
岩体力学研究可大致归纳为9个方面:岩体的结构型式岩体的地质特征,包括岩体的物质组成、岩体结构、岩体中的天然应力、岩体中水的状态以及岩体温度的研究;岩体的物理与水理性质,包括空隙性、渗透性、膨胀性、崩解性以及溶蚀性的研究;岩体的力学性质,包括岩体的变形和强度特性与测试方法,特别是不连续面力学效应和岩体结构力学效应的研究;岩体的动力特性与测试方法的研究;岩体的变形、破坏机制、本构关系与破坏判据的研究;岩体的稳定性,包括地基、边坡与地下工程围岩变形、失稳的预测、评价的理论和技术途径的研究;岩体性质改造和加固的研究;模型模拟试验,包括室内模型模拟试验和原位岩体工程模拟试验技术、理论与应用的研究;原型观测、施工监测、反分析,以及工程事故的分析与应用研究。
岩体力学的研究内容决定了在岩体力学研究中必须采用如下几种研究方法。
(1)工程地质研究法。
目的是研究岩块和岩体的地质与结构特征,为岩体力学的进一步研究提供地质模型和地质资料。
如用岩矿鉴定方法,了解岩体的岩石类型、矿物组成及结构构造特征;用地层学方法、构造地质学方法及工程勘察方法等,了解岩体的成因、空间分布及岩体中各种结构面的发育情况等;用水文地质学方法了解赋存于岩体中地下水的形成与运移规律,等等。
岩石力学实验报告总结(3篇)

第1篇一、实验背景与目的岩石力学是研究岩石在受力作用下的力学性质及其与工程结构相互作用的科学。
随着我国基础设施建设、资源开发和环境保护等领域的快速发展,岩石力学的研究显得尤为重要。
本次实验旨在通过岩石力学实验,了解岩石的基本力学性质,掌握岩石力学实验方法,为今后在实际工程中应用岩石力学知识打下基础。
二、实验内容与方法本次实验主要包括以下内容:1. 岩石单轴压缩实验:测定岩石的抗压强度、弹性模量、泊松比等基本力学参数。
2. 岩石三轴压缩实验:研究岩石在不同围压条件下的力学性质,包括抗压强度、弹性模量、泊松比等。
3. 岩石剪切实验:测定岩石的剪切强度、内摩擦角等剪切力学参数。
4. 岩石动力实验:研究岩石在不同动载条件下的力学性质,包括动抗压强度、动剪切强度等。
实验方法主要包括以下几种:1. 实验准备:选取实验岩石样品,进行加工、制备实验试样,安装实验设备,调试实验仪器。
2. 实验实施:按照实验方案,对岩石试样进行加载,记录实验数据。
3. 数据处理与分析:对实验数据进行整理、计算、分析,得出实验结论。
三、实验结果与分析1. 岩石单轴压缩实验本次实验选取了花岗岩、石灰岩、砂岩等不同岩石样品,进行了单轴压缩实验。
实验结果表明,不同岩石的抗压强度差异较大,花岗岩的抗压强度最高,砂岩的抗压强度最低。
同时,实验结果还表明,岩石的弹性模量和泊松比与抗压强度存在一定的相关性。
2. 岩石三轴压缩实验实验结果表明,岩石在三轴压缩条件下的抗压强度高于单轴压缩条件下的抗压强度,说明围压对岩石的抗压强度有显著影响。
此外,实验结果还表明,岩石的弹性模量和泊松比在三轴压缩条件下也发生了变化,但变化幅度较小。
3. 岩石剪切实验实验结果表明,岩石的剪切强度与抗压强度之间存在一定的关系,剪切强度通常低于抗压强度。
此外,实验结果还表明,岩石的内摩擦角与剪切强度存在一定的相关性。
4. 岩石动力实验实验结果表明,岩石在动载条件下的抗压强度和剪切强度均低于静载条件下的抗压强度和剪切强度。
岩石力学论文

对岩石力学的认识指导老师:路世豹摘要:人类改造地球的能力日新月异,各项工程蓬勃发展,这就需要我们对岩石工程有一定认识,岩石工程分析和设计的重点是对岩石工程条件的评价,岩石工程工程变形、破坏的预测以及相应工程措施的决策。
关键词:物理力学指标全应力-应变曲线脆性塑性1引言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
岩石属于固体,岩石力学应属于固体力学的范畴。
一般从宏观的意义上,把固体看做连续介质。
岩石工程的计算中存在大量不确定性因素,如岩石的结构、性质、节理、裂隙分布、工程地质条件等均存在大量不确定性,所以传统连续介质理论作为一种确定性研究方法是不适合用于解决岩石工程问题的2岩石的物理力学指标2.1岩石的工程性质自然界中有各种各样的岩石,不同成因的岩石具有不同的力学特性,因此有必要根据不同成因对岩石进行分类。
根据地质学的岩石成因分类可把岩石分为岩浆岩、沉积岩、和变质岩三大类。
2.1.1岩浆岩的性质岩浆岩具有较高的力学强度,可作为各种建筑物良好的地基及天然建筑石料。
但各类岩石的工程性质差异很大。
深成岩具结晶联结,晶粒粗大均匀,孔隙度小、裂隙较不发育,岩块大、整体稳定性好,但值得注意的是这类岩石往往由多种矿物结晶组成,抗风化能力较差,特别是含铁镁质较多的基性岩,则更易风化破碎,故应注意对其风化程度和深度的调查研究。
浅成岩中细晶质和隐晶质结构的岩石透水性小、抗风化性能较深成岩强,但斑状结构岩石的透水性和力学强度变化较大,特别是脉岩类,岩体小。
喷出岩常具有气孔构造、流纹构造和原生裂隙,透水性较大。
此外,喷出岩多呈岩流状产出,岩体厚度小,岩相变化大,对地基的均一性和整体稳定性影响较大。
2.1.2 沉积岩的性质碎屑岩的工程地质性质一般较好,但其胶结物的成分和胶结类型影响显著。
此外,碎屑的成分、粒度、级配对工程性质也有一定的影响。
粘土岩和页岩的性质相近,抗压强度和抗剪强度低,受力后变形量大,浸水后易软化和泥化。
岩石力学 论文

岩石力学的研究现状和工程应用摘要:岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他广泛应用于设计采矿。
土木工程铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
关键词:岩石力学、现状、应用、On The Present State and engineering application of Rock mechanics inChinaAbstract:Modern rock mechanics is a rising and edge discipline, is a highly applied and practical application of basic science. Itis widely used in mining、civil engineering、railways、roads、geology、petroleum、underground engineering、marineengineering and many other related engineering fields. Keywords:rock mechanics、current situation、Applications、1、前言岩石力学是近代发展起来的一门新兴学科和边缘学科,是一门应用性和实践性很强的应用基础学科。
他的应用范围设计采矿。
土木工程。
水里工程。
铁道。
公路。
地质。
石油。
地下工程。
海洋工程等众多的与岩石力学相关的工程领域。
中国的岩石力学与工程有着长时期的发展历史。
在当时,先辈们凭借丰富的实践经验设计施工,还没有建立岩土力学的概念。
近几十年,各项经济建设事业取得了极大的发展,同时,也遇到了许多与工程地质及岩土力学密切相关的技术难题。
交通、能源、水利水电与采矿工业各个经济领域的需要对岩石力学与工程学科在中国的发展起到了有力的促进作用。
岩石力学课程论文

岩石力学课程论文题目:地应力测量方法(这是一篇很优秀的课程论文)适合于岩石力学课程论文。
姓名:学号: 3131611151班级:土木135日期: 2016年6月27日地应力测量方法一绪论1选题的背景与意义岩体介质有许多区别于其他介质的重要特性,由于岩体的自重和历史上地壳构造运动引起并残留至今的构造应力等因素导致岩体具有初始地应力(或简称地应力)是其最有特色的性质之一。
其成因有两种解释:一是地壳运动或是岩石本身的重量发生变化,由此保留下来的构造应力;二是岩体发生了某些化学物理反应,或受到岩浆等多种因素作用,又称为绝对应力,即岩体初始应力。
随着我国建设事业的蓬勃发展,在道路、水电、采矿等行业中出现了很多深部岩体工程,如长大深埋隧道、深采矿巷道等,高地应力已经成为广大工程技术人员所关注的问题。
天然应力能影响人们的基础设施建设,比如开挖隧洞、兴修水利、修建铁路、山体爆破、采矿作业等。
就岩体工程而言,若不考虑岩体地应力这一因素,就难以进行合理正确的分析和提出符合实际的结论,也就无法做到经济合理耐久安全。
举个例子,地下空间的开挖必然使围岩应力场和变形场重新分布并引起围岩损伤,严重时导致失稳、坍塌和破坏,原因就是岩体中具有初始地应力,因为这种开挖荷载通常是地下工程问题中的重要荷载。
因此,在岩体工程建设中,为了合理利用岩体中地应力状态的有利方面、克服其不利方面,合理地确定地下洞室轴线、坝轴线及人工边坡走向,较准确地预测岩体中应力重分布应力和岩体的变形,使设计更合理,施工更科学,常常需要进行天然地应力实测工作。
由此可见,如何测定和评估岩体的地应力,是岩石力学与工程中不可回避的重要问题。
2岩体中的地应力2.1地应力的成因地应力的产生原因非常复杂,人们虽然对地应力做了长时间的深入研究,但仍未研究出地应力产生的真实原因。
但多年来的实测和理论分析表明,地应力的形成主要与地球的各种动力运动过程有关。
其中构造应力场和自重应力场为现今地应力场的重要组成部分。
岩石力学结课论文

岩体分级与其在工程上应用摘要:工程岩体分类在工程建设中起着重要作用。
近年来,国内外专家通常采用各种方法来评价岩体工程性质,并根据其工程类型和使用目对工程岩体进行分类。
本文主要介绍RQD分类方法,Q系统分类方法,RMR 分类方法和中国国家标准《工程岩体分级标准》四种分类方法,并分析其在工程中应用。
关键词:工程岩体;岩体分类;应用Abstract: Engineering rock mass classification plays an important role in engineering construction. In recent years, domestic and foreign experts usually employ a variety of methods to evaluate the engineering properties of rock, and according to their type and purpose of the project engineering rock mass classification. This paper describes the RQD classification, Q system classification, RMR classification and Chinese national standard "of engineering rock classification standard" four classification methods, and analyzes its application in engineering.Keywords: engineering rock; rock mass classification; application 1、引言岩体是指在地质历史过程中形成,由岩石单元体和结构面网络组成,具有一定结构并赋存于一定天然应力状态和地下水等地质环境中地质体。
岩体力学结课论文

岩体力学结课论文题目:岩体力学与工程班级: 城市地下空间工程姓名:学号:2016年6月目录第一章绪论 (1)1.1 简介 (1)1.2形成与发展 (1)1.3岩质边坡的研究背景和意义 (1)第二章边坡稳定性分析 (3)2.1 概述 (3)2.2岩石边坡的破坏类型 (3)2.3 边坡稳定性的计算方法 (4)2.4 岩石边坡的加固方法 (5)第三章初始地应力场分析 (7)3.1 概述 (7)3.2 天然应力测试方法 (7)3.3 雅砻江锦屏一级水电站高地应力现象 (8)第四章总结与展望 (9)参考文献 (10)第一章绪论1.1 简介岩体力学是力学的一个分支学科,是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,是一门应用型基础学科。
国际上往往把岩体力学称为岩石力学。
它是研究岩体在各种力场作用下变形与破坏规律的理论及其实际应用的科学,属于应用型基础学科。
主要研究经过变形和破坏的岩体在地应力条件改变时产生再变形和再破坏的力学规律的学科。
是力学、地质学与工程学之间的一门边缘学科。
岩体力学是一门十分年轻的学科。
第二次世界大战以后,土木工程建设规模不断扩大,高坝,深埋长隧道、大跨度高边墙地下建筑相继出现,对岩体力学理论和技术的需求日益迫切,岩体力学工作逐步发展起来。
1.2形成与发展岩体力学的形成和发展,是与岩体工程建设的发展和岩体工程事故分不开的。
岩块物理力学性质的试验,地下洞室受天然水平应力作用的研究,可以追溯到19世纪的下半叶。
20世纪初,出现了岩块三轴试验,课题内容主要集中在地下工程的围岩压力和支护方面。
1920年,瑞士联合铁路公司采用水压洞室法,在阿尔卑斯山区的阿姆斯特格隧道中,进行原位岩体力学试验,首次证明岩体具有弹性变形性质。
不久,弹性力学被引入岩体力学的研究,并成为解决岩体工程问题的重要理论基础。
1.3岩质边坡的研究背景和意义随着国民经济的发展,矿山开采、交通运输、水利和人防等建设工程中所遇到的岩质边坡问题越来越多,这些边坡工程的稳定性及其对周边环境的影响已引起了人们的极大关注。
岩土试验力学课程论文

岩土试验力学课程论文第一篇:岩土试验力学课程论文岩土试验力学课程论文题目:岩土试验力学发展现状和前景专业:岩土工程一、岩土力学试验1.岩土力学试验概况要很好的解决岩土工程问题、防灾、治灾,必须首先进行勘察与测试、试验与分析,并利用土力学、岩石力学、基础工程、工程地质学等的理论与方法,对各类工程进行系统研究。
因此,岩土力学试验是岩土工程规划设计、防灾的前期工程,也是地基与基础设计,治理地质灾害的不可缺少的重要环节。
2.岩土力学试验目的(1)了解岩石本身的物理和力学性质;(2)岩体质量分级、工程地质条件与问题评价;(3)边坡、地基和隧道围岩变形及稳定性分析,地质灾害防治工程方案论证等;(4)为岩土工程设计与施工提供参数和依据;(5)揭示岩土的变形规律和强度特征及破裂机理,建立其数学力学模型,进行岩土工程结构的力学分析。
3.岩土力学试验内容(1)岩石物理性质试验含水率、颗粒密度、块体密度;(2)岩石水理性质试验吸水性、渗透性、膨胀性、耐崩解性和冻融性。
(3)岩石力学性质试验单轴压缩强度和变形试验、三轴压缩强度和变形试验、抗拉强度试验、直剪强度试验和点荷载强度。
二、岩土试验力学概况岩土试验力学是土木工程岩土专业的一个分支,它是一门十分重要的技术基础课。
它主要包括学习岩土实验力学的基本理论,知道岩土的物理力学性质、强度变形计算、稳定性分析、挡土墙及基坑围护的设计与计算、地基承载力等岩土力学基本理论与方法。
结合有关交通土建、建筑工程、土木工程的理论和施工知识,分析和解决岩体工程及地基基础问题。
三、岩土试验力学的发展现状1.计算方面由于岩土材料比较特殊,那么在研究岩土试验力学方面就会比较复杂。
岩土体本身就是一个复杂的系统,具有不确定性,不规则性和不明确性。
目前,我国的岩土试验力学工作者倾向于采用理想数学模型和力学模型建立和描述岩土的各类特性,结果往往不是很理想,甚至出现很大的偏差。
那么,为解决这一现状,为突破创新,新的方法和技术是必不可少的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩石力学结课论文
之后,我们开始接触到了更多的实践性科目,岩石力学作为工程力学专业的专业选修课之一,向我们介绍了继土力学之后更加深入的岩土分析方法和技巧。
我们首先学习了岩石的物理性质,知道了岩石是构成地壳的基本材料,是经过地质作用而天然形成的(一种或多种)矿物集合体。
岩石通常按地质成因分为岩浆岩、沉积岩和变质岩等三种类型。
岩浆岩是岩浆冷凝而形成的岩石,绝大多数岩浆岩是由结晶矿物所组成,由于组成它的各种矿物化学成分和物理性质较为稳定,它们之间的联结是牢固的,因此岩浆岩通常具有较高的力学强度和均质性。
工程中常遇到的岩浆岩有花岗岩、玄武岩等。
沉积岩是母岩(岩浆岩、变质岩和早已形成的沉积岩)经风化剥蚀而产生的物质在地表经搬运沉积和硬结成岩作用而形成的岩石组成。
沉积岩的主要物质成分为颗粒和胶结构。
颗粒包括各种不同形状及大小的岩屑及某些矿物;胶结物常见的成分有钙质、硅质、铁质以及泥质等。
沉积岩的物理力学性质不仅与矿物和岩屑有关,而且也与胶结物性质有关。
沉积岩具有层理构造,这使得它的物理力学性质具有方向性。
工程建设中常见的沉积岩有灰岩、砂岩、页岩等。
变质岩是由岩浆岩、沉积岩甚至变质岩在地壳中受到高温、高压及化学活动性流体的影响下发生变质而形成的岩石。
它在矿物成份、结构构造上具有变质过程中产生的特征,也常常残留有原岩的某些特点。
因此,变质岩的物理力学性质不仅与原岩的性质有关,而且与变质作用的性质及变质程
度有关。
工程建设中常见的变质岩类有大理岩、片麻岩、板岩等。
岩石是自然历史的产物,由于它们的生成条件及在生成以后的漫长地质历史时期中,形成了许多各式各样的结构面,例如岩浆侵入岩与围岩接触面,不同侵入岩体彼此的接触面、冷凝裂隙,喷出岩和沉积岩的层理、不整合面,变质岩的片理、片麻理,组成各种岩石的矿物晶体的各种优势定向排列面以及由于地质构造运动、风化、重力和卸荷等各种不同动力的作用而产生的断层、节理、裂隙等。
它们严重地破坏了岩石的完整性。
在这种情况下,对岩体工程的安危起主要控制作用的,通常不再是被各种结构面分割的岩石块体,而主要是岩体中存在的结构面,或者是由岩石和结构面共同控制。
在岩石力学中常用到岩块、岩体、岩石等术语,一般地被结构面切割成的岩石块体或从地壳岩层中切取出来的无显著软弱面的岩石块体称为岩块,而把自然埋藏条件下的大范围分布的由岩块和各种结构面(软弱面)网络组成的地质体称为岩体。
岩石则是岩块和岩体的统称。
之后学习了岩石的强度、变形和应力分布的问题,岩石的变形是指岩石在任何物理因素作用下形状和大小的变化。
工程上最常研究的变形是由于荷载变化引起的。
例如在岩石上建造大坝(相当于对基岩加载)或在岩石中开挖(相当于对岩石局部卸载)都会引起岩石变形。
岩石的变形对工程建筑物的安全影响很大,因为当岩石产生变形时,建筑物的应力可能增加。
例如,当大坝建造在多种岩石组成的岩基上,这些岩石的变形性质不同,则由于基岩在荷载(坝体重力)作用下的不均匀变形可以使坝体内的剪应力和主拉应力增长,造成开裂错位等不良后果,如果岩基中岩
石的变形性质已知并且在岩基内这些性质的变化也已确定,那么在工程设计时或在施工中可以采取相应措施防止不均匀变形。
在许多工程建设中,在设计时都要用到关于岩石变形的知识,因此,研究岩石的变形特性是岩石力学的重要研究内容之一。
岩石的变形特性常用弹性模量E和泊松比两个常数来表示。
如果把岩石当作弹性体,用E、来描述岩石的变形特性是足够的,因为根据弹性理论的知识,可以解决岩石力学的有关问题,但实际情况说明,仅仅用这些弹性常数来表征岩石的变形性质是不够的,因为许多岩石的变形是非弹性的,即荷载卸去后岩石变形并不能够完全恢复。
特别是在现场条件下岩石有裂隙、破碎层理岩,粘土夹层等,大多数岩体不是完全弹性的,对于这类岩石为了表征岩石的总的变形,常用变形模量E0和侧胀系数0 。
岩石的变形指标及应力-应变的关系可在实验室内测定,也可在现场测定。
后来又学习了更加深入的山岩压力、有压隧洞、岩基应力和岩坡稳定的相关内容,应用了大量材料力学的知识。
例如,在很多工程建设中,会遇到岩石边坡,公路或铁路的路堑边坡,露天开采的矿山边坡,水利水电工程中的库岸边坡,渠道边坡,隧洞进出口边坡等等。
众所周知,岩体常被各种方位的地质结构面切割成不同形状的块体。
因此,工程实践中所遇到的岩坡,多为岩块所组成。
在一般情况下,结构面的强度远低于完整岩体的强度,岩坡中结构面的规模、性质及其组合方式在很大程度上决定着岩坡失稳时的破坏形式。
结构面的形状或性质稍有改变,则岩坡的稳定性将会受到显著的影响。
岩坡的失稳情况,按其破坏方式主要可分为崩塌与滑坡两种。
崩塌是指块状岩体与岩坡分离向前翻滚而
下,其特点是,在崩塌过程中,岩体中无明显滑移面,同时下落岩块或未经阻挡而直接坠落于坡脚。
或于斜坡上滚翻,滑移,碰撞,最后堆积于坡脚。
滑坡是指岩体在重力作用下,沿坡内软弱结构面产生整体滑动,其滑动面往往深入坡体内部,有时甚至延伸到坡脚以下。
经过岩石力学学习,感觉尤其对于之前土力学的学习有了重要的补充,知道了很多现代工程的岩土技术和岩土工程研究前沿的研究方法和主要应用的分析实验手段,将对之后研究生阶段的深入研究有着重要的意义。