人工智能概论课件 第2章 知识表示(导论)

合集下载

人工智能 第2章 知识表示

人工智能 第2章 知识表示

2.1.1 知识的概念
按知识的作用范围划分
➢ 常识性知识 ➢ 领域性知识
按知识的确定性划分
➢ 确定知识 ➢ 不确定知识
按知识的作用及表示来划分
➢ 事实性知识 ➢ 规则性知识 ➢ 控制性知识 ➢ 元知识
按人类的思维及认识方法划分
➢ 逻辑性知识 ➢ 形象性知识
2.1.2 知识表示的概念
知识表示就是研究用机器表述上述知识的可行性、有效性的一 般方法,可以看成将知识符号化,即编码成某种数据结构,并输 入到计算机的过程和方法,即:
规则库: 用于描述相应领域内知识的产生式集合。
2. 综合数据库
综合数据库(事实库、上下文、黑板等):用于存放输 入的事实、从外部数据库输入的事实以及中间结果(事 实)和最后结果的工作区。
2.3.2 产生式系统的基本结构
3. 推理机
推理机:用来控制和协调规则库与综合数据库的 运行,包含了推理方式和控制策略。
一阶谓词逻辑表示法的缺点:
效率低
由于推理是根据形式逻辑进行的,把推理演算和知识含义截然分开, 抛弃了表达内容所含的语义信息,往往是推理过程太冗长,降低系统 效率。另外,谓词表示越细,表示越清楚,推理越慢、效率越低。
灵活性差
不便于表达和加入启发性知识和元知识。不便于表达不确定性的指示, 但人类的知识大都具有不确定性和模糊性,这使得它表示知识的范围 受到了限制。
R10:IF 该动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有黑色条纹 THEN 该动物是虎
R11: IF 该动物是有蹄类动物 AND 有长脖子 AND 有长腿 AND 身上有暗斑点 THEN 该动物是长颈鹿
R12:IF 该动物有蹄类动物 AND 身上有黑色条纹 THEN 该动物是斑马

人工智能导论-第2章知识表示和知识图谱

人工智能导论-第2章知识表示和知识图谱
产生式表示法:
产生式表示法又称为产生式规则(Production Rule)表示法。美国数学家波斯特(E.POST)在1934年首先提出“产生式”,它根据串代替规则提出了一种称为波斯特机的计算模型,模型中的每条规则称为产生式。
框架表示法:
以一个通用的数据结构的形式存储以往的经验。这样的数据结构就是框架(frame),框架提供了一个结构,一种组织。
(三)任务实施
1、对于犯罪行为的新闻报道中都会提到犯罪意图、犯罪结果、证人指控等信息,这些信息可以用一个犯罪框架来表示。
2、试着构造一个描述学校图书馆的框架。
3、用产生式表示:如果一个人出现腹痛、腹泻及呕吐的症状,那么得肠胃炎的可能性有8成。
4、知识图谱在搜索引擎中的应用
(四)归纳总结
通过案例阅读,了解知识图谱的相关概念,知道知识图谱的简单应用。
信息技术飞速发展,不断推动着互联网技术的变革,互联网的核心性技术Web经历了网页链接到数据链接的变革后,正逐渐向大规模的语义网络演变。语义网络将知识采用网络的形式表示,它将经过加工和推理的知识以图形的方式提供给用户,而实现智能化语义检索的基础和桥梁就是知识图谱。
二、教学目标
知识目标
能力目标
1、了解知识、知识表示、知识图谱的概念
(三)任务实施
试着为自己绘制一个社交网络的知识图谱。
(四)归纳总结
通过本节课的学习,了解知识图谱的表示方法。
五、六节归纳
知识图谱的应用:
(1)智能问答
(2)智能推荐
(3)金融领域
知识图谱的总结与展望:
虽然现在知识图谱很多,但大部分还处于初级阶段,只是侧重于简单事实,对于常识的覆盖十分有限,依然面临众多挑战和难题,如:知识库的自动扩展、异构知识处理、推理规则学习、跨语言检索等。总体而言,知识图谱技术的落地应用前景是光明的,但是也需要充分意识到知识图谱面临的巨大挑战。

人工智能_知识表示ppt课件

人工智能_知识表示ppt课件

D n { x 1 ,( x 2 ,,x n )|x 1 ,x 2 ,,x n D }
则称P是一个n元谓词,记为
P(x1,x2,…,xn)
其中,x1,x2,…,xn为个体,可以是个体常量、变元和函数。
例如:GREATER(x,6)
x大于6
STUDENT(wanghong )
王红是一名学生
TEACHER(father(zhang)) 张的父亲是一位教师
知识表示的要求(难度很大)
表示能力:能否正确、有效地将问题求解所需的各种知识表示出来
表示范围的广泛性
领域知识表示的高效性
对非确定性知识表示的支持程度
可利用性:利用这些知识进行推理,可以求得待解决问题的解
对推理的适应性:推理是根据已知事实利用知识导出结果的过程
对高效算法的支持程度:知识表示要有较高的处理效率
一阶谓词逻辑表示的逻辑基础 ----命题与真值
命题的定义: 断言:一个陈述句称为一个断言 命题:具有真假意义的断言成为命题
可以用大写字母表示命题,如:
A: 天在下雨。 B: 天晴 C: 人是会死的 D: 他在哭
命题的真值: T:表示命题的意义为真 F:表示命题的意义为假
表达单一意义的命题称为“原子命题”。 命题逻辑就是研究命题和命题之间关系的符号逻辑系统。
辖域:指位于量词后面的单个谓词或者用括弧括起来的合式公式
约束变元:辖域内与量词中同名的变元称为约束变元
自由变元:不受约束的变元称为自由变元
例子:(x)(P(x,y)→Q(x,y))VR(x,y)
其中,(P(x,y)→Q(x,y))是(x)的辖域
辖域内的变元x是受( x)约束的变元
R(x,y)中的x和所有的y都是自由变元

人工智能知识表示方法ppt课件

人工智能知识表示方法ppt课件
2024/2/15
2.2.2 谓词逻辑表示知识举例
例3
用谓词逻辑表示下列知识: 人人爱劳动。 自然数都是大于零的整数。 所有整数,不是偶数就是奇数。
第一步
定义谓词如下: MAN(x):x是人 LOVE(x,y):x爱y N(x): x是自然数 I(x):x是整数 E(x): x是偶数 O(x): x是奇数 GZ(x): x大于零
效率低,过程冗长 灵活性差,不确定知识
组合爆炸
优点
缺点
2024/2/15
返回
2.3 产生式表示法1943年由美国数学家Fra bibliotek.Post提出。
产生式知识 表示方法
它使用类似文法的规则。用该方法求解 问题时的思路与人类很相似。目前大部 分的专家系统都采用产生式系统的结构 来构建。
2024/2/15
产生式系统的组成
例1
张三是学生,李四也是学生。
第一步
定义谓词如下: ISStudent(x):x是一个学生 张三是个体 李四也是个体
第二步
将个体代入谓词中,得到 ISStudent(张三), ISStudent(李四)
第三步
根据语义,用逻辑连接符连接 ISStudent(张三) ∧ISStudent(李四)
2024/2/15
能否在同一层次上和不同层次上模块化
是否适于推理
知识和元知识能否用统一的形式表示
是否适于计算机处理
是否适合于加入启发信息
是否有高效的求解算法 能否表示不精确知识
过程性表示还是说明性表示 表示方法是否自然
2024/2/15
返回
2.2 一阶谓词逻辑表示法
一阶谓词逻 辑表示法
一种重要的知识表示方法,它以数理逻辑 为基础,是到目前为止能够表达人类思维 和推理的一种最精确的形式语言。它的表 现方式和人类自然语言非常接近,它能够 被计算机进行精确推理。

人工智能_人工智能导论课件第2章知识表示导论

人工智能_人工智能导论课件第2章知识表示导论

P:老李是小李的父亲
P:李白是诗人 Q:杜甫也是诗人
13
2.2.2 谓词
谓词的一般形式: P (x1, x2,…, xn)
个体 x1, x2,…, xn :某个独立存在的事物或者某个抽象 的概念; 谓词名 P:刻画个体的性质、状态或个体间的关系。
(1)个体是常量:一个或者一组指定的个体。
“老张是一个教师”:一元谓词 Teacher (Zhang)
Human(Zhugeliang)
{ 1, 2 }
Die(Zhugeliang)
T规则
29
2.2.4 谓词公式的性质
谓词逻辑的其他推理规则:
④ 反证法: P Q,当且仅当 P Q F ,即Q为P
的逻辑结论,当且仅当 P Q 是不可满足的。
… ,P 的逻辑结论,当且仅当 定理:Q为 P , , P 1 2 n
2
第2章 知识表示
2.1 知识与知识表示的概念
2.2 一阶谓词逻辑表示法
2.3 产生式表示法 2.4 框架表示法
3
第2章 知识表示
2.1
知识与知识表示的概念
2.2 一阶谓词逻辑表示法
2.3 产生式表示法
2.4 框架表示法
4
2.1.1 知识的概念
知识:在长期的生活及社会实践中、在科学研究及实验 中积累起来的对客观世界的认识与经验。 知识:把有关信息关联在一起所形成的信息结构。 知识反映了客观世界中事物之间的关系,不同事物或者 信息关联形式:“如果„„,则„„” 相同事物间的不同关系形成了不同的知识。
“5>3” :二元谓词 Greater (5, 3) “Smith作为一个工程师为IBM工作”: 三元谓词 Works (Smith, IBM, engineer)

人工智能导论 课件 PPT -第2章知识表示

人工智能导论 课件 PPT -第2章知识表示

产生式的基本形式
(2)规则型知识的产生式表示 规则描述的是事物间的因果关系。含义是:如果…则…,规则型 知识的产生式表示基本形式是:
P→Q 或者 IF P THEN Q 其中,P是生产式的前提,用于指出该生产式是否可用的条件;Q 是一组结论或操作,用于指出当前提P所指示的条件被满足时,应 该得出的结论或应该执行的操作。整个产生式的含义是:如果前 提P被满足,则可推出结论Q或执行Q所规定的操作。
产生式系统
规则集
控制器 匹配排序 冲突裁决
匹配
检索 产生式系统结构与工作过程
综合数据库
产生式系统
【例2.1】 建立一个动物识别系统的规则库,用以识别虎、 豹、斑马、长颈鹿、企鹅、鸵鸟、信天翁等7种动物。
框架表示法
框架
我们无法把过去的经验一一都存在脑子里,而只能以一个通用 的数据结构的形式存储以往的经验。这样的数据结构就是框架 (frame),框架提供了一个结构,一种组织。在这个结构或组织 中,新的资料可以用从过去的经验中得到的概念来分析和解释。 实例框架:对于一个框架,当人们把观察或认识到的具体细节填 入后,就得到了该框架的一个具体实例,框架的这种具体实例被 称为实例框架。 框架系统:在框架理论中,框架是知识的基本单位,把一组有关 的框架连结起来便形成一个框架系统。
人工智能导论
知识表示和知识图谱
2.1知识表示
人类之所以有智能行为是因为他们拥有知识,智能活动过程 其实就是一个获得并运用知识的过程,要使机器系统具有人的智 能能力(人工智能AI),则必须以人的知识为基础,知识是人工 智能的基石。但人类的知识要用适当的模式表示出来,才能够存 储到计算机中并被识别运用,本节将对人工智能中常用的几种知 识表示方法进行介绍,为后续学习奠定基础。

人工智能导论-第2章-2 知识图谱

人工智能导论-第2章-2 知识图谱
(实体1-关系-实体2):中国-首都-北京 (实体-属性-属性值):北京-人口-2069万
7
2.5.3 知识图谱的表示
知识图谱也可被看作是一张图,图中的节点表示实体 或概念,而图中的边则由属性或关系构成。
法国
英国
963万平 方公里
面积
13.6亿亿
人口 首都
中国
国家
……
面积
美国
人口 首都
937万平 方公里
人工智能导论
Introduction of Artificial Intelligence
人工智能导论
Introduction of Artificial Intelligence
第 2 章-2 知识图谱
第2章 知识表示与知识图谱
第2章 知识表示与知识图谱
2.1 知识与知识表示的概.4 框架表示法 2.5 知识图谱
3.1亿亿
1.6万平 方公里
面积 北京 人口 纬度
经度
2069万
北纬 39°54′
东经 116°25′
华盛顿
经度
面积
纬度
西经 77°02′25′
178平 方公里
北纬 9°53′
8
2.5.4知识图谱的架构
1. 知识图谱的逻辑结构:模式层与数据层。 数据层主要是由一系列的事实组成,而知识以事实为单 位进行存储。 模式层构建在数据层之上,是知识图谱的核心。 2. 知识图谱的体系架构
5
2.6 知识图谱
由于互联网内容的大规模、异质多元、组织结构松散 的特点,给人们有效获取信息和知识提出了挑战。
谷歌于2012年5月16日首先发布 知识图谱(Knowledge Graph)。
知识图谱是一种互联网环境下的知识表示方法。 知识图谱的目的是为了提高搜索引擎的能力,改善用

920091-人工智能导论(第4版)-第2章 知识表示(导论)

920091-人工智能导论(第4版)-第2章 知识表示(导论)
中的任何个体y都是朋友。
▪ ( x)( y) F(x, y) 表示在个体域中存在个体x与个体y,
x与y是朋友。
▪ ( x)( y) F(x, y) 表示对于个体域中的任何两个个体x
和y,x与y都是朋友。
20
2.2.3 谓词公式
全称量词和存在量词出现的次序将影响命题的意思。 例如:
▪ ( x)( y)(Employee(x) → Manager(y, x)) :
Introduction of Artificial Intelligence
第 2 章 知识表示
教材:
王万良《人工智能导论》(第4版) 高等教育出版社,2017.7
第2章 知识表示
人类的智能活动主要是获得并运用知识。知识是智 能的基础。为了使计算机具有智能,能模拟人类的 智能行为,就必须使它具有知识。但知识需要用适 当的模式表示出来才能存储到计算机中去,因此, 知识的表示成为人工智能中一个十分重要的研究课 题。 本章将首先介绍知识与知识表示的概念,然后介绍 一阶谓词逻辑、产生式、框架、语义网络等当前人 工智能中应用比较广泛的知识表示方法,为后面介 绍推理方法、专家系统等奠定基础。
词演算表达式的每个常量、变量、谓词和函数符号的 指派。
Friends (george, x) Friends (george, susie) T Friends (george, kate) F
对于每一个解释,谓词公式都可求出一个真值(T 或F)。
24
2.2.4 谓词公式的性质
2. 谓词公式的永真性、可满足性、不可满足性
③ 经验引起的不确定性
④ 不完全性引起的不确定性
7
2.1.2 知识的特性
3. 可表示性与可利用性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
第2章 知识表示
2.1 知识与知识表示的概念
✓ 2.2 一阶谓词逻辑表示法
2.3 产生式表示法 2.4 框架表示法
10
2.2 一阶谓词逻辑表示法
11Байду номын сангаас
2.2 一阶谓词逻辑表示法
2.2.1 命题 2.2.2 谓词 2.2.3 谓词公式 2.2.4 谓词公式的性质 2.2.5 一阶谓词逻辑知识表示方法 2.2.6 一阶谓词逻辑表示法的特点
▪ 知识的可利用性: 知识可以被利用。
8
2.1.3 知识的表示
知识表示(knowledge representation):将人类知识形 式化或者模型化。
知识表示是对知识的一种描述,或者说是一组约定,一 种计算机可以接受的用于描述知识的数据结构。
选择知识表示方法的原则: (1)充分表示领域知识。 (2)有利于对知识的利用。 (3)便于对知识的组织、维护与管理。 (4)便于理解与实现。
“如果头痛“且真流”涕与“,假则”有之可间能的患中了间感状冒态”
① 随机性引起的不确定性
小李很高
② 模糊性引起的不确定性
③ 经验引起的不确定性
④ 不完全性引起的不确定性
7
2.1.2 知识的特性
3. 可表示性与可利用性
▪ 知识的可表示性: 知识可以用适当形式表示出来,如 用语言、文字、图形、神经网络等。
命题逻辑表示法:无法把它所描述的事物的结构及逻辑特 征反映出来,也不能把不同事物间的共同特征表述出来。
P:老李是小李的父亲
P:李白是诗人 Q:杜甫也是诗人
13
2.2.2 谓词
谓词的一般形式: P (x1, x2,…, xn)
▪ 个体 x1, x2,…, xn :某个独立存在的事物或者某个抽象 的概念;
例如: “雪是白色的”—— 事实 “如果头痛且流涕,则有可能患了感冒 —— 规则
5
2.1.2 知识的特性
1.相对正确性 任何知识都是在一定的条件及环境下产生的,在
这种条件及环境下才是正确的。 1+1=2 (十进制) 1+1=10 (二进制)
6
2.1.2 知识的特性
知识状态:“真”
2. 不确定性
“假”
2
第2章 知识表示
2.1 知识与知识表示的概念 2.2 一阶谓词逻辑表示法 2.3 产生式表示法 2.4 框架表示法
3
第2章 知识表示
✓ 2.1 知识与知识表示的概念
2.2 一阶谓词逻辑表示法 2.3 产生式表示法 2.4 框架表示法
4
2.1.1 知识的概念
知识:在长信期息关的联生形活式及:“社如会果实……践,则中…、…”在科学研究及实验 中积累起来如的果大对雁客向观南世飞,界则的冬认天就识要与来经临了验。。 知识:把有关信息关联在一起所形成的信息结构。 知识反映了客观世界中事物之间的关系,不同事物或者 相同事物间的不同关系形成了不同的知识。
15
2.2.3 谓词公式
1. 连接词(连词)
“机器人不在2号房间”:﹁ Inroom (robot, r2)
(1)﹁: ““李否明定打”篮(球或ne踢ga足tio球n”):或 “非”。
Plays (Liming, basketball) ∨ Plays (Liming, football)
(2)∨: “析取”(disjunction)——或。
Introduction of Artificial Intelligence
第 2 章 知识表示
教材:
王万良《人工智能导论》(第4版) 高等教育出版社,2017.7
第2章 知识表示
人类的智能活动主要是获得并运用知识。知识是智 能的基础。为了使计算机具有智能,能模拟人类的 智能行为,就必须使它具有知识。但知识需要用适 当的模式表示出来才能存储到计算机中去,因此, 知识的表示成为人工智能中一个十分重要的研究课 题。 本章将首先介绍知识与知识表示的概念,然后介绍 一阶谓词逻辑、产生式、框架、语义网络等当前人 工智能中应用比较广泛的知识表示方法,为后面介 绍推理方法、专家系统等奠定基础。
12
2.2.1 命题
命题(propositi例on如):3一<个5 非真即假的陈述句。
▪ 若命题的意义为真,称它的真值为真,记为 T。 ▪ 若命题的意义为假,称它的真值为假,记为 F。
▪ 一个命题可在一种例条如件:下太为阳真从,西在边另升一起种条件下为假。
P例::北1+京1是=中1华0 人民共和国的首都 命题逻辑:研究命题及命题之间关系的符号逻辑系统。
域中的所有(或任一个)个体 x ”。
“所有的机器人都是灰色的”:
( x)[ROBOT (x) → COLOR (x,GRAY)] (2)存在量词(existential quantifier)( x):“在
14
2.2.2 谓词
(2)个体是变元(变量):没有指定的一个或者一组个
体。
“x<5” :Less(x, 5)
(3)个体是函数:一个个体到另一个个体的映射。 ▪ “小李的父亲是教师”:Teacher (father (Li) )
(4)个体是谓词 ▪ “Smith作为一个工程师为IBM工作”:
二阶谓词 Works (engineer (Smith), IBM)
▪ 谓词名 P:刻画个体的性质、状态或个体间的关系。
(1)个体是常量:一个或者一组指定的个体。
▪ “老张是一个教师”:一元谓词 Teacher (Zhang) ▪ “5>3” :二元谓词 Greater (5, 3) ▪ “Smith作为一个工程师为IBM工作”:
三元谓词 Works (Smith, IBM, engineer)
(3)∧: “合取”(conjunction)——与。
“我喜欢音乐和绘画”: Like (I, music) ∧ Like (I, painting)
16
2.2.3 谓词公式
1. 连接词(连词) (4)→:“蕴含”(implication)或 “条
件”(“如co果nd刘iti华on跑)。得最快,那么他取得冠军。” :
RUNS (Liuhua,faster)→WINS (Liuhua ,champion)
(5) :“等价”(equivalence)或“双条件”
(bicondition)。
P Q: “P当且仅当Q”。
17
2.2.3 谓词公式
1. 连接词(连词)
谓词逻辑真值表
18
2.2.3 谓词公式
2. 量词(quantifier) (1)全称量词(universal quantifier)( x):“对个体
相关文档
最新文档