数值分析1非线性方程数值解法
5-非线性方程组的数值解法及最优化方法

非线性方程组的数值解法
不动点迭代法:根据非线性方程求根的迭代法,将方程组改 写为如下等价方程组
xi i x1, x2,, xn , i 1,2,, n
构造迭代公式
xik 1 i x1k , x2k ,, xnk , i 1,2,, n
非线性方程组的数值解法
若对任意A Cmn 都有一个实数 A 与之对应,且满足:
(1)非负性:当 A O 时, A 0 ;当A O 时,A 0;
(2)齐次性:对任何 C ,A A ;
(3)三角不等式:对任意 A, B C nn ,都有A B A B ;
(4)相容性:对任意A, B C nn ,都有 AB A B ,
…
…
18
(0.2325670051,0.0564515197)
19
(0.2325670051,0.0564515197)
max
1 i 2
xik
xik
1
0.2250 0.0546679688 0.0138638640 0.0032704648 0.0008430541 0.0001985303 0.0000519694 0.0000122370 0.0000032485 0.0000007649
10-9
非线性方程组的数值解法
练习题:用牛顿迭代法求解方程组
取 X 0 1.6,1.2T
xx1122
x22 x22
4 1
结果:1.5811,1.2247
非线性方程组的数值解法
应用经过海底一次反射到达水听器阵的特征声线传播时间, 来反演海底参数。假设水中和沉积层声速都是恒定的,海底 沉积层上界面水平,下界面倾斜。特征声线由水中声源出发 折射进入沉积层,经过沉积层的下界面反射后,再折射进入 水中,由水中水听器阵接收。特征声线的传播时间为声线在 水中和沉积层中的传播时间之和。 三维坐标关系如图所示:
数值分析第七章非线性方程的数值解法

数值分析第七章非线性方程的数值解法在数值分析中,非线性方程和非线性方程组的求解是非常重要的问题。
线性方程是指变量之间的关系是线性的,而非线性方程则指变量之间的关
系是非线性的。
非线性方程的数值解法是通过迭代的方式逼近方程的解。
非线性方程的求解可以分为两类:一元非线性方程和多元非线性方程组。
接下来,我们将对这两类方程的数值解法进行介绍。
对于一元非线性方程的数值解法,最常用的方法是二分法、牛顿法和
割线法。
二分法是一种直观易懂的方法,其基本思想是通过迭代将方程的解所
在的区间逐渐缩小,最终找到方程的解。
二分法的缺点是收敛速度较慢。
牛顿法是一种迭代法,其基本思想是通过选择适当的初始值,构造出
一个切线方程,然后将切线方程与x轴的交点作为新的近似解,并不断迭代,直到满足精度要求。
牛顿法的优点是收敛速度较快,但其缺点是初始
值的选择对结果影响很大,容易陷入局部极值。
割线法是对牛顿法的改进,其基本思想是通过选择两个初始值,构造
出一条割线,然后将割线与x轴的交点作为新的近似解,并不断迭代,直
到满足精度要求。
割线法的收敛速度介于二分法和牛顿法之间。
对于多元非线性方程组的数值解法,最常用的方法是牛顿法和拟牛顿法。
牛顿法的思想同样是通过构造切线方程来进行迭代,但在多元方程组中,切线方程变为雅可比矩阵。
牛顿法的优点是收敛速度快,但同样受初
始值的选择影响较大。
拟牛顿法是对牛顿法的改进,其基本思想是通过逼近Hessian矩阵来进行迭代,从而避免了计算雅可比矩阵的繁琐过程。
拟牛顿法的收敛性和稳定性较好,但算法复杂度相对较高。
数值分析实验报告——非线性方程求根

数值分析实验报告——非线性方程求根一、实验目的:1.掌握求解非线性方程的常用方法;2.了解非线性方程求根问题的数值解法;3.熟悉使用数值分析软件进行非线性方程求根的实现。
二、实验原理:非线性方程指的是形如f(x)=0的方程,其中f(x)是一个非线性函数。
非线性方程求根的常用方法包括二分法、割线法和牛顿法等。
其中,二分法是通过不断缩小区间范围来逼近方程的解;割线法是通过使用割线来逼近方程的解;牛顿法则是通过使用切线来逼近方程的解。
对于给定的非线性方程,可以根据实际情况选择合适的方法进行求根。
三、实验内容:1.编写求解非线性方程的函数,包括二分法、割线法和牛顿法;2.使用编写的函数求解给定的非线性方程,比较各个方法的收敛速度和精确程度;3.根据实际情况分析和选择合适的方法进行求根。
四、实验步骤:1.针对给定的非线性方程,编写二分法的函数实现:(1)首先确定方程的解存在的区间;(2)根据方程的解存在的区间,使用二分法逐步缩小区间范围;(3)根据设定的精度要求,不断循环迭代,直至满足要求或达到迭代次数限制;2.针对给定的非线性方程,编写割线法的函数实现:(1)首先需要确定方程的解存在的初始点;(2)根据方程的解存在的初始点,根据割线的定义进行迭代;(3)设定迭代的精度要求和限制次数,结束迭代;3.针对给定的非线性方程,编写牛顿法的函数实现:(1)首先需要确定方程的解存在的初始点;(2)根据方程的解存在的初始点,根据牛顿法的定义进行迭代;(3)设定迭代的精度要求和限制次数,结束迭代;4.根据给定的非线性方程,分别使用二分法、割线法和牛顿法进行求解,并比较各个方法的收敛速度和精确程度;5.分析实际情况,选择合适的方法进行求解。
五、实验结果:4.通过比较,发现割线法和牛顿法的收敛速度较快,精确程度较高,因此选择割线法进行求解。
六、实验总结:通过本次实验,我掌握了求解非线性方程的常用方法,并使用数值分析软件实现了二分法、割线法和牛顿法。
第7章 非线性方程的数值解法

设 0为给定精 度要求,试确定分半次 数k 使
x* xk
ba 2k
由 于2k , 两 边 取 对 数 , 即 得
ba
k ln(b a) ln
ln 2
数值分析
18/47
§例1: 5.用2 二二分分法 求 法x3 4x2 10 0在[1,2]内 的 根 ,
要 求 绝 对 误 差 不 超 过1 102。 2
第七章 非线性方程的数值解法
数值分析
本章内容
§7.1 方程求根与二分法 §7.2 不动点迭代及其收敛性 §7.4 牛顿法 §7.5 弦截法
数值分析
2/47
本章要求
1. 掌握二分法基本原理,掌握二分法的算法 流程;
2. 掌握理解单点迭代的基本思想,掌握迭代 的收敛条件;
3. 掌握Newton迭代的建立及几何意义,了解 Newton迭代的收敛性;
27/47
§ 7.2 不动点迭代法及其收敛性
不动点迭代的几个重要问题: 1、迭代格式的构造; 2、初值的选取; 3、敛散性的判断;☆ 4、收敛速度的判断。
数值分析
28/47
§ 7.2 不动点迭代法及其收敛性
三.压缩映射原理(整体收敛性)
考虑方程x g( x), g( x) C[a, b], 若
则f (x)=0在[a, b]内必有一根。
二. 过程
将区间对分,判别f (x)的符号,逐步缩小有根区 间。
数值分析
14/47
§7.1.2 二分法
三. 方法
取xmid=0.5*(a+b)
若f(xmid) < (预先给定的精度),则xmid即为根。
否则,若f (a)*f (xmid)<0,则取a1=a,b1=xmid 若f (a)*f (xmid)>0,则取a1=xmid,b1=b 此时有根区间缩小为[a1, b1],区间长度为 b1-a1=0.5*(b-a)
非线性方程组数值解法

非线性方程组数值解法
,
非线性方程组数值解法是通过数值方法解决非线性方程组问题的一种解法。
非线性方程组不像普通的线性方程组,它们往往没有普遍的解析解,一般只有数值解。
因此,非线性方程组的数值解法非常重要。
非线性方程组数值解法的基本思想是,将非线性方程组分解为多个子问题,并采用一种迭代算法求解这些子问题。
最常见的数值方法有牛顿法、拟牛顿法和共轭梯度法等。
牛顿法是利用曲线上的点的二次近似,将非线性方程分解为两个子问题,转换为求解一个简单的一元方程的问题来求解非线性方程组的数值解。
拟牛顿法利用有限差分方法来求解非线性方程组的数值解,共轭梯度法利用解的搜索方向,进行有效的搜索,通过解的最优性条件收敛到解。
非线性方程组数值解法是目前应用最广泛的数值解法,它能很好地求解非线性方程组。
不仅能有效求解复杂的非线性方程组,还能求出较精确的数值解。
此外,非线性方程组数值解法运算速度快,可以对模型进行实时定位和跟踪,非常适合模拟复杂的动态系统。
总之,非线性方程组数值解法是一种求解复杂非线性方程组的有效解法,它的准确性高,运算速度快,广泛应用于现实世界中的多种工程与科学计算问题。
非线性方程组数值解法课件

目 录
• 非线性方程组概述 • 迭代法求解非线性方程组 • 牛顿法求解非线性方程组 • 拟牛顿法求解非线性方程组 • 非线性方程组数值解法的应用
01
非线性方程组概述
非线性方程组的定义与分类
定义
非线性方程组是由多个非线性方 程组成的数学模型,描述了多个 变量之间的关系。
在工程问题中的应用
航空航天工程
土木工程
非线性方程组数值解法用于设计和优 化飞行器、卫星和火箭的结构和性能。
在建筑设计、桥梁和高层建筑的结构 分析中,非线性方程组数值解法用于 模拟结构的承载能力和稳定性。
机械工程
在机械设计中,非线性方程组数值解 法用于分析复杂机械系统的动力学特 性和稳定性。
在金融问题中的应用
拟牛顿法的收敛性分析主要基于Hessian 矩阵的条件数和近似矩阵的误差界。在适 当的条件下,拟牛顿法能够保证全局收敛 性和局部超线性收敛性。
拟牛顿法的实现
总结词
拟牛顿法的具体实现可以通过不同的算法实 现,如DFP算法和BFGS算法等。
详细描述
DFP算法(Davidon-Fletcher-Powell)和 BFGS算法(Broyden-Fletcher-GoldfarbShanno)是两种常见的拟牛顿算法。它们 的主要区别在于近似矩阵的更新方式。DFP 算法采用三对角化方法更新近似矩阵,而 BFGS算法采用迭代更新的方式。在实际应 用中,BFGS算法通常比DFP算法更受欢迎, 因为它在大多数情况下都能提供更好的收敛 效果。
05
非线性方程组数值解法的 应用
在物理问题中的应用
量子力学方程
非线性方程组数值解法在 量子力学中用于描述微观 粒子的行为和相互作用。
非线性方程与方程组数值解法

2.2 二分法
表2-2 计算结果
k
0 1 2 3 4 5 6 7
ak
1 1 1.25 1.25 1.3125 1.3125 1.3125 1.3203
bk
2 1.5 1.5 1.375 1.375 1.3438 1.3281 1.3281
xk
1.5 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242
ab ;否则,回 2
5.2 二分法
说明:
x*
(ⅰ)上述计算步骤(2)和(3)每执行一次就把新的区间分成两份,根的范围也 缩小一半. 如果第 k 次二分后得到的区间记 为 [ak , bk ],根的近似值记为 xk ,则 ba (a b ) 有 bk ak k , xk k k ,那么当时 k , bk ak 0,这说明如果二分过 2 2 程无限继续下去,这些区间必将收敛于一点,即为所求根. (ⅱ) 第
3
2 f ( x ) 3 x 1 0, x [1, 2] 解 已知 f (1) 1 0, f (2) 5 0 且 ,
则方程
f ( x) x 3 x 1 0
在区间
(1, 2)
内只有一个实根.
当 k 1 , x1
bk ak 102 ,继续二分;
2.1 引言
通常隔离区间的确定方法为 (1)作 y f ( x) 的草图, 由 y f ( x)与横轴交点的大致位置来确定; 或 者将 f1 ( x) f 2 ( x) 改写成 f ( x) 0 , 根据 y f1 ( x) 和 y f 2 ( x) 交点横坐标来确定
根的隔离区间.
当 k 2 , x2
非线性方程(组)的数值解法——牛顿法、弦切法

需要求导数!
9
简化的Newton法
简化的 Newton 法
基本思想:用 f’(x0) 替代所有的 f’(xk)
xk 1
f ( xk ) xk f '( x0 )
线性收敛
10
Newton下山法
Newton下山法
基本思想:要求每一步迭代满足下降条件
f x k 1 f x k
非线性方程组的数值解法牛顿法弦切法非线性方程组数值解法非线性方程数值解法非线性方程的数值解法非线性方程组迭代解法非线性方程组的解法非线性方程组解法微分方程数值解法常微分方程的数值解法微分方程数值解法pdf
计算方法
第七章
非线性方程(组)的数值解法
—— Newton 法 —— 弦截法、抛物线法
1
本讲内容
13
举例
例:求 x4 - 4x2 + 4=0 的二重根 x* 2 (1) 普通 Newton 法
x2 2 1 ( x ) x 4x
(2) 改进的 Newton 法 x2 2 2 ( x) x
2x
(3) 用 Newton 法解 (x) = 0
x ( x 2 2) 3 ( x) x x2 2
f [ xk , xk 1 , xk 2 ]( x xk )( x xk1 )
xk 1 xk
2 f ( xk )
2 4 f ( xk ) f [ xk , xk 1 , xk 2 ]
f [ xk , xk1 ] f [ xk , xk1 , xk2 ]( xk xk1 )
f ( x) ( x) x f '( x )
1 '( x*) 1 m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定理1.4 若(x)在方程x=(x)的根α的邻域内有
充分阶连续的导数,则迭代过程xk+1=(xk)是p阶 收敛的充分且必要条件是
(j)(α)=0, j=1,2,,p-1
(p)(α)0
证 充分性
xk1 (xk )
x=(x)在[a, b]上的惟一根.
不动点迭代法的局部收敛性及收敛阶
定理1.3 若(x)在方程x=(x)的根α的邻域内有
一阶连续的导数,且'(α) <1,则迭代过程xk+1=(xk) 具有局部收敛性 证 由连续函数性质,存在α的充分小邻域
: x-α, 使当x 时,有 ' (x)L<1
由微分中值定理有
(j)(α)=0, j=1,2,, p0-1 (p0)(α)0
由充分性的证明知此迭代法是p0阶收敛 的,矛盾.必要性得证.
例 能不能用迭代法求解方程x=4-2x,如果不能
时,试将方程改写成能用迭代法求解的形式.
方程为x-4+2x =0.设f(x)= x-4+2x ,则f(1)<0,f(2)>0, f '(x)= 1+2x ln2>0,故方程f(x)=0仅在区间(1, 2)内有唯一根.
f(α)=f(α)==f (m-1)(α)=0, f (m)(α)0
这里只讨论实根的求法.
求根步骤
(1)根的存在性. (2)根的隔离. (3)根的精确化.
非线性方程求根的数值方法
二分法 迭代法
单点迭代法(不动点迭代,Newton迭代法) 多点迭代法(弦截法)
迭代法的一般理论
迭代法是一种逐次逼近的方法,它的基 本思想是通过构造一个递推关系式 (迭代 格式) ,计算出根的近似值序列,并要求 该序列收敛于方程的根.
xk
L 1 L
xk xk 1
xk
Lk 1 L
x1 x0
证 根的存在性
由(2)知(x)连续. 令f(x)=x-(x), f(a)0, f(b)0, 从而 f(x)=0在[a, b] 上有根,即x=(x)在[a, b] 上有根.
根的唯一性
设x=(x)在[a, b] 上有两根α1, α2, α1 α2 , α1- α2=(α1)-(α2)L α1- α2 与 L<1矛盾.故α1= α2
序列的收敛性
xk+1-α=(xk)-(α)Lxk-α , xk+1-αLk+1x0-α
由0L<1有
lim
k
xk
误差估计
xk+1-xk=(xk)–(xk-1)Lxk-xk-1 xk+2-xk+1=(xk+1)–(xk)L2xk-xk-1
xk+p-xk+p-1Lpxk-xk-1
xk+p-xk xk+p-xk+p-1+xk+p-1-xk+p-2++ xk+1-xk
迭代法(Picard迭代法). (x) 称为迭代函数.
多点迭代法
建立迭代公式
xk+1=(xk-n+1, ,xk-2, xk-1, xk)
(3)
对于迭代法需要考虑一下几个主要问题 收敛性 收敛速度 计算效率
迭代法的全局收敛性
定义1 设为f(x)=0的根,如果x0[a, b] ,由迭代法产生的序列都收敛于根 ,
lim
k
ek 1 ek p
C 0
则称迭代过程是p阶收敛的.
特别地,当p=1时,称为线性收敛;
当p>1时,称为超线性收敛,
当p=2时,称为平方收敛.
p越大,收敛越快.
效率指数
定义3 称
1
EI p
为效率指数. 其中p表示迭代的收敛阶,表示
每步迭代的计算量. EI越大,计算效率越高.
不动点迭代法
题中 (x)=4-2x,当时x[1,2]时,' (x)=-2xln22ln2>1 ,由
定理1.2不能用 xk1 4 2xk 来迭代求根.
把原方程改写为x=ln(4-x)/ln2, 此时(x)=ln(4-x)/ln2 , 则有 1°当x[1,2]时, (x)[1,ln3/ln2] [1,2]
单点迭代法
将方程f(x)=0改写成等价形式
x=(x)
(1)
建立迭代公式
xk+1=(xk)
(2)
在根的附近任取一点x0,可得一序列
x k k0
.若
xk
k 0
收敛,即
lim
k
xk
,且(x)连续,则对(2)两
端取极限有α =(α) ,从而α为方程(1)的根,
也称为(x)的不动点,这种求根算法称为不动点
( ) ( )(xk )
(
p
1
1)!
(
p
1)
(
)(
xk
) p1
1
p!
(
p
)(ຫໍສະໝຸດ )(xk)p
xk1
1
p!
(
p
)
(
)(
xk
)p
lim
k
xk1 xk p
1 ( p) ( )
p!
0
必要性(反证法) 设迭代法xk+1=(xk)是p
阶收敛的,如果结论不成立,那么必有 最小正整数p0p,使得
则称该迭代法是全局收敛的.
迭代法的局部收敛性
定义2 设方程x=(x)有根α, 如果存在 α的某个邻域 : x-α,对任意初值
x0,迭代过程所产生的序列均收敛 于根α ,则称该迭代法是局部收敛的.
迭代过程的收敛速度
定义3
设迭代过程xk+1=(xk)产生的序列
xk
k 0
收敛于方程x=(x)的根α ,记 ek =α- xk ,若
不动点迭代法的整体收敛性
定理1.1 设(x)满足
(1)当x[a, b]时,(x)[a, b] ;
(2)x1, x2[a, b] ,有
(x1)-(x2)Lx1-x2 , L<1 则对任意初值x0 [a, b], 迭代过程 xk+1=(xk)收敛于 x=(x)在[a, b]上的惟一根 ,且有误差估计式
(Lp+Lp-1++L) xk-xk-1
=
L Lp1 1 L
xk xk1
令p,有
xk
L 1 L
xk
xk 1
xk
Lk 1 L
x1 x0
定理1.2 设(x)在[a, b]上具有一阶导数,且 (1)当x[a, b]时, (x)[a, b] ; (1) x[a, b] ,有'(x)L<1 则对任意初值x0 [a, b], 迭代过程 xk+1=(xk)收敛于
第一章
非线性方程和方程组的数值解法
非线性方程根的概念
给定非线性方程f(x)=0 如果有α使得f(α)=0,则称α为f(x)=0的根
或f(x)的零点. 设有正整数m使得f(x)=(x-α)mg(x)
且g(α)0 ,则当m2时,称α为f(x)=0的m 重根;当m=1时,称α为f(x)=0的单根. 若α为f(x)=0的m重根,则