定积分的换元积分

合集下载

定积分的换元积分法

定积分的换元积分法

定积分的换元积分法
1换元积分法简介
换元积分法是一种常用的资源分配原则,据报道,在资源限制的情况下,基于定量的资源管理,每个组织都可以用固定积分折算成其他资源,实现资源的有效分配、高效利用和优质应用。

2换元积分法的定义
换元积分法的定义是:将某种特定的定量资源用固定积分表示,根据具体需求,在固定积分范围内不同比例换算成其他资源,以有效调整组织或集体中资源分配和使用,以满足不同组织或集体间的资源需求。

3换元积分法的优势
(1)换元积分法可以实现定量资源有效地分配,有助于让每个组织内部有效利用资源。

(2)换元积分法可以提高组织内部财务结算的效率,降低组织内部的费用开支。

(3)换元积分法能够有效衡量组织内部不同资源之间的价值,使组织内部拥有不同价值的资源,同时又可以实现资源优化分配。

4换元积分法的应用
换元积分法在我国目前已经得到广泛的应用,如:我国的国家部门统一采购、统一预算,办公室的会议管理,Ally Holdings信息公司的图书管理,大学校园里的学习资源分配,企业内部的物资管理,以及政府交往的资源调配和政府的公共财政管理等。

定积分的换元积分法和分部积分法

定积分的换元积分法和分部积分法

a f (x)dx 2 a f (x)dx .
a
0
(2)若 f (x) 为奇函数,则 f (x) f (x) 0 ,从而得到
a f (x)dx 0 . a
1.1 换元积分法
例 6 若 f (x) 在[0,1] 上连续,证明:
(1) 2 f (sin x)dx 2 f (cos x)dx ;
2
2
t 1.
于是
2
cos
x sin
xdx
1
1 dt 1
2 dt
0 1 cos 2 x
2 2t 21 t
1 2
[ln
t
]12
1 2
ln 2 .
1.1 换元积分法
例4

计算 sin3 x sin5 xdx .
0
sin3 x sin5 xdx
3
sin 2 x | cos x | dx
0
0
(2)
xf (sin x)dx
0
2
f (sin x)dx ,并由此计算
0
0
x 1
sin x cos2
x
dx
的值.
证明 (1)令 x t ,则 dx dt .当 x 0 时,t ;当 x 时,t 0 .因
2
2
2
而有
2 0
f (sin x)dx
0 2
f
0
0
3
2 sin 2 xd sin x
0
3
sin 2
xd sin
x

2
2 5
sin
5 2
2 x 0
2 5
sin
5 2
x

定积分换元积分法的不同换元方法

定积分换元积分法的不同换元方法

一、定积分的换元积分法概述定积分的换元积分法是计算定积分的一种重要方法,其主要思想是通过变量替换的方式将原积分转化为一个更容易求解的形式。

这种方法在解决复杂的定积分问题时具有较大的实用价值,因此对于不同的换元方法的掌握和熟练应用显得尤为重要。

二、常见的换元方法在定积分的换元积分法中,常见的换元方法包括但不限于以下几种:1. 第一类换元法:直接代入法直接代入法是指直接将被积函数中的某一个部分用一个变量表示并进行代入的方法。

通常适用于被积函数较简单的情况,能够将原积分转化为一个更容易处理的形式。

2. 第二类换元法:三角代换法三角代换法是指通过选取合适的三角函数来进行变量替换,将原积分转化为三角函数的积分形式。

这种方法通常适用于出现平方根和平方项时的情形,通过选择合适的三角函数可以使原积分变得更加简单。

3. 第三类换元法:指数代换法指数代换法是指通过选取适当的指数函数进行变量替换,将原积分转化为指数函数的积分形式。

这种方法通常适用于出现指数函数和对数函数时的情形,能够将原积分化为更容易处理的形式。

4. 第四类换元法:倒代换法倒代换法是指通过选取合适的变量倒数进行变量替换,将原积分从一个区间转化为另一个区间或者将原积分中的除法项转化为乘法项。

这种方法通常适用于变量之间的换元关系为倒数关系的情形,能够简化原积分的形式。

三、不同换元方法的选用原则在实际应用中,选择合适的换元方法是十分重要的。

一般而言,可以根据以下原则进行选择:1. 根据被积函数的形式选择当被积函数具有特定的形式时,可以根据不同的形式选择对应的换元方法。

如当被积函数中出现三角函数时,可以考虑使用三角代换法;当被积函数中出现指数函数时,可以考虑使用指数代换法。

2. 根据逆变换的便捷性选择在选择换元方法时,通常也要考虑逆变换的便捷性。

换元后新的积分形式是否容易转化回原来的变量,这将影响到最终的计算复杂程度。

3. 根据积分区间的选择当积分区间发生变化时,可以考虑使用倒代换法将原积分转化为更便于处理的形式,从而简化计算过程。

定积分的换元积分法

定积分的换元积分法

定积分的换元积分法
换元积分法是指将一个原有的积分按某种规定定义相互换算兑换为新的积分的方法,
又称按档次分类法。

换元积分法是一种将原有积分分类标准化,并形成新分类规则的方法。

换元积分法建立在原有考核标准和实践考核指标基础上,以提高参加者考核成绩,以便做
出客观公正的评价和决策,从而实现考核绩效的改进。

换元积分法的基本原理是把原有积分按照规定的分类档次,换元无量纲化,即把原有
积分按规定的档次换元转换为新的标准积分,这样就可以很轻易比较不同参与考核者的考
核绩效。

换元积分法的设计要求考核指标的划分不可过于任意,也不可过多,考核标准的
标准分类档次应该越多越好,考核者的表现也应该由易至难分成多个档次,使考核更加客
观公正。

换元积分法还具有计算简便、考核灵活可编辑性、更利于客观评价等特点。

在考核中,有许多分类标准,比如能力和表现,进步程度等等,换元积分法可以利用各种标准进行积分,把原有积分按照规定的档次换算为新的标准积分,这样可以使考核更加客观公正,并
且它可以很灵活地根据考核过程不断改进,便于做出客观公正的评价和决策。

换元积分法是一种有效的考核方式,它可以有效规范各种考核测试,使考核成绩具有
一定的公正性和可比性,使市场参与者更容易把握自己的考核状态。

然而,换元积分法的
实施也有一定的局限性,即考核内容受限于原有的积分考核标准和实践考核指标,可能无
法满足实际考核的新要求,因而需要定期修正考核内容和指标,让它更适应变化的环境。

定积分的换元法

定积分的换元法
2

2
1
1+ x


5. 7. 8. 9.

π
1
0
1 + cos 2 x dx ;
6.
π 2 π − 2 π 2 π − 2
cos x − cos 3 x dx ;
4cos 4 θ dθ

∫ ∫ ∫
−1 2
( x 2 1 − x 2 + x 3 1 + x 2 )dx ;
0 2 0
max{ x , x 3 }dx ; x x − λ dx
1 sec t ⋅ tan tdt sec t ⋅ tan t
= − ∫2 π
π dt = − . 12
练习题
一、 填空题: 填空题:
π 1. ∫ π sin( x + )dx = ___________________; ___________________; 3 3
π
2. 3. 4.
∫ ∫
π
0
t 1 = − ∫ t dt = = . 1 60 6
5
6 1
应用换元公式时应注意( 应用换元公式时应注意(一):
(1)用 x = ϕ ( t ) 把变量 x 换成新变量 换成新变量 t 时,积分限 积分限也
相应的改变 相应的改变. 改变.
求出 f [ϕ ( t )]ϕ ′( t )的一个原函数 Φ( t ) 后,不必 (2 ) 象计算不定积分那样再要把 Φ( t ) 回代成原变量 x 的函数, 的函数,而只要把新变量 t 的上、 的上、下限分别代 入 Φ( t ) 然后相减就行了. 然后相减就行了.
( λ 为参数 ).
1 , 当x ≥ 0时, 1 + x 三、 设 f ( x ) = 求 1 , 当x < 0时, 1 + e x

定积分的换元法

定积分的换元法

dt sin xdx ,
x t 0, 2
x 0 t 1,
0
2
cos 5 x sin xdx
0 5
6 1
t 1 1 t dt . 60 6
例2
计算 0

sin 3 x sin 5 xdx .
3 2

f ( x ) sin 3 x sin 5 x cos x sin x
5、 2 2 ;
17 8 当 0 时 9、 ; 10、 , 2 ; 当0 2 4 3 8 8 3 2 时, 2 ; 当 时, 2 . 3 3 3 1 三、 1 ln( 1 e ) . 六、 2.
3 6、 ; 2
7、 ; 4
8、 ; 8
2
3 3 4
dt . 12
思考题解答
计算中第二步是错误的.
x sec t
x 2 1 tan t tan t .
2 3 t , , tan t 0, 3 4
正确解法是
2
2
dx x x2 1
3 4 3
x sec t
由此计算

2 0

x sin sin x sinx x . dx dx dx 2 2 sin x cos 1 cos x x 2 0 1 cos x
1 d (cos x ) arctan(cos x ) 0 2 0 2 2 1 cos x
2 0 2
( x 2 1 x 2 x 3 1 x 2 )dx ;
8、 max{ x , x 3 }dx ; 9、 x x dx

定积分的换元法


例12 设 f ( x ) 连续

二、小结
定积分的换元法 几个特殊积分、定积分的几个等式
思考题
解令
思考题解答
计算中第二步是错误的.
正确解法是
练习题
练习题答案
由定积分的几何意义,这个结论也是比较明显的
例8 计算 解 原式
偶函数
奇函数
四分之一单位圆的面积
证 (1)设 (2)设
另证 将上式改写为
奇函数
例10 设 f(x) 是以L为周期的连续函数,证明
证明
与 a 的值无关
例11 设 f(x) 连续,常数 a > 0 证明
证明 比较等式两边的被积函数知,
先来看一个例子
例1
换元求不定积分 令


尝试一下直接换元求定积分
为去掉根号 令

当 x 从0连续地增加到4时,t 相 应地从1连续地增加到3
于是
由此可见,定积分也可以象不定积分一 样进行换元,所不同的是不定积分换元时要 回代原积分变量,而对定积分则只需将其上 、下限换成新变量的上、下限即可计算出定 积分,而不必回代原积分变量
将上例一般化就得到定积分的换元积分公式
一、换元公式

应用换元公式时应注意:
(1)
(2)
例2 计算 解1 由定积分的几何意义
o 等于圆周的第一象限部分的面积 解2

解3 令
解4 令 仍可得到上述结果
例3 计算 解令

定积分的换元积分公式也可以反过来使用
为方便计 将换元公式的左、右两边对调
同时把 x 换成 t , t 换成 xFra bibliotek这说明可用
引入新变量

定积分换元法



s in 2
x
(1exex

1 1 ex
)

s in 2
x,




4 sin2 x

4
1

ex
dx

4 sin2 xdx
0
4 1 cos2x dx 02


[1 x 1 sin 2x] 4 2 .
24
08
4
(2)



(cos
x
(1

s
in
2x)dx.
1
c1os2 xd(cos
x)
arctan(cos x) ( ) 2 .
2
0 2 44 4
8.已知g(x) x tf (xt)dt ,求g(x) 。 0
g(x)
x
t
令xtu
f (xt)dt
0 (xu) f (u)du
0
0


e2x sin x
2 0

2 sin x d(e2x )
0


e 2 2 e2x sin x dx e 2 2 e2x d(cosx)
0
0


e 2 e2x cosx
2 0
2
2 cosxd(e2x )
0

e 2 4 2 e2x cosxdx 0 5I e 2,
2
2
2 cos6 xdx 2 5 3 1 5 .
0
6 4 2 2 16
(3)
cos8 x dx 2

定积分换元积分法


x = π ⇒ t = 0,
0 π
∫0 xf (sin x )dx
π 0
π
= − ∫ ( π − t ) f [sin( π − t )]dt
= ∫ ( π − t ) f (sin t )dt ,
∫0 xf (sin x )dx
π
π
= π ∫ f (sin t )dt − ∫ tf (sin t )dt
∫−a f ( x )dx = ∫−a f ( x )dx + ∫0
在∫
0 −a
a
f ( x )dx ,
f ( x )dx 中令 x = − t ,
∫−a f ( x )dx = − ∫a f ( − t )dt = ∫0
a 0
0
0
a
f ( − t )dt ,
为偶函数, ① f ( x ) 为偶函数,则 f ( − t ) = f ( t ),
π cos t 1 2 dt = ∫ sin t + cos t 2 0
上连续, 例 5 当 f ( x ) 在[ − a , a ]上连续,且有 为偶函数, ① f ( x ) 为偶函数,则
∫−a f ( x )dx = 2∫0

a 0
a
a
f ( x )dx ;
a
为奇函数, ② f ( x ) 为奇函数,则 ∫− a f ( x )dx = 0 .
的一个原函数. ∴ Φ (t ) 是 f [ϕ ( t )]ϕ ′( t )的一个原函数
β
∫α f [ϕ( t )]ϕ′( t )dt = Φ(β ) − Φ(α),
ϕ (α ) = a 、ϕ ( β ) = b ,
Φ( β ) − Φ(α ) = F[ϕ ( β )] − F[ϕ (α )]

第4节 定积分的换元法与分部积分法

4 1 0


1 0
1 x

1 0
ax dx


a 4
4

a

1 0
f ( x )d x

3
7/9/2013 12:56 AM
第6章
函数的积分
7. 设
f (x)
F 是连续函数, ( x ) 是 f ( x ) 的原
函数,则( A )
(A) (B ) (C ) (D) F 当 f ( x ) 是奇函数时, ( x ) 必是偶函数 F 当 f ( x ) 是偶函数时, ( x ) 是奇函数
dx )
8(e 2e 2
7/9/2013 12:56 AM
x
) 8(e 2 )
第6章
函数的积分
例9 设

f (x)

x 1
2
sin t t
2 2
dt ,

2

2
1
x f ( x )d x
0
f ( x ) 2 x
x f ( x )d x
2 1 0
sin x x


x 1
3
f ( t ) d t ln x ,

x 1
3
f (e ) 。
3

ln x
3

1
3 ( t ) d t f ( x ) f (1 ) f ( x ) f

u x ,

f ( u ) ln
3
u
1 3
ln u
f (e )
3
思考 是否还有其它方法?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
2 cos5 xd(cos x)
0
1 6
cos6
x
|0 /2
1 (0 1) 1
6
6
换 元 要 换 限
凑 元 不 换 限x
例2 计算
凑元不换限
3

原式 e4 e
d(ln x) ln x(1 ln x)
3
3
e4
e
d(ln x)
e4
ln x (1 ln x) 2 e
3
2 arcsin(
(t)是 f [ (t )] (t )的一个原函数.
f
[(t )](t
)dt
()
(),
定积分的换元积分法
( ) a、( ) b,
( ) ( ) F[( )] F[( )]
F(b) F(a),
b
a
f
(
x)dx
F
(b)
F
(a)
(
)
(
)
f [ (t)](t)dt.
定积分的换元积分法
应用换元公式时应注意:
a
0
a
f ( x)dx f ( x)dx f ( x)dx,
a
a
0
在 0 a
f
( x)dx 中令x
t ,
0
0
a
a f ( x)dx a f (t)dt 0 f (t)dt,
0
0
a
a f ( x)dx a f (t)dt 0 f (t)dt,
① f ( x)为偶函数,则 f (t) f (t),

有 b a
f
(
x)dx
f [ (t)] (t)dt .
牛定顿积-分莱的布换尼元茨积公分式法
证 设F ( x)是 f ( x)的一个原函数,
b
a f ( x)dx F (b) F (a),
(t) F[(t)],
(t) dF dx f ( x) (t) f [(t)](t),
dx dt
原式
12
2dt t(1
t
)
212
(1 t
1
1
t
)dt
2[ln t ln(1 t )]12
2ln 4 3
例7 2)计算
换元要换限
解: 令 t 1 x , x 1 t 2 , dx 2tdt
原式
0 t(1 t 2 )( 2t )dt
1
01(2t
2
4t 4
)dt
4 15
性质

4
8
9、17 ; 10、当 0 时 ,8 2 ; 当0 2
4
3
时, 8 2 3 ; 当 2时, 8 2 .
三、
1
3 ln(1
e
1
3 ).
3
六、 2.
谢谢
主讲老师:陈禹默
例5 3
1 xdx 1 5 4x
换元必须换限
解 令 5 4x u,则x 1 (5 u2 ),dx 1 udu
4
2
当x 1时,u 3;当x 1时,u 1
原式
1 5 u2 u du
3 4u 2
1 1 5 u2 du 83
1 5u u3 1 1
8
36
3
例6 1)计算
换元要换限
解 令t x, 则 x t 2 , dx 2tdt,
高等数学在线开放课程
项目六:定积分及 其应用
任务三
定积分的计算
主讲老师:陈禹默
任务三:定积分的计算
知识点一
定积分的换元法
定积分的换元积分法
定理 假设
(1) f ( x)在[a,b]上连续;
(2)函数 x (t)在[ , ]上是单值的且有连续
导数;
(3)当t 在区间[ , ]上变化时, x (t) 的值 在[a,b]上变化,且 ( ) a、 ( ) b ,
3、 2 2 x 2 dx _____________; 0
4、
1 (arcsin x)2
2
1
2
1 x2
dx
___________;
5、5 x 3 sin2 x
x 2 x 1 dx 5 4
2
________________________ ..
定积分的换元积分法
练习题
二、计算下列定积分:
x2 1
x
2
dx
4 1 0
x
2(1 1 (1
1
x x2)
2
)
dx
4 1 0
(1
1
x2
)dx
4
1
40
1 x2dx
单位圆的面积
4 .
定积分的换元积分法
练习题
一、填空题:
1、
sin(
3
x
3
)dx
___________________;
2、 (1 sin3 )d ________________; 0
a
a
f
( x)dx
0
a
f
x)dx
a
20 f (t)dt;
② f ( x)为奇函数,则 f (t) f (t),
a
a
f
( x)dx
0
a
f
( x)dx
a
0
f
( x)dx
0.
例7 计算

原式
1
1
1
2x2 1
x2
dx
1
1
x cos x 1 1 x2
dx
偶函数
奇函数
1
40 1
ln x)
e4 e
. 6
d ln x 1 ( ln x)2
定积分的换元积分法
案例一
例3 1
e
ln x
4
dx
1x
解 原式
e ln x 4d ln x
1
凑微分d ln x
1 ln x 5 e 1
5
15
不换元则不变限
另解 原式
u ln x 1u4du 1 u5 1 1
0
5 05
换元必须换限
定积分的换元积分法
1、 2 sin cos3 d ; 2、 3 dx ;
0
1 x2 1 x2
3、
1 3
4
dx ; 1 x 1
4、
2
cos x cos3 xdx ;
2
5、 1 cos 2xdx; 0
6、
2
4cos4
dx ;
2
7、 1 ( x 2 1 x 2 x 3 1 x 2 )dx ; 1
8、
2
max{ x
,
x 3 }dx;
0
9、
2
x
x
dx
( 为参数 ).
0
定积分的换元积分法
练习题答案
一、1、0; 2、 4 ; 3、 ; 4、3 ; 5、0.
3
2
32
二、1、1 ; 2、 2 2 3 ; 3、1 2 ln 2 ; 44、 ;
4
3
3
5、2 2 ; 6、3 ; 2
7、 ; 8、 ;
例4 2 解 令t
8 1 dx 01 3 x 3 x , 则 x t3, dx
换元必须换限
3t 2dt
换元
当 x 0 时,t 0 ;当 x 8 时,t 2
换限
原式
2 3t 2 dt 01 t
3 2(t 1 1 )dt
0
t1
3 t2 t ln t 1 2 2
0
3 2 2 ln3 3ln3
定积分的换元积分法
(1)用 x (t )把变量 x换成新变量t 时,积分限也
相应的改变.
(2)求出 f [ (t )] (t )的一个原函数(t)后,不
必象计算不定积分那样再要把(t )变换成原 变量 x的函数,而只要把新变量t 的上、下限 分别代入(t )然后相减就行了.
例1 计算

2 cos5 x sin xdx
相关文档
最新文档