第三章力矩和平面力偶系第四章平面任意力系

合集下载

工程力学I-第3章 力矩与平面力偶系

工程力学I-第3章 力矩与平面力偶系

D
x
§3-2 关于力偶的概念

力偶:一对等值、反向而不共线的平行力,用 符号(F ,F′)表示。

力偶臂:两个力作用
线之间的垂直距离d。

F’
F
力偶的作用面:两个 力作用线所决定的平 面
§3-2 关于力偶的概念
F F
d
d
F
d
F
F
F
转动游戏方向盘
拧水龙头
扳手拧螺母
§3-2 关于力偶的概念

Q AABD AABC 显然, 并注意到力偶矩的转向也相同, 则有M ( F , F ) M ( P, P) P
M (P 1, P 1 ) M ( P, P ) 显然, 1, P 1) 从而有M ,( F , F ) M ( P
P1
力偶等效
M ( F , F ) M ( P 1, P 1)
(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变。 *(3)力的大小等于零或其作用线通过矩心时,力矩等于零。 (4)互成平衡的两个力对同一点之矩的代数和为零。
Mo(F)=±Fd
§3-1 关于力矩的概念及其计算

合力矩定理:
y Fy
(3)将力P和P’沿各自的作用 线移至任意点A’,B’,根 据力的可传性原理,有 (P,P’) =(P1,P1’) 。
§3-2 关于力偶的概念
(4) A′
P1′ b F′ A A F B Q′ D P′ B′ C
M (F , F ) AB BD 2 AABD ,
M(P, P') AB BC 2 AABC

第四章平面任意力系详解

第四章平面任意力系详解

同样,有且只有三个独立的平衡方程
例1: 简支梁受力如图,已知F=300N, q=100N/m,
求A, B处的约束反力。
∑ 解:简支梁受力如图所示:
Fx = 0 ⇒ FAx = 0
F q
FAx A
CD
FAy 2m 2m
4m
∑ Fy = 0
FAy + FB − F − q ⋅ 4 = 0 (1)
B
∑MA =0
M
力的平移定理: 可以将作用于刚体上A点上的
力 F 平行移动到任一点O ,但必须附加一个力偶,
附加力偶的力偶矩等于原力 F 对 O 点之矩。
力的平移的逆过程
M
-F
F
F
r F
图中:
d = MO F
一个力偶矩和一个作用于同一平面的
力 F,可以进一步简化为一个力 。
二、平面任意力系向作用面内一点简化
y
刚体系平衡
系统满足刚体的平衡条件
3. 注意一些临界的力学条件:
刚好拉过台阶FNA = 0
FNA
F
翻倒的临界条件:FN 集中于角点。
FN
§4.3 刚体系的平衡
一、刚化原理
变形体在某一力系作用下处于平衡,若将处于平衡状
态时的变形体换成刚体(刚化),则平衡状态不变。
F
F
(a)
F
F
(b)
刚体的平衡条件是变形体平衡的必要条件
二、刚体系的平衡问题
y
F1 O F3
F1/ M1 M2 F2/
= F2
O M3 F3/
x=
Mo FR/
O
x
( ) ( ) ( ) r
r
r
M1 = M o F1 M 2 = M o F2 M 3 = M o F3

第三章-力矩和平面力偶系-第四章-平面任意力系

第三章-力矩和平面力偶系-第四章-平面任意力系

例3-1 试计算力对A点之矩。
解 本题有两种解法。 方法一: 按力矩的定义计算 由图中几何关系有:
d=ADsinα =(AB-DB)sinα =(AB- BCctgα)sinα =(a- bctgα)sinα =asinα-bcosα
所以
mA(F)=F•d =F(asinα-bcosα)
方法二:
解:
图(a):
MA = - 8×2 = -16 kN ·m
MB = 8×2 = 16 kN ·m
图(b): MA = - 4×2×1 = -8 kN · m
MB = 4×2×1 = 8 kN ·m
第二节 力偶
▪ 一、力偶 力偶矩

在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,
但不在同一直线上的两个平行力作用的情况。例如
2.力偶矩:
▪ 作为力偶对物体转动效应的量度,称为力偶矩,
用m或m( F ,F′)表示。在平面问题中,将力偶中
的一个力的大小和力偶臂的乘积冠以正负号,如图:
即m(F)=F•d=±2ΔABC
通常规定:力偶使物体逆时针方 向转动时,力偶矩为正,反之为 负。
在国际单位制中,力矩的单位 是牛顿•米(N•m)或千牛顿•米 (kN•m)。

在同一平面内的两个力偶,只要两力偶的
力偶矩的代数值相等,则这两个力偶相等。这
就是平面力偶的等效条件。
▪ 根据力偶的等效性,可得出下面两个推论:
▪ 推论1 力偶可在其作用面内任意移动和转动, 而不会改变它对物体的效应。
▪ 推论2 只要保持力偶矩不变,可同时改变力 偶中力的大小和力偶臂的长度,而不会改变它 对物体的作用效应。
主矩: Mo=m1+m2+···+mn

第四章、平面任意力系

第四章、平面任意力系

分布力系说明
q
qB
A
L 2L/3 Q1 L/3
B
A L L/2 A Q L/2
B
A
L (a)三角形分布力
厚接分布力
B L (b)均匀分布力
在以后碰到分布力时,先进行简化处理,然后再求解。
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
例 4-1
已知:梁AD的支承及受力如图所示。
F = 500N, FA = 1000N, q = 1000N/m
A、B、C是平面内不共线的任意三点.
应当指出:投影轴和矩心是可以任意选取的。 在解决实际问题时适当选取矩心与投影轴可以简化计算。
一般地说,矩心应选多个力的交点,尤其是选
未知力的交点,投影轴则尽可能选取与该力系中多数力的 后接例题 作用线平行或垂直。
第四章 平面任意力系
理 论 力 学
§4- 5 平面平行力系的合成与平衡
即两个力矩式一个投影式,其中A、B是平面内任意两点。 但连线不能垂直投影轴 X 。 B A x
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
平衡方程
2、平面力系任意力系的平衡方程 B
A 即三个力矩式, C
(2)三力矩形式的平衡方程
∑MA (F)= 0,
∑MB (F)= 0 ∑MC (F)= 0
即距D点的距离为a/3。
应用平面力系平衡方程求解。
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
例 4-1 ∑Fx = 0 ∑Fy= 0
步骤3:取坐标系Bxy,列平衡方程
FBx+ F = 0 FBy+ FC- Fp- FA= 0

第三章_力对点的矩_平面力偶系

第三章_力对点的矩_平面力偶系

4
平面力偶系的合成和平衡条件
平面力偶系的合成
平面力偶系:作用在同一平面内的一群力偶。 平面力偶系:作用在同一平面内的一群力偶。
=
FR = F1 + F2 + Fn
=
=
′ FR = F1′ + F2′ + Fn′
平面力偶系合成的结果是一个合力偶, 平面力偶系合成的结果是一个合力偶,合力 偶矩等于力偶系中各力偶矩的代数和 中各力偶矩的代数和。 偶矩等于力偶系中各力偶矩的代数和。
力对点的矩
F
h
O
M 0 ( F ) = ± Fh
力对点的矩是一个代数量,它的绝对值 绝对值等于力的大小 力对点的矩是一个代数量,它的绝对值等于力的大小 与力臂的乘积,它的正负可按下法确定, 正负可按下法确定 与力臂的乘积,它的正负可按下法确定,力使物体绕 矩心逆时针转向时为正,反之为负。 矩心逆时针转向时为正,反之为负。 力矩表示力使物体绕某点旋转的量度。 力矩表示力使物体绕某点旋转的量度。 量度
A α M1
OBBiblioteka M2DB 解: 因为杆AB为二力杆,故其反力F 和F 只 因为杆AB为二力杆 故其反力FAB 为二力杆, BA A
α
M1 M2
D
能沿A 能沿A,B的连线方向。 的连线方向。 分别取杆OA和DB为研究对象 分别取杆OA和DB为研究对象。因为力偶只能 为研究对象。 与力偶平衡,所以支座O 与力偶平衡,所以支座O和D的约束力FO 和FD 只 的约束力F ∴ 能分别平行于F 能分别平行于FAB 和FBA ,且与其方向相反。 且与其方向相反。 B 写出杆OA和DB的平衡方程 写出杆OA和DB的平衡方程: ∑M = 0 的平衡方程:
力对点的矩

工程力学题目及答案解析

工程力学题目及答案解析

= 64.5 mm
另一种解法:负面积法
将截面看成是从 200mm×150mm 的 矩形中挖去图中的小矩形(虚线部 分)而得到,从而
A1 = 200×150mm2 = 30000 mm2
2020/8/20
17
x1= 75 mm, y1= 100 mm A2= -180×130 = -23400 mm2 x2= 85 mm, y2= 110 mm
知识点
能力层次
1 力的平移定理
理解
2 平面任意力系的简化
理解
3 力系的主矢与主矩
理解
4 固定端约束
应用
5 平面任意力系的平衡条件、平衡方程形式 理解、应用
6 刚体系的平衡
掌握
7 超静定的概念
向一点简化 平面任意力系
合成 平面汇交力系
合成 平面力偶系
识记
FR (主矢)
MO (主矩)
2020/8/20
平面任意力系平衡条件:FR 0 MO 0 超静定:系统中未知力数目﹥独立的平衡方程数目。
刚体系平衡的特点: ①物系静止 ②物系中每个单体也是平衡的。每个单体可列3个平衡方程,整个系
统可列3n个方程(设物系中有n个物体)
第6章 重 心
知识点 1 重力、重心的概念 2 重心计算方法
确定重心和形心位置的具体方法: (1) 积分法; (2) 组合法; (3) 悬挂法; (4) 称重法。
解:以梁AB 为研究对象,受力图和坐标系如图所示。建立平
衡方程
Fx 0 :
FAx 0
Fy 0 :
FAy q 2l F 0
MA(F) 0 : MA q 2l l M F 2l 0
解得: FAx 0
FAy ql

工程力学C-第4章 平面任意力系

工程力学C-第4章 平面任意力系

l 2
q( x) xdx 2l h 3 q( x)dx
0 l 0
l
例 题7:
均匀分布载荷 q =4kN/m ,自由端B作用有集 中力F = 5kN,与铅垂线夹角α=25°,梁长 l = 3m。求固定端的反力。 解: 梁AB ——研究对象
x
M A (Fi ) 0 : M Q l F cos l 0 (Q ql 4 3 12kN) A
2
1 2 M A Fl cos ql 31.59kN m 转向如图 2
F
F
xi
0:
0:
FAx F sin 0
FAx F sin 2.113kN
FAy Q F cos 0
实际方向与图中相反
yi
FAy Q F cos 16.53kN 方向如图
n
平衡方程
平面任意力系平衡的解析条件:所有各力在两个任选的坐标轴 上的投影的代数和分别等于零,以及各力对于任意一点矩的代 数和也等于零。
例 1:
固定端约束
既不能移动,又不能转动的约束—— 固定端约束 固定约束的特点
利用平面力系的简化结果,将端部的分布
力向端部的一点A点简化,得FA、MA。
FA MA
A
B
b
因此,P2必须满足:
Pe P l P (e b) 1 P2 ab a
FNA
FNB
例 题 6 细杆AB 搁置在两互相垂直的光滑斜面上,如图所 示。已知:杆重为P,重心C 在杆AB的中心,两 斜面的几何关系如图。求:杆静止时与水平面的 夹角θ和支点 A、B 的反力。 解: 细杆AB —— 研究对象 设杆AB长 l ,取图示坐标系。

工程力学第三章力矩与平面力偶系

工程力学第三章力矩与平面力偶系

位置无关,因此力偶对刚体的效
应用力偶 矩度量。
F
A B
d
F'
x
O
mO ( F ) mO ( F ') F ( x d ) F 'x F d
4.力偶的表示方法
用力和力偶臂表示,或用带箭头的弧线表示,箭头表示 力偶的转向,M表示力偶的大小。
第三章力矩与平面力偶系
湖南工业大学土木工程学院
y

Fx
x

r cos x, r sin y
mo ( F ) xFy yFx
湖南工业大学土木工程学院
( )
a
第三章力矩与平面力偶系
§3-1力矩的概念和计算
mo (F ) xFy yFx
若作用在
( )
a
y
Fy
F

F2 、 A 点上的是一个汇交力系( F1 、 则可将每个力对 o 点之矩相加,有 Fn ), o
r
d

x
A
y

Fx
m (F ) x F
o
y
y Fx
(b)
x
由式( a ),该汇交力系的合力 R 它对矩心的矩
F
m0 (R) xRy yRx x Fy y Fx ( c )
比较( b )、( c )两式有
mo (R) M o (F )
第三章力矩与平面力偶系 湖南工业大学土木工程学院
l
A
o
第三章力矩与平面力偶系 湖南工业大学土木工程学院
d
F
力矩计算
简支刚架如图所示,荷载F=15kN,α=45 ,尺寸如图。试分别计 算F对A、B两点之矩。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:
图(a):
MA = - 8×2 = -16 kN ·m
MB = 8×2 = 16 kN ·m
图(b): MA = - 4×2×1 = -8 kN · m
MB = 4×2×1 = 8 kN ·m
第二节 力偶
▪ 一、力偶 力偶矩

在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,
但不在同一直线上的两个平行力作用的情况。例如
第三节 平面力偶系的合成与平衡
一、平面力偶系的合成
作用在物体同一平面内的各力偶组成平面力偶系。
m1=F1•d1,m2=F2•d2, m3=-F3•d3,
P1•d=F 1•d1 ,P2•d=F2•d2 , -P3•d =-F3•d3
FR=P1+P2-p3
FR′=P1′+P2′-P3′
M=FR d=(P1+P2-P3)d
二、力偶的性质
▪ 力和力偶是静力学中两个基本要素。力 偶与力具有不同的性质:
▪ (1)力偶不能简化为一个力,即力偶不 能用一个力等效替代。因此力偶不能与 一个力平衡,力偶只能与力偶平衡。
▪ (2)无合力,故不能与一个力等效;
▪ (3)力偶对其作在平面内任一点的矩恒 等于力偶矩,与矩心位置无关。
结论:
第三章 力矩与力偶
第一节 力对点之矩
一、 力矩的概念
力使物体绕某点转动的力学效应,称为力对该点之矩。
B
F
A d
O
L
力F对O点之矩定义为:力的大小F与力臂d的乘积冠以适当的正负号, 以符号mo(F) 表示,记为 :Mo(F)=±Fd
通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。
▪ 力 F 对O 点之矩的大小,
m0,
5RA m0
RA
m 5
10 5
02
0k
N
RB RA 20kN
计算结果RA、RB皆为正值,表示它们假设的指向与实际的指向相同。
例:如图所示,电动机轴通过联轴器与工作轴相连,联轴器上4个螺栓A、 B、C、D的孔心均匀地分布在同一圆周上,此圆的直径d=150mm,电动 机轴传给联轴器的力偶矩m=2.5 kN•m,试求每个螺栓所受的力为多少?
尺寸如图所示 ,试求支座A、B的反力。
解:(1)取梁AB为研究对象
m
(2)画受力图 。由支座的约束 A 性质可知,RB的方位为铅直,而
5m m
R A的方位不定。但根据力偶只能与 A
力偶相平衡的性质,可知力RA必与
RA
力RB组成一个力偶,即RA= -RB,RA和RB的指向假设如图。
B
B RB
(3)列平衡方程求未知量 由力偶系的平衡方程有
▪ 也可以用三角形 OAB 的
▪ 面积的两倍表示,即
▪ Mo(F)=±2ΔABC
▪ 在国际单位制中, ▪ 力矩的单位是牛顿•米(N•m)
BF
A d
O
L
▪ 或者千牛顿•米(kN•m)。
由上述分析可得力矩的性质:
▪ (1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。力矩随 矩心的位置变化而变化。
(2)根据合力矩定理计算。
将力F在C点分解为两个正交 的分力,由合力矩定理可得
mA(F)= mA(Fx)+ mA(Fy) =-Fx•b+ Fy•a =-F(bcosα+asinα)
=F(asinα-bcosα)
当力臂不易确定时,用后一种 方法较为简便。
例 2 求图中荷载对A、B两点之矩
(a)
(b)
例3-1 试计算力对A点之矩。
解 本题有两种解法。 方法一: 按力矩的定义计算 由图中几何关系有:
d=ADsinα =(AB-DB)sinα =(AB- BCctgα)sinα =(a- bctgα)sinα =asinα-bcosα
所以
mA(F)=F•d =F(asinα-bcosα)
方法二:
平面力偶系中可以用它的合力偶等效代替,因此,若合力 偶矩等于零,则原力系必定平衡;反之若原力偶系平衡,则 合力偶矩必等于零。由此可得到
平面力偶系平衡的必要与充分条件:
平面力偶系中所有各力偶的力偶矩的代数和等于零。
即Σm=0
平面力偶系用这个平衡方程,可以求解未知量。
例 梁AB受一力偶作用,其矩m=-100kNm.
推论一
只要保持力偶矩不变,力 偶可在作用面内任意移动 或转动,其对刚体的作用 效果不变
推论二
保持力偶矩不变,分别改变力和力偶臂大小, 其作用效果不变
力偶的作用效果取决于三个因素:构 成力偶的力、力偶臂的大小、力偶的转 向。
故在平面问题中用一带箭头的弧线来 表示如图所求,其中箭头表示力偶的转 向,m表示力偶矩的大小。
= P1•d+P2•d-P3•d
=F 1•d1+F2•d2-F3用在同一平面内有个力偶,则上 式可以推广为
M=m1+m2+…+mn=Σm
由此可得到如下结论:
平面力偶系可以合成为一合力偶, 此合力偶的力偶矩等于力偶系中各力 偶的力偶矩的代数和。
二、平面力偶系的平衡条件
(图a)司机转动驾
驶汽车时两手作用在方
向盘上的力;
(图b)工人用丝锥
攻螺纹时两手加在扳手
上的力;
(图c)以及用两个
手指拧动水龙头所加的
力等等。
1.力偶:在力学中把这样一对等值、反向而不共线的平行力称为力偶 用符号 ( F ,F′)表示。
两个力作用线之间的垂直距离称为力偶臂
两个力作用线所决定的平面称为力偶的作用面

在同一平面内的两个力偶,只要两力偶的
力偶矩的代数值相等,则这两个力偶相等。这
就是平面力偶的等效条件。
▪ 根据力偶的等效性,可得出下面两个推论:
▪ 推论1 力偶可在其作用面内任意移动和转动, 而不会改变它对物体的效应。
▪ 推论2 只要保持力偶矩不变,可同时改变力 偶中力的大小和力偶臂的长度,而不会改变它 对物体的作用效应。
2.力偶矩:
▪ 作为力偶对物体转动效应的量度,称为力偶矩,
用m或m( F ,F′)表示。在平面问题中,将力偶中
的一个力的大小和力偶臂的乘积冠以正负号,如图:
即m(F)=F•d=±2ΔABC
通常规定:力偶使物体逆时针方 向转动时,力偶矩为正,反之为 负。
在国际单位制中,力矩的单位 是牛顿•米(N•m)或千牛顿•米 (kN•m)。
▪ (2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变,再次 说明力是滑移矢量。
▪ (3)力的大小等于零或其作用线通过矩心时,力矩等于零。
二、合力矩定理
定理:平面汇交力系的合力对其平面内任一点的矩等于 所有各分力对同一点之矩的代数和。
Mo(FR)=ΣMo(F)
上式称为合力矩定理。合 力矩定理建立了合力对点之矩 与分力对同一点之矩的关系。 这个定理也适用于有合力的其 它力系。
相关文档
最新文档