复合材料在无人机上的应用与展望
先进复合材料在无人机上的应用及关键技术

120研究与探索Research and Exploration ·工艺与技术中国设备工程 2018.11 (上)1 先进复合材料在无人机上的应用优势1.1 重量轻不可否认,无论是在强度还是刚度等性能上,复合材料都比普通材料具有更大的优势,且复合材料的可塑性相对较强,目前已经在航空领域得到了非常重要的应用,例如在我国的民用飞机B-787中,其复合材料含量已经高达50%。
其中,复合材料的重量轻是其得到广泛应用的重要优势之一。
重量会在很大程度上限制飞机的整体性能。
无人机的设计中虽然没有关于“人”的相关设备与装置,然而其增加了通信与控制中心的重量。
与此同时,目前无人机的侦察方式已经由战术型向战略型转变,从而能够有效替代有人机,实现对区域的实时监控。
减小无人机重量是提升无人机使用寿命、续航时间的重要措施。
相较于有人机,设计人员无需顾虑人类的生理需求,只需最大程度提升飞机的航行时间即可,与铝合金相比,先进复合材料的强度竟高于其十倍,因此,高强度又轻巧的复合材料是满足无人机性能设计的最佳选择。
1.2 提升机体隐身能力复合材料的应用能够在很大程度上提升机体的隐身能力。
首先,由于聚合物不具有导电性,因此,其能够避免探测波散射场的形成;其次,复合材料的应用对于结构与功能有效结合来说起着非常重要的作用,例如通过对结构型隐身材料的应用,能够大大降低机体对雷达探测波的反射;最后,复合材料的应用可以实现机体的整体性,从而通过光滑、一体化的结构设计达到隐身的目的,避免接缝、钉子等不光滑设计导致对探测波的散射。
总而言之,这些设计有效提升了无人机的隐蔽性。
1.3 使用寿命长相较于有人机,无人机的存储时间应该更长,因此,这要求制造材料需要具有较强的防腐蚀性、刚度以及强度等。
与一般材料相比,复合材料的性能则更加优异,例如环氧基体,这是在无人机中应用最为广泛的材料之一,其具有非常强大的抗酸性、耐碱性以及抗溶性等,且强度与刚度等性能也远高于普通金属材料,例如碳纤维复合材料的密度仅为钢的五分之一,但强度却是其五倍,是铝的四倍。
复合材料在航空领域的应用与发展趋势

复合材料在航空领域的应用与发展趋势随着现代科技的发展,人们对材料科学的要求和需求也越来越高。
在航空领域中,材料的选择直接关系到飞机的性能和安全性。
复合材料由于其轻质高强的特点,在航空领域中得到了广泛的应用。
本文将从复合材料的定义、特点和应用领域等多方面来探讨复合材料在航空领域中的应用与发展趋势。
一、复合材料的定义及特点复合材料是指由两种或两种以上的不同材料通过物理或化学方式结合而成的材料,常见的有纤维增强复合材料和层合板复合材料。
纤维增强复合材料是指将一定长度的纤维通过预浸涂或浸渍法浸渍树脂制成的板状材料,常用的纤维有碳纤维、玻璃纤维和芳纶纤维等。
层合板复合材料则是指由多层单一材料或不同材料的板材,采用特定的附着剂粘合而成。
复合材料的特点在于其轻质高强、抗腐蚀、耐磨损、抗疲劳和耐高温等特性,这些特性使得复合材料在航空领域中得到了越来越广泛的应用。
二、复合材料在航空领域的应用航空领域是复合材料应用最广泛的领域之一,航空材料的发展主要经历了三个阶段:金属材料、复合材料和新型金属材料三个阶段。
而复合材料在航空领域的应用主要表现在三个方面:1. 飞机结构材料目前,大多数民用飞机机身均采用复合材料制成,应用范围覆盖了整个飞机结构,包括机身、机翼、地盘、襟翼等。
采用复合材料制作结构件,不仅可以减轻飞机自重,还可以增强飞机结构的刚性和强度,使得飞机在高空、高速等极端环境下具有更高的安全性。
2. 发动机材料发动机是航空领域中重要的装置之一,其关系到飞机的性能和可靠性。
复合材料在发动机材料中的应用主要体现在高温、高压和高转速等极端环境下的零部件,如叶轮、压气机叶片、喷油嘴等。
采用复合材料制作发动机材料,可以提高材料的稳定性和耐腐蚀性,从而增加了发动机的可靠性和经济性。
3. 航空电子材料随着现代航空科技的不断发展,航空电子技术的应用越来越广泛。
复合材料在航空电子材料中的应用主要体现在高密度、高速度和高频率等方面的电子元器件。
先进复合材料在无人机上的应用及关键技术

先进复合材料在无人机上的应用及关键技术随着无人机技术的发展,先进复合材料正在大量应用于无人机中,以满足不断增长的无人机性能需求。
本文将探讨先进复合材料在无人机上的应用情况,以及实现这些应用所需要的技术要素。
先进复合材料在无人机中最常用于制造机头和机身。
机头主要用于支撑电子设备,如物联网感知设备和无线信号发射机,而机身则用于承载无人机的动力系统和其他电子设备。
先进复合材料正在大量应用于制造无人机机头和机身,以替代传统的金属材料,有利于减轻整机的重量和体积,同时保持其结构的稳定性和刚度。
在无人机的动力系统中,先进复合材料也可用于制造螺旋桨和电动机,以满足无人机运行时质量尽量轻、力矩性能高的要求。
这类复合材料具有较低的摩擦系数和磨损系数,因此可有效减少摩擦和磨损,提高螺旋桨和电动机的稳定性和可靠性。
此外,基于先进复合材料,可以制造出高性能的风力推进系统,克服现有风力推进系统的缺点,提高无人机飞行距离和飞行速度。
在无人机上应用上述复合材料所需要的核心技术要素包括:第一,基于复合材料的协同设计。
复合材料运用于无人机应用时,既需要考虑到材料特性和结构功能,也需要将电子设备和飞行控制系统进行有效地结合。
第二,复合材料的加工技术。
有效的复合材料加工技术可以帮助无人机制造商更快捷、更高效地完成一架完整的无人机。
第三,复合材料的故障诊断技术。
该技术可以帮助无人机制造商实时监测复合材料结构的性能状况,有效地发现运行中可能产生的异常现象,从而有效地提高无人机的可靠性。
综上所述,当今无人机的发展使用先进复合材料的应用越来越受到重视,复合材料的应用有助于提高无人机的性能、减少其重量和体积,以及提高其结构的稳定性和可靠性。
为实现这些应用,无人机制造商需要掌握协同设计、加工技术和故障诊断技术等核心技术要素,以保障无人机的高效安全运行。
以上就是有关先进复合材料在无人机上的应用及关键技术的介绍,希望能够为您提供参考。
复合材料在航空领域的用途

复合材料在航空领域的用途航空工业的发展从来都是以技术进步为驱动力的,而复合材料作为一种新型材料,在航空领域的应用越来越广泛。
复合材料具有高强度、轻质化、耐腐蚀、低热膨胀系数等优点,可以有效提高飞机的性能和安全性。
本文将重点介绍复合材料在航空领域的用途。
1. 结构件应用复合材料在航空领域广泛应用于飞机结构件上,如机身壁板、翼面、垂尾等。
相比于传统金属材料,采用复合材料可以显著减轻结构重量,降低燃油消耗,并提升飞机整体性能。
复合材料的高强度和抗冲击性能可以提高飞机的结构强度,增加安全性。
2. 动力系统应用复合材料在航空领域的另一个重要应用是动力系统上,如发动机叶片、气门、涡轮等。
复合材料可以耐高温、耐磨损、降低噪音和振动,使得动力系统具有更好的性能和可靠性。
同时,采用复合材料制造发动机部件还可以减轻重量,提高燃烧效率,降低机身油耗。
3. 内饰及设备应用除了结构件和动力系统,复合材料还被广泛应用于飞机的内饰及设备中。
例如客舱内部的座椅、行李架、蒙皮等都可以采用复合材料制造,不仅能够提供更好的舒适性和安全性,还能够减轻飞机自身重量,降低能耗。
4. 航空器维修与保养在航空器维修与保养方面,复合材料也起到了重要的作用。
由于其优异的耐腐蚀性能和良好的可靠性,使用复合材料制造的零部件不仅具有较长的使用寿命,而且在维护过程中需要投入较少的时间和费用。
因此,在航空器维修与保养中广泛采用的一种做法就是使用复合材料替换原有金属零件。
5. 其他应用除了以上提到的主要领域,航空工业还会在其他方面应用复合材料。
例如,在无人机制造中,采用复合材料能够提供更好的机动性能和稳定性。
此外,在航天器设计中,使用复合材料可以减轻重量并提供更好的抗辐射和抗高温能力。
结论复合材料在航空领域的应用越来越广泛,对于提升飞机整体性能和安全性起到了重要作用。
随着科学技术的进步和人们对于环保和节能要求的日益增强,相信复合材料在航空领域将会有更大的发展前景,并将持续推动这一行业向更加先进和可持续方向发展。
复合材料在航空器中的应用前景

复合材料在航空器中的应用前景在现代航空领域,复合材料正以其卓越的性能和巨大的潜力,逐渐成为航空器制造中不可或缺的重要材料。
随着科技的不断进步和航空工业的快速发展,复合材料在航空器中的应用前景愈发广阔。
复合材料具有一系列优异的性能,使其在航空器领域备受青睐。
首先,其比强度和比刚度高,这意味着在相同的强度和刚度要求下,复合材料可以大幅减轻结构重量。
对于航空器来说,减轻重量意味着更低的燃油消耗、更高的飞行速度和更远的航程。
其次,复合材料具有良好的抗疲劳性能,能够承受反复的载荷作用而不易出现疲劳裂纹,从而延长航空器的使用寿命。
再者,它们还具有出色的耐腐蚀性能,能够在恶劣的环境条件下保持稳定,降低维护成本。
在航空器的不同部位,复合材料的应用方式和效果也各有不同。
在机身结构中,复合材料可以用于制造机身蒙皮、隔框和桁条等部件。
与传统的金属材料相比,复合材料能够提供更好的气动外形,减少空气阻力,提高飞行效率。
在机翼方面,复合材料的应用可以显著减轻机翼重量,增强机翼的承载能力,改善机翼的操控性能。
尾翼部分同样可以受益于复合材料的使用,提高其稳定性和可靠性。
航空发动机作为航空器的核心部件,复合材料也在其中发挥着重要作用。
例如,采用复合材料制造的发动机叶片具有更高的耐高温性能和更低的重量,有助于提高发动机的推力和燃油效率。
此外,复合材料还可以用于制造发动机的外壳和内部结构件,提高发动机的整体性能和可靠性。
随着技术的不断发展,新型复合材料的出现为航空器的性能提升带来了更多可能。
纳米复合材料、智能复合材料等前沿领域的研究正在不断取得突破。
纳米复合材料通过在基体中添加纳米级的增强相,可以进一步提高材料的性能。
智能复合材料则能够感知外界环境的变化,并做出相应的响应,例如自我修复、形状改变等,为航空器的安全性和可靠性提供了新的保障。
然而,复合材料在航空器中的广泛应用也面临着一些挑战。
首先是成本问题,目前复合材料的生产成本相对较高,限制了其在一些低成本航空器中的大规模应用。
复合材料在飞机上应用的发展趋势

复合材料在飞机上应用的发展趋势复合材料在飞机上的应用:未来的天空,更轻、更快、更安全嘿,各位航空爱好者们,你们有没有幻想过坐上那种像小鸟一样轻盈,速度比闪电还快,而且还能保证安全飞行的飞机呢?今天咱们就来聊聊那个让人激动的科技——复合材料在飞机上的应用。
别急,让我慢慢道来。
咱们得说说“复合材料”到底是什么鬼东西。
简单来说,它就像是一块块“超级英雄”材料,由金属、塑料和纤维等不同“英雄”组成,它们各司其职,让飞机变得又轻又坚固。
想象一下,没有这些“英雄”,我们的飞机是不是就会变成“大铁疙瘩”?所以,复合材料的出现,简直就是现代版的“变形金刚”,让飞机在空中舞动,既好看又实用。
说到“应用”,那可真是五花八门。
比如,飞机外壳,以前都是用钢铁做的,现在换成了碳纤维复合材料,不仅减轻了重量,还增加了抗冲击能力。
这样一来,咱们的飞机就像穿上了“隐形斗篷”,飞得更高,跑得更快,还不容易被敌人发现。
再来说说发动机。
以前,发动机可是个“大块头”,现在有了复合材料,发动机变得更加小巧灵活。
就像变魔术一样,一转一扭,就能产生强大的推力,让飞机像火箭一样冲上云霄。
复合材料在飞机上的应用远不止这些。
还有那些高科技的“智能装备”,比如自动导航系统、紧急逃生设备,甚至是能帮飞行员保持清醒的氧气供应系统,都离不开这些“超级英雄”的帮忙。
说到这里,你是不是已经迫不及待想要坐上那种既轻巧又安全的飞机了呢?别急,这还得靠我们人类的智慧和创新精神。
随着科技的不断进步,相信不久的将来,我们就能真正实现这个梦想!我想说,复合材料在飞机上的应用不仅仅是技术的突破,更是人类对天空探索的一次伟大飞跃。
让我们期待那一天的到来吧,那时的天空将更加广阔无垠,飞行将更加自由自在。
好啦,今天的分享就到这里。
如果你觉得我说得有道理,不妨点个赞,转发给你的朋友们,一起为航空事业加油鼓劲!别忘了关注我,下次再见!。
碳纤维复合材料用于无人机的设计和关键技术

碳纤维复合材料用于无人机的设计和关键技术摘要:碳纤维复合材料在实际应用的过程中有着较轻的整体质量和良好的物理化学特性,如果在无人机上能够得到应用则可以表现出良好的应用效果,文章就此展开分析关键字:碳纤维;无人机;设计技术1、前言无人机设计过程中,材料的选择较为困难,碳纤维复合材料有着良好的应用特性和外观,文章就此指出了相关的设计内容和工艺体系,希望可以促进成本的降低和结构的优化2、相关背景无人驾驶飞机(简称“无人机”,英文缩写UAV)自诞生以来,减轻质量即成为世界各国无人机科技工作者们共同关注的研究热点之一只有将机体结构质量降下来,才能节约出更多的质量空间来增加燃油和有效载荷,延长飞行距离和续航时间随着碳纤维复合材料在大型民用客机上的广泛应用,其在无人机上也被认为是解决减轻质量难题的最佳选择与传统的金属材料及复合材料相比,碳纤维复合材料具有轻质高强抗疲劳和防盐雾侵蚀的特性,应用于无人机结构中可以大大改善和提高无人机的综合性能据统计,目前,世界各国都在无人机上大幅度使用以碳纤维复合材料为主的先进复合材料,占到了结构总质量分数的60%ˉ80%,使机体减质量25%以上碳纤维复合材料的应用对无人机结构的轻质化小型化和高性能化起到了至关重要的作用3、碳纤维复合材料应用在无人机上的优势碳纤维复合材料相比传统金属材料,具有密度小比强度高比模量高良好的抗疲劳特性和抗震性能等,并且具有良好的可设计性,在航空领域中应用越来越广泛碳纤维复合材料具有材料和工艺的可设计性,不同的铺层角度和不同的铺层顺序,其力学性能完全不一样当结构各位置受力差异较大时,在复合材料层合板的不同位置改变局部的铺层层数和铺层顺序就显得尤为重要六旋翼无人机正是一种各位置受力差异较大的结构,并且轻量化要求高,因此研究非均匀铺层优化设计方法对机身的设计非常重要本文以质量最小为优化设计目标,同时考虑制造工艺可行性,采用自由尺寸优化尺寸优化和铺层顺序优化相结合的三阶段非均匀铺层优化设计方法对碳纤维复合材料六旋翼无人机机身铺层进行优化设计,并研究比较了优化前后无人机机身的质量和性能差异4、设计内容无人机飞行过程中的最严重工况是飞行过程中电机突然停转,飞手立即把电机加到最大功率,以此工况为设计工况无人机满载15.5kg,每个电机最大升力为82.5N 在设计工况下,无人机没有约束,采用线性静力分析无法平衡外载荷,所以需要采用惯性释放分析在惯性释放分析中,先计算外力作用下结构的加速度,然后把惯性力分布在整个结构上与外载荷平衡,提供一种稳态的应力和变形4.1优化设计概述为了能充分利用碳纤维复合材料的性能,本文采用非均匀铺层优化设计方法对无人机机身进行铺层优化设计该方法分为三步,优化设计的第一阶段采用OptiStruct开展自由尺寸优化,优化每个单元每一个纤维方向铺层的厚度,确定碳纤维复合材料每一个纤维方向铺层的厚度分布第二阶段采用OptiStruct开展尺寸优化,优化每个纤维方向铺层的厚度,确定每个纤维方向铺层层数第三阶段采用OptiStruct开展铺层顺序优化,使铺层顺序满足铺层设计要求,获得最终铺层方案4.2自由尺寸优化自由尺寸优化前先将铺层设置为0°90°和±45°的4个铺层,每个铺层厚度为2mm自由尺寸优化模型描述如下(1)设计变量:每个单元的每一纤维方向铺层厚度(2)目标函数:无人机机身质量最小(3)约束条件:①模型最大位移小于3mm;②铺层相对层合板的几何中心面对称;③±45°铺层厚度分布相同;④每个纤维方向铺层的最小比例大于10%;⑤每个纤维方向铺层厚度分布左右前后对称经过50步迭代计算后,得到自由尺寸优化后的4个不同纤维方向铺层厚度分布2.3尺寸优化在自由尺寸优化后得到不同纤维角度铺层的最佳厚度分布,OptiStruct根据厚度梯度和厚度分布范围自动把每个纤维角度铺层分成多个铺层为减小剪裁和铺置碳纤维预浸料的难度和工作量,去掉宽度过小的铺层,调整其它保留的铺层在这一优化阶段,优化调整后的每个铺层厚度,其中厚度值为离散值,是单层铺层厚度的倍数在尺寸优化阶段考虑材料的强度,本文采用Tsai_Wu张量多项式准则,当破坏指数,复合材料在弹性变形阶段,材料没有破坏;复合材料开始塑性变形尺寸优化模型描述如下:(1)设计变量:调整后的每个铺层的厚度(2)目标函数:无人机机身质量最小(3)约束条件:①自由尺寸优化的约束;②经过17步迭代计算后,得到尺寸优化后的4个不同纤维方向铺层厚度分布。
复合材料在飞机上应用的发展趋势

复合材料在飞机上应用的发展趋势复合材料在飞机上的应用,就像给飞机穿上了一件隐形的外衣,既轻便又坚固。
随着科技的发展,我们越来越期待这些“外衣”能带来更多的惊喜。
今天,我们就来聊聊复合材料在飞机上的应用,看看它们是怎么一步步走到今天的。
首先说说复合材料吧。
这种材料就像是由很多小颗粒组合起来的超级英雄,它们各有各的特点,但聚在一起就成了一个强大的整体。
在飞机制造中,复合材料被用来做机身、机翼、起落架等重要部件,因为它们轻而强,能减少飞机的重量,让飞行更轻松,还能降低燃油消耗,对环保也有帮助。
想象一下,当飞机在空中翱翔时,复合材料就像是一种神奇的魔法,能让飞机飞得更高更远。
它不仅轻盈,还非常坚固,能够抵御各种恶劣天气和环境的挑战。
比如,在遇到紧急降落时,复合材料能迅速吸收冲击力,保护乘客的安全。
除了这些,复合材料在飞机上的使用还带来了许多便利。
比如,飞机的设计更加灵活,可以更好地适应不同航线的需求。
复合材料的使用也减少了噪音污染,让我们在飞行中享受到更加宁静的环境。
我们也不能说复合材料是完美无缺的。
毕竟,任何技术都有它的局限性。
比如,复合材料虽然轻,但在极端温度下可能会变得脆弱。
这就需要我们在设计和制造过程中不断探索和创新,找到更好的解决方案。
总的来说,复合材料在飞机上的应用给我们带来了很多好处。
它们让飞机变得更轻、更强、更安全,也让我们的旅行变得更加舒适和愉快。
未来,我相信随着科技的不断发展,复合材料在飞机上的应用将会更加广泛和深入。
让我们一起期待这个美好的未来吧!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yua n Li q un , Sh an Ha ng y i ng 。 一 Ya n g Zho ng q i ng , _, Fa n Pe ng '
,
( 1 .9 2 4 1 9 T r o o p s , X i n g c h e n g 1 2 5 1 0 6 ;
,
c o n o mi c  ̄ e ic f i e n c y, t h e t e n d e n c y o f a p p l i c a t i o n o f c o mp o s i t e ma t e r i a l s i n UAV i s a d v a n c e d ma n u f a c t u in r g t e c h n o 1 .
Abs t r a c t:Ha v i ng a dv a n t a g e s o f l i g h t we i g h t , h i g h s t r e ng t h, e x c e l l e n t c o r r o s i o n r e s i s t a n c e a n d e a s e t o s h a p e
综 述 Fl ' b e r g 无人机上 的应 用与展望
中图 分 类 号 : T Q 1 7 1 . 7 7 7 . 7 7
文献标志码 : A
: l :
复合材料在无人机上 的应用 与展望
袁立 群 , 单 杭 英 , 杨 忠清。 , 樊芄
,
c on .
p o s i t e ma t e r i a l s h a v e b e e n w i d e l y u s e d i n a w i d e r a n g e o f u n m a n n e d a e i r a l v e h i c l e s ( U A V)a t h o m e a n d a b r o a d . T o
高空 、 长航 时 、 功能性 、 经济性 等各种高性能需求 , 低成本制造技术 、 整体化制 造技 术和 3 D打 印技 术是未来 复合 材料在无人机
上应 用 的 发 展 趋 势 。
关键 词 : 无人机 ; 复合材料 ; 应用; 先进制造技术
The Ap pl i c a t i o n a n d Pr o s pe c t o f Co m po s i t e Ma t e r i a l s i n UAV
2 ・R e s e a r c h I n s t i t u t e o f U n ma n n e d A i r c r a f t , N a n j i n g U n i v e r s i t y o f A e r o n a u t i c s& A s t r o au n i t s, c N a n j i n g 2 1 0 0 1 6 ;
3.Ke y La bo r a t o r y o f Adv a nc e d Te c hn o l og y f o r Me d i um a nd Sma l l UAV .
Mi is n t r y o f I n d u s t y r a n d I n f o r ma t i o n T e c h n o l o g y , Na n j i n g 2 1 0 0 1 6 )
( 1 .9 2 4 1 9部 队 ,兴城 1 2 5 1 0 6 ; 2 .南 京航 空航 天大 学无 人机 研究 院 ,南京 2 1 0 0 1 6 ; 3 .中小 型无 人机 先进 技 术工 业和信 息化 部重 点 实验 室 ,南 京 2 1 0 0 1 6 )
摘
要: 复合材 料具有轻质高强 、 耐腐 蚀 、 易 于成形等优点 , 在 国内外各类无人 机上得到 了广 泛的应用 。为满足未来无人机 的
s a t i s f y t h e r e q u i r e me n t s f o r h i g h p e r f o r ma n c e s o f f u t u r a l UAV s u c h a s h i g h l f y i n gl o n g v o y a g e , f u n c t i o n a l i t i e s a n d e
基 金 项 目: 中央高 校基 本科 研业 务费 ( 3 0 8 2 0 1 7 N P 2 0 1 7 2 1 0 ) 资 助项 目。 收 稿 日期 : 2 0 1 7— 0 9一O 1
修 回 日期 : 2 0 1 7— 0 9—2 1
o g y c o ns i s t i n g o f l o w c o s t , i n t e g r a t e d ma n u f a c t u in r g a n d 3 D p in r t i n g .
Ke y wo r d s : u n ma n n e d a e r i a l v e h i c l e ( U A V) ; c o m p o s i t e m a t e r i a l ; a p p 1 i c a t i 0 n ; a d v a n c e d ma n u f a c t u r i n g t e c h n o l o g y