高性能混凝土耐久性

合集下载

超高性能混凝土的耐久性研究

超高性能混凝土的耐久性研究

超高性能混凝土的耐久性研究一、引言超高性能混凝土(Ultra-high-performance concrete, UHPC)是一种新型的高性能混凝土,其强度、耐久性、抗裂性等方面都有着非常优异的表现。

其在桥梁、隧道、高层建筑等工程领域的应用越来越广泛。

然而,由于其材料成分的复杂性以及生产工艺的特殊性,其耐久性等方面仍需要深入的研究。

二、超高性能混凝土的耐久性1. UHPC的耐久性优势UHPC的优异性能主要体现在以下几个方面:(1)高强度:UHPC的强度一般在150~250 MPa之间,远高于传统混凝土的强度。

(2)高密实性:UHPC的细观结构非常致密,孔隙度低,因此其抗渗性和耐久性都非常优秀。

(3)高耐久性:UHPC中常采用高性能水泥、硅烷等添加剂,可以有效地抵抗酸碱侵蚀、氯离子渗透等。

2. UHPC的耐久性挑战尽管UHPC的耐久性在很多方面都具有优势,但是其也存在一些挑战,主要表现在以下几个方面:(1)早期龟裂:在混凝土硬化的早期,由于未形成足够的强度,UHPC容易出现龟裂,导致其耐久性降低。

(2)高温影响:UHPC中添加的一些特殊成分,如微纤维、高性能水泥等,在高温下会发生热分解,导致其性能下降。

(3)长期蠕变:UHPC中的一些添加剂会增加其蠕变性,从而降低其耐久性。

三、提高UHPC的耐久性的措施1. 混凝土配合比的优化通过优化混凝土的配合比,可以提高UHPC的耐久性。

例如,可以在控制UHPC强度的前提下,增加其细观结构的致密性,从而降低其氯离子渗透率和碳化深度。

2. 添加剂的优化UHPC中的添加剂对其性能和耐久性有着至关重要的影响。

因此,通过对添加剂的种类和用量等进行优化,可以有效地提高UHPC的耐久性。

例如,可以加入氧化钙、硅烷等特殊添加剂,提高UHPC的抗渗性和抗裂性。

3. 生产工艺的优化UHPC的生产工艺对其性能和耐久性也有着非常重要的影响。

通过优化生产工艺,可以提高UHPC的致密性和耐久性。

高性能混凝土讲稿—高性能混凝土的发展与应用

高性能混凝土讲稿—高性能混凝土的发展与应用

高性能混凝土讲稿—高性能混凝土的发展与应用高性能混凝土是一种结构性材料,它具有很高的强度、耐久性和耐久性等特点。

近年来,随着我国经济的快速发展和城市化进程的加速,高性能混凝土逐渐成为建筑行业重要的材料之一。

本文将从高性能混凝土的概念、特点、发展历程和应用领域等方面进行探讨。

一、高性能混凝土的概念和特点高性能混凝土是一种新型的混凝土材料,通常指强度等级在C50以上、特别是强度等级在C70以上的混凝土。

它具有优异的抗压强度、耐久性、渗透性、抗冻融性、防火性、耐酸碱性、抗腐蚀性等特点。

具体包括以下几个方面:1.强度高:高性能混凝土的抗压强度比通常的混凝土高出数倍,同时有很好的耐压性。

2.耐久性好:高性能混凝土具有很好的耐久性,不容易受到气候、环境等因素的损害。

3.渗透性低:高性能混凝土渗透性低,它可以避免水的渗透和钢筋腐蚀。

4.防火性好:高性能混凝土的耐火性能好,不易受到高温、火灾等因素的影响。

5.耐酸碱性好:高性能混凝土抗酸碱性和腐蚀性好,它可以适应不同的环境。

二、高性能混凝土的发展历程高性能混凝土的发展历程可以追溯到20世纪60年代初期。

当时,随着钢筋混凝土结构应用的不断扩大,要求混凝土的强度和耐久性都得到提高,为此,高强混凝土材料的研究逐步得到推广。

40年代末期,美国耐用材料协会ACC和美国铁路协会ARA两个机构先后提供了高强混凝土和高性能混凝土的定义和标准,并开始推广应用。

欧洲国家在20世纪70年代后期加入了这一研究。

高性能混凝土经过多年的发展,已经成为世界性的一个热点研究领域。

近年来,国内研究人员和企业也开展了大量的高性能混凝土试验和应用研究,逐步在高速公路、大桥、港口、地铁、商业建筑等领域得到了广泛应用。

三、高性能混凝土的应用领域1.公路和桥梁工程:高性能混凝土在公路和桥梁工程中具有广泛的应用。

它可以用于高速公路、隧道和桥梁等结构,具有良好的承载能力和耐久性能。

2.建筑工程:高性能混凝土在建筑工程中逐渐得到了广泛的应用。

混凝土耐久性与高性能混凝土

混凝土耐久性与高性能混凝土

混凝土耐久性与高性能混凝土混凝土的耐久性与高性能混凝土一直是建筑工程中极为重要的话题。

混凝土作为一种常用的建筑材料,其质量直接关系到建筑物的安全性和使用寿命。

本文将从混凝土的耐久性和高性能混凝土两个方面展开论述,分析其特点和应用。

一、混凝土的耐久性混凝土的耐久性是指混凝土在特定的环境条件下,在一定时间内保持其结构完整性和使用性能的能力。

混凝土的耐久性受到多种因素的影响,包括材料的选择、配合比设计、施工工艺、环境条件等。

为了提高混凝土的耐久性,需要注意以下几点:1. 合理选材:选择优质的胶凝材料和骨料是保证混凝土耐久性的重要因素。

优质的水泥和骨料可以有效提高混凝土的抗压强度和耐久性。

2. 配合比设计:合理的配合比设计可以确保混凝土的力学性能和耐久性。

过水水灰比会导致混凝土强度不足,降低其耐久性。

3. 施工质量:严格控制混凝土的浇筑、养护和保护层质量,避免混凝土表面产生龟裂、砂浆剥落等现象,从而提高混凝土的耐久性。

二、高性能混凝土高性能混凝土是一种通过应用新型材料、技术和工艺制备而成的混凝土,具有较高的强度、耐久性、抗渗性等性能。

高性能混凝土在工程领域有着广泛的应用,特点如下:1. 高强度:高性能混凝土的抗压强度一般在60MPa以上,部分高性能混凝土的抗压强度可达到100MPa以上,能够满足复杂工程结构的要求。

2. 优良的耐久性:高性能混凝土具有较好的耐久性,能够在恶劣的环境条件下长期使用而不产生明显的破坏。

3. 优异的抗渗性:高性能混凝土的密实性和致密性较高,具有较好的抗渗性能,能够有效减少混凝土结构受到水侵蚀的可能性。

在实际应用中,高性能混凝土常用于桥梁、隧道、高层建筑、水利工程等工程领域,能够有效提高工程结构的安全性和耐久性。

综上所述,混凝土的耐久性和高性能混凝土对于建筑工程的质量和安全性具有重要意义。

通过合理选材、配合比设计和施工工艺,可以有效提高混凝土的耐久性;而应用高性能混凝土,可以提高工程结构的强度和耐久性,满足工程设计的要求。

高性能混凝土的耐久性研究

高性能混凝土的耐久性研究

高性能混凝土的耐久性研究在现代建筑领域中,高性能混凝土因其出色的性能而备受关注。

然而,要确保建筑物在长期使用中保持稳定和安全,高性能混凝土的耐久性就成为了一个至关重要的研究课题。

高性能混凝土是一种具有高强度、高工作性和高耐久性的新型混凝土。

它通常采用优质的原材料,并通过精心的配合比设计和严格的生产控制来制备。

与传统混凝土相比,高性能混凝土在强度和耐久性方面都有显著的提升。

耐久性对于混凝土结构来说意义重大。

在建筑物的使用寿命中,混凝土可能会受到各种因素的侵蚀和破坏,如化学腐蚀、冻融循环、钢筋锈蚀等。

这些因素会逐渐削弱混凝土的性能,导致结构的安全性和可靠性降低。

因此,提高高性能混凝土的耐久性,对于延长建筑物的使用寿命、降低维护成本以及保障人民生命财产安全都具有重要意义。

化学腐蚀是影响高性能混凝土耐久性的一个重要因素。

例如,在一些工业环境中,混凝土可能会暴露在酸、碱等化学物质的侵蚀下。

这些化学物质会与混凝土中的成分发生反应,破坏其内部结构,从而降低混凝土的强度和耐久性。

为了提高混凝土的抗化学腐蚀性能,可以在配合比设计中选择合适的水泥品种和掺和料,如粉煤灰、矿渣等。

这些掺和料能够与水泥水化产物发生反应,生成更加稳定的化合物,从而提高混凝土的抗化学腐蚀能力。

冻融循环也是一个不可忽视的因素。

在寒冷地区,混凝土结构经常会经历冻融循环的作用。

在水冻结时,体积会膨胀,产生的膨胀力会使混凝土内部产生微裂缝。

随着冻融循环次数的增加,这些微裂缝会逐渐扩展,最终导致混凝土的破坏。

为了提高高性能混凝土的抗冻性能,可以通过控制水胶比、引入引气剂等方式来实现。

引气剂能够在混凝土中引入微小的气泡,这些气泡可以在水冻结时起到缓冲作用,减轻膨胀力对混凝土的破坏。

钢筋锈蚀是影响混凝土耐久性的另一个关键问题。

当混凝土中的钢筋发生锈蚀时,其体积会膨胀,从而导致混凝土保护层开裂、剥落。

这不仅会影响结构的外观,还会严重削弱结构的承载能力。

为了防止钢筋锈蚀,可以采用高性能的防护涂层来保护钢筋,或者在混凝土中添加阻锈剂。

混凝土的耐久性改善措施

混凝土的耐久性改善措施

混凝土的耐久性改善措施混凝土是一种广泛应用于建筑和基础设施领域的材料,其耐久性一直是关注的焦点。

在现实应用中,混凝土会受到多种因素的破坏,如化学侵蚀、物理载荷、温度变化等。

为了提高混凝土的耐久性和延长其使用寿命,需要采取相应的改善措施。

本文将探讨一些可行的混凝土耐久性改善措施,旨在提供实用的建议。

1. 使用高性能混凝土高性能混凝土是指在传统混凝土的基础上,通过控制材料配比、添加化学掺合剂和改良工艺等手段提高强度和耐久性的混凝土。

高性能混凝土的抗压强度、抗渗性和耐久性等性能优于传统混凝土,适用于对耐久性要求较高的工程。

2. 加强混凝土结构的维护保养混凝土结构的维护保养对于延长其使用寿命至关重要。

定期检查混凝土结构的表面是否存在裂缝、腐蚀等问题,并及时采取修复措施,如填补裂缝、防腐涂层等,以防止进一步的破坏。

此外,还可以采取防水处理和表面加固等手段,提高混凝土结构的耐久性。

3. 使用防水剂混凝土的渗水性是导致其损坏的主要原因之一。

通过使用防水剂来提高混凝土的防水性能,可以有效地减少水分的渗透和侵蚀。

防水剂可以分为内部防水剂和外部防水剂两种,内部防水剂通过改变混凝土内部的结构和性质来提高其防水性能,外部防水剂则通过涂覆在混凝土表面形成一层防水膜来达到防水的效果。

4. 添加化学掺合剂化学掺合剂是改善混凝土性能的有效方法之一。

它们可以通过控制水胶比、改善混凝土的微观结构和增强其耐久性能。

常见的化学掺合剂包括氯化钙、硅灰、矿渣粉等。

添加适量的化学掺合剂可以提高混凝土的抗渗性、抗冻融性和耐化学侵蚀性。

5. 耐久性试验与监测耐久性试验与监测是评估混凝土性能和监控其耐久性变化的重要手段。

通过对混凝土的抗渗性、抗冻融性、抗化学侵蚀性等进行试验,可以及时了解其性能状况,为采取相应的改善措施提供依据。

同时,定期进行混凝土结构的耐久性监测,可以实时监测结构的健康状态,及时发现并修复潜在问题。

总结:混凝土的耐久性改善措施包括使用高性能混凝土、加强维护保养、使用防水剂、添加化学掺合剂以及进行耐久性试验与监测等。

高性能耐久性混凝土

高性能耐久性混凝土

高性能耐久性混凝土摘要:高性能耐久性混凝土就是指在采用普通原材料组成设计,通过掺加外加剂或者外掺料获得高要求施工性能的混凝土,并同时满足设计使用年限的耐久性能混凝土。

1 高性能耐久性混凝土配合比设计1.1 高性能耐久性混凝土定义铁路客运专线对高性能耐久性混凝土的定义为:具有高耐久性(抗氯离子渗透、抗渗性、抗冻融性、耐磨性、护筋性等)、高体积稳定性(抗裂、低收缩徐变)、高工作性(匀质性、和易性、流动性)、高强度(早强、增强)及低水泥用量、低水胶比。

高速铁路客运专线要求混凝土路基沉降小,轨道平稳、混凝土变形小、抗裂性高,整体性好。

高性能混凝土可以满足客运专线中这些特定的性能使用要求。

由于混凝土耐久性的提高,减少桥梁的修补费用,延长桥梁的使用寿命,在铁路桥梁上应用高性能混凝土具有较高的经济效益。

1.2 高性能耐久性混凝土特点它的特点是:拌和物呈塑性或流动状态,可工作性好、易于浇筑成型密实、不离析。

在浇筑体的凝结硬化过程和硬化后,它的体积稳定性好、水化热小、徐变小、混凝土孔隙率小、抗渗抗冻性好等特点。

1.3 影响高性能耐久性混凝土的主要因素影响高性能混凝土的耐久性因素很多,归纳起来主要有以下几类:1)水胶比水胶比大、用水量大引起毛细孔增多,从而导致有害物质侵蚀混凝土内部。

使钢筋锈蚀,导致混凝土开裂剥落。

如在氯盐和化学侵蚀环境下的侵蚀。

二氧化碳气体引起的碳化。

都会使混凝土的耐久性能降低。

2)使用了不合格原材料使用了含碱量和C3A含量高的普通水泥及具有潜在碱活性的骨料所引起的碱集料反应破坏混凝土内部结构,导致混凝土膨胀开裂。

另外使用细度过大的粉煤灰会导致粉煤灰的需水量过大,影响混凝土拌合物的和易性,混凝土的强度大大打折扣,质量将无法保证。

3)施工不规范施工控制不严格,未严格安照施工工艺施工,养护措施不到位,新浇筑的混凝土得不到及时有效的养护,会引起混凝土早期收缩开裂,从而影响混凝土耐久性。

4)环境条件在设计时未充分考虑环境条件对混凝土结构的影响。

高性能混凝土及耐久性施工

高性能混凝土及耐久性施工

对高性能混凝土及耐久性施工第一节概述高性能混凝土是20世纪90年代初提出的,尽管当前对其定义尚未能看法一致,但高性能混凝土必须具有高耐久性这一点是一致的,高性能混凝土是一种新型的高技术混凝土,是在大幅度提高普通混凝土性能的基础上,以耐久性为主要设计指标,针对不同用途和要求,采用现代技术制作的,低水胶比的混凝土。

高性能混凝土制作的主要技术途径是采用优质的化学外加剂和矿物外加剂,前者可改善工作性,生产低水胶比的混凝土,控制混凝土坍落度损失,提高混凝土的致密性和抗渗性,后者可参与水化,起到胶凝材料的作用,改善界面的微观结构,堵塞混凝土内部孔隙,提高混凝土的耐久性,高性能混凝土在节能、节料工程中有作很好的经济效益。

劳动保护及环境保护等方面都具有重大的意义,是国内外土木建筑界研究的热点。

国内外许多单位都在进行高性能混凝土的研究,但由于高性能混凝土是一种新型高技术混凝土,研究还有一些未完善之处,高性能混凝土的生产实践需要高新技术,更需要科学的理论。

以达到使用高性能混凝土的目的,又避免大质量缺陷,而收到良好的综合效益。

但是,现行铁路工程各专业设计规范对混凝土结构主要考虑结构的承载能力,而较少考虑环境作用引起的材料性能劣化对结构耐久性带来的影响,混凝土的耐久性不足,不仅会增加使用过程中的修理费用,影响工程的正常使用。

而混凝土结构设计能够适应铁路工程建设的需要,并有利于可持续发展的战略,对铁路混凝土结构耐久性设计的具体内容和方法,才能真正做到安全、适用、经济、合理。

第二节高性能混凝土施工对搅拌机操作人员的培训是相当关键的,必须让搅拌机操作人员对搅拌过程全面了解彻底,包括设备的使用、投料顺序、搅拌时间以及平时对搅拌机计量系统的检查等,都是至关重要的,同时这里还包括冬季施工等,只有在保证这些条件的前提下,高性能混凝土的耐久性才能得到保证.2。

1混凝土施工前,应根据设计和施工工艺要求提前开展混凝土配合比选择试验,并针对混凝土结构的特点和施工环境,使用环境条件特点,制定施工全过程的质量控制与质量保证措施.重要混凝土结构应进行混凝土试浇筑,验证并完善混凝土的施工工艺。

高性能混凝土耐久性总结

高性能混凝土耐久性总结

高性能混凝土耐久性高性能混凝土(High performance concrete,简称HPC)是指具备较高力学性能和耐久性能的混凝土。

近年来,由于HPC在工程实践中的显著效益,其研究和应用逐渐成为国际性的研究热点和建筑工程发展方向。

本文就HPC的耐久性做一个。

什么是混凝土的耐久性?混凝土的耐久性指混凝土在外界水泥浆环境和物理力学、气象及其他外力作用下长期保持自身的完整性、稳定性和功能性的能力。

混凝土在使用中要经受多种因素的影响,如湿度、温度、酸雨、盐渍侵蚀、紫外线辐射、物理力学因素等。

因此,高性能混凝土的耐久性是评估其长期应用价值的重要指标之一。

HPC的耐久性特点HPC具有以下耐久性特点:抗渗透性好HPC的水泥石胶粘性和孔隙结构特征有利于减少孔隙结构中的缺陷和痕迹,从而提高其抗渗透性。

抗硫酸盐渗透能力强硫酸盐渗透是混凝土耐久性的主要威胁之一,HPC中的混合料和其水化物阻碍硫酸盐离子的扩散和渗透。

抗氯离子侵蚀能力强氯离子侵蚀是混凝土耐久性的主要威胁之一,HPC中的矿物掺合料和细粉料、微珠混凝土、高性能砂浆和防护涂层等阻隔氯离子进入混凝土内部,从而使得混凝土的氯离子扩散系数明显降低。

抗冻融性能强HPC水泥基体的热膨胀系数具有较强的相容性,能够使得混凝土内部的温度更为均匀,从而减少混凝土融化和冻结时的应力和应变,提高其抗冻融性能。

抗碱骨架侵蚀性能强HPC中的混合料、填料和纤维等均具有较好的耐碱性,可以抵抗碳化和硅酸盐反应所导致的减弱和破坏。

以上特点使得HPC在工程中的耐久性得到更好的应用和保证。

HPC的应用范围HPC的耐久性使得它广泛应用于以下领域:桥梁工程桥梁工程往往要在露天环境中进行,容易受到气候、环境等因素的影响,因此,HPC在桥梁工程中的应用越来越广泛。

HPC可以作为桥梁框架、支架和基础等结构体系的主体材料。

隧道工程隧道工程长期处于高压、潮湿和低氧环境中,因此,HPC的耐久性便十分重要。

HPC材料可用于隧道局部和整体的加固和修复。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《现代混凝土新理论与新技术》课程论文结构工程张庆武2014202100034高性能混凝土耐久性摘要:本文首先从高性能混凝土的抗渗性、抗冻性、抗硫酸盐侵蚀性以及碱-骨料等方面等进行探讨,分析了引起混凝土破坏的原因以及影响耐久性的因素。

然后从高性能混凝土的组成材料入手,分析了原材料的选择对高性能混凝土耐久性能的影响。

最后从设计和施工养护等方面,进一步探讨了高性能混凝土作为新型的优质材料提高其耐久性的必要性和有效措施。

关键词:高性能混凝土,耐久性,掺加料1论文研究背景混凝土从问世以来,经历了低强度、中等强度、高强度乃至超高强度的发展历程,似乎人们总是乐于追求强度的不断提高。

但是近四五十年以来,混凝土结构因材质劣化造成过早失效以至破坏崩塌的事故在国内外都屡见不鲜,并有愈演愈烈之势。

混凝土工程的过早破坏,其原因除了强度不足外,还因为混凝土耐久性不良。

例如,在日本海沿岸,许多港湾建筑、桥梁等,建成后不到10年的时间,混凝土表面即出现开裂、剥落,钢筋锈蚀外露。

美国:美国国家材料顾问委员会1987年提交的报告报道,约有25.3万座混凝土桥面板出现不同程度的破坏(其中部分使用不到20年),而且每年还以3.5万座的速度递增[1];同年Litvan和Bickley发表了对加拿大停车场的检测报告,发现大量停车场的服务寿命远比预期的短很多。

美国1991年在提交国会报告《国家公路和桥梁现状》中指出,美国当时的全部混凝土工程价值约6万亿美元,而每年用于维修的费用高达300亿美元;南非1981 年用于拆换桥梁、挡土墙、墩柱、路面、路缘、蓄水坝、系桩柱、防波堤、电杆基础等的经费就超过2700万英镑,这些结构物多是在建成后3-10 年内就发现开裂破坏。

我国基本建设比发达国家迟三十多年,但已建的一些工程也有类似令人堪忧的状况,有不少混凝土工程使用寿命远低于设计要求。

据统计,在我国现有的近70亿平方米的城镇建筑物中,有50%进入老化阶段,其中约有10-12亿平方米需经加固改造才能安全使用。

1989 年,建设部科技发展司混凝土结构耐久性综合调查组对北京、西宁、贵阳和杭州的一些建筑物进行了调查,其结果表明,建国初期的建筑均已达到必须大修的状态,现有大多数工业建筑不能满足安全、经济使用50年的要求,一般使用25-30年就需大修加固。

我国混凝土工程的过早破坏,有的是结构设计不合理引起,有的是荷载的不利变化造成,但更重要的原因是由于混凝土耐久性不良,造成使用不久结构承载力就达到极限状态,某一偶然的荷载造成结构物的必然破坏。

如果对混凝土耐久性理念认识不足,缺乏必备的材料组成设计、施工方法、技术措施和质量控制方案,就会使很多工程在建成时就埋下了耐久性不足的隐患,将会在其运营期和后期维护中付出巨大的经济代价。

因此,重视并开展混凝土的耐久性研究,使混凝土朝着以耐久性为核心的高性能化方向发展,对确保混凝土工程使用寿命,推进我国建筑科技发展和经济建设步伐具有极其重要的意义。

2高性能混凝土的概述2.1高性能混凝土的定义高性能混凝土是在20世纪80年代未90年代初才出现的,其定义没有明确规定,不同国家及领域的学者根据各自的认识、研究、实践、应用范围和目的要求的差异,对高性能混凝土有不同的定义和解释,例如:(1)美国国家标准与技术研究所(NIST)与美国混凝土协会(ACI)于1990年5月召开的讨论会上提出:高性能混凝土是具有某些性能要求的匀质混凝土,必须采用严格的施工工艺,采用优质材料配制的,便于浇筑振捣,不离析,力学性能稳定,早期强度高,具有韧性和体积稳定性等性能的耐久的混凝土,特别适用于高层建筑、桥梁以及暴露在严酷环境中的建筑结构。

(2)1990年美国Mehta P K认为:高性能混凝土不仅要求高强度,还应具有高耐久性(抵抗化学腐蚀)等其他重要性能,例如高体积稳定性(高弹性模量、低干缩率、低徐变和低的温度应变)、高抗渗性和高工作性。

(3)1992年法国Malier Y A认为:高性能混凝土的特点在于有良好的工作性、高的强度和早期强度、工程经济性高和高耐久性,特别适用于桥梁、港工、核反应堆以及高速公路等重要的混凝土结构物。

(4)1992年日本小泽一雅和冈村甫认为:高性能混凝土应具有高工作性(高流动性、黏聚性与可浇筑性)、低干缩率、高抗渗性和足够的强度。

(5)1992年日本Sarkar S L提出:高性能混凝土具有较高的力学性能(如抗压、抗折、抗拉强度)、高耐久性(如抗冻融循环、抗碳化和抗化学侵蚀)、高抗渗性,属于水胶比很低的混凝土家族。

以上几种观点是针对于高性能混凝土比较有代表性的几种,现在普遍得到认同的是:高性能混凝土(High Performance Concrete,简称HPC)是由美国国家标准与技术研究院、美国混凝土学会(ACI)于1990年5月提出的,是以耐久性指标为基本要求,在采用常规材料和工艺制造的水泥混凝土中掺入一定量的矿物掺合料和专用复合外加剂,取用较低的水胶比和较少的水泥用量,并在施工时采取严格质量控制措施制备满足力学性能要求,具有较高耐久性和良好工作性的混凝土。

综合以上论点,结合我国国情和具体行业情况,吴中伟对高性能混凝土提出以下定义:高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,它以耐久性作为设计的主要指标。

针对不同用途要求,高性能混凝土对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性、经济性。

为此,高性能混凝土在配制上的特点是低水胶比,选用优质原材料,并除水泥、水、集料外,必须掺加足够数量的矿物细掺料和高效外加剂。

2.2高性能混凝土的特点(1)工作性能好。

高性能混凝土拌和物具有良好的和易性,不泌水,不离析,坍落度、扩展度、坍落度损失等指标均好于普通混凝土。

从而保证在施工过程中新拌混凝土的工作性能,提高硬化后混凝土的耐久性。

(2)硬化过程中体积稳定,水化热低,温度峰值及时间可形成梯度,冷却时收缩小,硬化后体积致密,不会因为膨胀或收缩产生微观裂缝。

(3)高性能混凝土可对同标号的普通混凝土力学性能加以改善。

如提高不同时期的强度,提高弹性模量,减小徐变系数等。

(4)大量使用粉煤灰、硅粉、矿渣等矿物掺合料是配制高性能混凝土不可或缺的环节,同时使用高效减水剂[2]。

这些都是使混凝土高性能化的重要环节,并能减少工业废料的污染。

(5)耐久性大大提高。

高性能混凝土不一定是高强的,但其工作性能、耐久性等必须是好的。

这也是其与普通混凝土的最重要区别。

因此,高强混凝土不一定是高性能混凝土,高性能混凝土也不一定是高强的。

这个“高”指的是性能好,耐久性好。

2.3高性能混凝土的性能2.3.1耐久性混凝土的耐久性破坏主要有:混凝土碳化、氯离子侵蚀、钢筋锈蚀、碱-骨料反应、冻融破坏等。

混凝土碳化是指由大气环境中的二氧化碳引起的混凝土pH 值下降的过程,碳化的主要负面影响是引起钢筋的锈蚀问题。

氯离子侵蚀是指在混凝土生产或结构使用过程中侵入氯离子,当混凝土中的氯离子含量达到一定限值时,会促成混凝土中钢筋的锈蚀。

钢筋锈蚀是钢筋表面钝化膜破坏后在水和氧气充足的情况下发生的电化学锈蚀,钢筋锈蚀会减小钢筋的有效面积,导致混凝土保护层膨胀脱落,破坏钢筋与混凝土之间的粘结,影响结构物的安全性。

碱-集料反应是指混凝土中的碱与具有活碱性的骨料之间发生膨胀性反应,反应后混凝土体积膨胀、力学性能下降。

冻融破坏是指混凝土在饱水状态下因冻融循环产生的破坏作用,其破坏作用主要是使混凝土发生冻胀开裂和表面剥蚀,危害结构物的安全。

绝大多数结构的破坏是由于氯离子侵入混凝土钢筋表面,引起钢筋锈蚀,破坏钢筋与混凝土间粘结力,同时产生膨胀破坏混凝土保护层,导致结构破坏。

目前,对于HPC耐久性的评定没有统一的指标和方法,对其进行试验和评价基本仍沿用普通混凝土的方法和指标[3]。

对于HPC的耐久性的安全使用期限,HPC 可以保证重要建筑在不利环境中使用100年,在正常环境使用200年,在特殊环境使用300年,而混凝土建筑的使用寿命可以预期达到500年。

冯乃谦通过测量掺加矿物超细粉的HPC的导电量评判其抗氯离子渗透性明显提高;东南大学通过掺加粉煤灰等活性掺料配制不同配合比的C55的HPC,并对其进行长期耐久性、收缩、抗渗、碳化、钢筋锈蚀等试验,表明掺加粉煤灰可以提高混凝土的长期耐久性。

2.3.2工作性坍落度是评价混凝土工作性的主要指标,反应混凝土拌和物在重力作用下的流动和变形能力。

HPC的坍落度控制功能好,但由于其在配制过程中加入了减水剂和矿物质超细粉,在与普通混凝土在坍落度相同的情况下,粘度较大,仅采用坍落度尚不足以完全反应HPC的施工性能,但目前尚未有专门针对HPC的检测标准。

在振捣的过程中,HPC粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。

同时,由于HPC的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。

而自密实混凝土不需机械振捣,在施工现场无振动噪声,可进行夜间施工,混凝土质量均匀,钢筋布置较密或者构件体型复杂时也可进行浇筑,施工速度快,现场劳动小。

2.3.3力学性能混凝土的强度有抗压强度、抗拉强度、抗剪强度、疲劳强度、粘结强度等。

由于混凝土是一种非均质材料,强度受诸多因素的影响,但各种强度之间有一定的关系,一般可以用抗压强度的关系表现。

水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,但对于HPC,由于低水灰比下存在搅拌困难、振捣不充分等问题,其强度提高不是无限制的,最高达到水泥的强度界限。

高效减水剂是HPC必需成分,其对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量[4]。

在HPC中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度,不同种类的矿物超细粉的最优置换率和对强度的影响不同。

HPC对力学性能的要求不仅体现在高强度上,还体现在高强度质量上,即要求强度的分散性小,后期的强度增长稳定。

2.3.4体积稳定性混凝土的体积稳定性是指混凝土在抵抗物理、化学作用下产生变形的能力。

混凝土的体积变形包括收缩变形、弹性变形、徐变变形和温度变形。

收缩变形是混凝土的固有特性,不均匀的收缩变形会引起混凝土的内应力产生裂缝,影响强度和耐久性;弹性变形是所有材料共有的变形,弹性模量越大,变形越小;徐变变形是混凝土在荷载作用下随时间增加而产生的不利变形,会影响结构的使用安全;温度变形是指混凝土在约束条件下热胀冷缩或者因内外温差而产生的变形。

体积稳定性不良的混凝土会产生收缩开裂,使混凝土的抗渗性及其物理、化学、力学性能降低,耐久性下降。

影响混凝土体积稳定性的因素很多,包括水泥颗粒的细度、用水量、骨料情况等。

相关文档
最新文档