第四章ANSYS接触分析与经典接触分析研究
ansys workbench接触分析

Workbench -Mechanical Introduction Introduction作业3.131接触控制作业3.1 –目标Workshop Supplement •作业3.1调查了一个简单组件的接触行为。
目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。
•问题描述:问题描述–模型从一个简单Parasolid组件文件获得–我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响作业3.1 –假设Workshop Supplement •假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。
最后假设stop shaft固定在两个side plate之间。
之间Arm ShaftSide PlateSide PlatepStop Shaft作业3.1 –Project SchematicWorkshop Supplement •打开Project page(项目页)•通过“Units” 菜单确定:–Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V).–选择“Display Values in Project Units”. . .作业3.1 –Project SchematicWorkshop Supplement1.在Toolbox(工具箱)中双击Static Structural建立新的分析系统1.2.Geometry上点击鼠标右键选择2在Import Geometry导入2.Contact_Arm.x_t文件作业3.1 –前处理Workshop Supplement3.双击Model打开Mechanical application.3.4.设置作业单位制系统:Units>U S Customary(in lbm lbf°F s V A)–Units > U.S Customary (in, lbm, lbf, F, s, V, A) 4.. . .作业3.1 –前处理Workshop Supplement5.在Connections上点击鼠标右键选择Rename Based on Definition5.•在各个部件彼此之间都定义了接触。
基于ANSYS软件的接触问题分析及在工程中的应用

基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。
接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。
ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。
本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。
二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。
解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。
数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。
ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。
接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。
三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。
用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。
2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。
接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。
3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。
可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。
四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。
Ansys接触分析

Ansys接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种基本类型:刚体-柔体的接触,和柔体-柔体的接触,在刚体-柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体-柔体的接触,许多金属成形问题归为此类接触,另一类,柔体-柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点-点,点-面,和面-面,每种接触方式使用的接触单元适用于某类问题。
为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对应组元是一个结点。
如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。
点-点接触单元点-点接触单元主要用于模拟点-点的接触行为,为了使用点-点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点-点的接触单元来求解面-面的接触问题,过盈装配问题是一个用点-点的接触单元来模拟面-面的接触问题的典型例子。
ANSYS接触问题(42页,详细)(图文)

接触问题(参考ANSYS的中文帮助文件)当两个分离的表面互相碰触并共切时,就称它们牌接触状态。
在一般的物理意义中,牌接触状态的表面有下列特点:1、不互相渗透;2、能够互相传递法向压力和切向摩擦力;3、通常不传递法向拉力。
接触分类:刚性体-柔性体、柔性体-柔性体实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。
――罚函数法。
接触刚度――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。
三种接触单元:节点对节点、节点对面、面对面。
接触单元的实常数和单元选项设置:FKN:法向接触刚度。
这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。
FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。
FTOLN:最大穿透容差。
穿透超过此值将尝试新的迭代。
这是一个与接触单元下面的实体单元深度(h)相乘的比例系数XX省为0.1。
此值太小,会引起收敛困难。
ICONT:初始接触调整带。
它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03=PINB:指定近区域接触范围(球形区)。
当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。
可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的) PMIN和PMAX:初始容许穿透容差。
这两个参数指定初始穿透范围,ANSYS 把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。
初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。
ANSYS主要的接触问题

• Step 7.求解 • solve • Step 8.后处理 • 接触分析的结果主要包括位移、应力、应变和接触信息。 • 接触信息包括:接触压力、单元的现在和过去状态: • 分开(没有接触) • 接触粘合状态 • 接触滑动状态 • 粘合 = 1;滑动 = 2或 -2;分开 = 3或4 • ·两个表面间的距离,如果是正值,两表面是分开的(STAT = 3或
Component
• Component name = CONTACT
• Component is made of = nodes • 【OK】 • 命令:CM,CONTACT,node
• ·KEYOPT(1):选择自由度 • ·KEYOPT(2):选择罚函数的方法 • 0-Penalty function罚函数法 • 1-Penalty function + Lagrange multiplier
(罚函数+拉格朗日法)
• 缺省情况下单元采用罚函数法保证接触协调性。 也可以选择混合罚函数和拉格朗日法,此方法还要 指定一个穿透容差,单位为长度。
• NSEL,S,NODE, …
! 在接触面上选择一组节点
• CM,CONTACT,NODE “CONTACT”
! 将所有节点定义成组元
• NSEL,S,NODE, … 点
! 在目标单元上选择一组节
• CM,TARGET,NODE, “TARGET”
! 将所选节点定义成组元
• NSEL,ALL
! 选中所有节点
触检查点,在角点处会呈现过渡穿透。在此情况下,可以混合使用面 一面接触单元和点-面接触单元(图1-1)
图1-1
• ·点-面接触单元不必知道接触 面的位置。
《2024年基于ANSYS软件的接触问题分析及在工程中的应用》范文

《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中扮演着越来越重要的角色。
ANSYS软件作为一种强大的工程仿真工具,被广泛应用于解决各种复杂的工程问题,包括接触问题。
本文将详细介绍基于ANSYS软件的接触问题分析,并探讨其在工程中的应用。
二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种高度非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。
在ANSYS软件中,接触问题主要通过定义接触对、设置接触面属性、设定接触压力等参数进行模拟。
2. ANSYS软件中接触问题的分析步骤(1)建立模型:根据实际问题,建立相应的几何模型和有限元模型。
(2)定义接触对:在ANSYS软件中,需要定义主从面以及相应的接触类型(如面-面接触、点-面接触等)。
(3)设置接触面属性:根据实际情况,设置接触面的摩擦系数、粘性等属性。
(4)设定载荷和约束:根据实际情况,设定载荷和约束条件。
(5)求解分析:进行求解分析,得到接触问题的解。
3. 接触问题分析的难点与挑战接触问题分析的难点主要在于高度的非线性和不确定性。
此外,还需要考虑多种因素,如接触面的摩擦、粘性、温度等。
这些因素使得接触问题分析变得复杂且具有挑战性。
三、ANSYS软件在工程中的应用1. 机械工程中的应用在机械工程中,ANSYS软件被广泛应用于解决各种接触问题。
例如,在齿轮传动、轴承、连接件等部件的设计和优化中,ANSYS软件可以模拟出部件之间的接触力和应力分布,为设计和优化提供有力支持。
2. 土木工程中的应用在土木工程中,ANSYS软件可以用于模拟土与结构之间的接触问题。
例如,在桥梁、大坝、建筑等结构的分析和设计中,ANSYS软件可以模拟出结构与土之间的相互作用力,为结构的设计和稳定性分析提供依据。
3. 汽车工程中的应用在汽车工程中,ANSYS软件被广泛应用于模拟汽车零部件之间的接触问题。
ANSYS高级接触分析

• 如凸面和平面或凹面接触,应指定平面或凹面为目标 面;
• 如一个面上的网格较粗而另一个面上的网格较细,应 指定粗网格面为目标面;
• 如一个面比另一个面的刚度大,应指定刚度大的面为 目标面;
• 如一个面为高阶单元而另一面为低阶单元,应指定低 阶单元面为目标面;
• 如一个面比另一个面大,应指定大的面为目标面。
• 接触单元就是覆盖在分析模型接触面上的一层 单元。
• 在 ANSYS 中可以采用三种不同的单元来模拟 接触:
◦
面一面接触单元;
◦
点一面接触单元;
◦
点一点接触单元。
§2 接触单元
• 不同的单元类型具有完全不同的单元特性和分 析过程。
• 1. 面一面接触单元用于任意形状的两个表面接 触
• 不必事先知道接触的准确位置; • 两个面可以具有不同的网格; • 支持大的相对滑动; • 支持大应变和大转动。 • 例如: 面一面接触可以模拟金属成型,如轧制
• 在数学上为保持平衡,需要有穿透值 • 然而,物理接触实体是没有穿透的 • 分析者将面对困难的选择: • 小的穿透计算精度高,因此接触刚度应该大; • 然而,太大的接触刚度会产生收敛困难:模型可能会振荡,接触
表面互相跳开。 • 接触刚度是同时影响计算精度和收敛的最重要的参数。你必须选
定一个合适的接触刚度。 • 除了在表面间传递法向压力外,接触单元还传递切向运动(摩
◦
开始估计时,选用
◦
FKN = 1.0 大面积实体接触
◦
FKN = 0.01-0.1 较柔软(弯曲占主导的部分)
• 另外,也可以指定一个绝对刚度值,单位:(力/ 长度)/ 面积。
• 对于点一点(除 CONTA178)和点-面接触单元需 要为罚刚度 KN 输入绝对值:
最新ansys 接触分析

a n s y s接触分析ansys 接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。
为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。
如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。
点─点接触单元点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章ANSYS接触分析与经典接触分析研究37
a位移图b应力图
图4.6圆柱体接模型位移图与应力图
由表4.1可以看出ANSYS计算出的结果与经典理论的结果十分相近,位移误差和应力误差都小于百分之五,这说明了ANSYS软件计算两个圆柱体接触的结果是可靠的。
4.5.2轴线平行的圆柱体与圆柱凹面的接触
对于图4.7中的两个圆柱的内接触,给定以下材料参数
图4.7轴线平行的圆柱体与圆柱凹面的接触
圆柱l:E=20000N/ram2U=0.25
圆柱2:巨=30000N/nun2¨=o.3
半径:RI;10ITLrnR2=20mm
载荷:P=1000N/nun
采用ANSYS软件进行接触计算,计算的结果与经典的理论计算结果对比列于表4.2中。
表4.2圆柱体与圆柱凹面接触计算结果对比
目标理论结果ANSYS误差
d.mm.0.】640.O.】628O.7%Stress,MPa4534089.9%
38有限元接触分析及其在飞机投放挂架中的应用
a位移图b应力图
图4.8圆柱内接触位移与应力图
由表4.2可以看出ANSYS的计算结果与经典解析算法的结果相差是很小的。
其位移误差小于百分之五,而应力误差相对较大,为9.9%。
4.5.3圆球与平面的接触
对于如图4.9中的圆球与平面的接触模型,给定如下的参数:
图4.9圆球与平面的接触
材料参数:E=1000N/nma2u=o.3
几何参数:R=8nlrII
载荷:F=(30×2兀)N
采用ANSYS软件进行接触计算,计算的结果与经典的理论计算结果对比列于表4.3中。
表4.3圆球与平面接触计算结果对比
接触宽度理论结果ANSYS误差
a(mm)1.0101.01lO.1%
第四章ANSYS接触分析与经典接触分析研究
图4.10I器球与平面接触位移图
由表4.3可以看出ANSYS计算的结果与理论结果十分相近,误差仅为0.1%,因此它验证了ANsYS求解球与平面的接触问题的结果是可靠的。
上面分别通过不同的例子验证了ANSYS用于计算圆柱体接触分析,圆柱体与圆柱凹面的接触分析,以及球与平面的接触分析,它们分别代表了凸面接触、凹面接触、以及平面接触三种典型的接触情况。
ANsYS的计算结果与经典解析法的计算结果相差很小,误差都小于百分之十,所以其计算结果是可靠的。
在工程问题中,接触物体的形状往往是十分复杂的,通常包含上面的多种接触情况,并且接触的形状也是不规则的,往往还带有塑性变形等材料非线性的计算。
对于这种复杂的问题,经典的解析法是很求解的,甚至可以说是无法完成的,而对于有限元来说,运用的是离散单元的方法,将接触体划分成为形状规则的单元体,计算难度并没有增加,因此,对于复杂的接触问题,用有限元法求解是一种很好的方法。
4.6小结
在本章中,首先对ANSYS的接触计算的种类进行了详细的分析。
在第三节中对运用ANSYS进行接触分析的过程进行了总结,探讨了进行接触分析的计算过程,在这一节里对许多进行接触分析时的技术处理进行了分析与研究,包括网格的划分方法,接触对的建立以及时间步长的选取等,这些问题是在进行接触分析时,尤其是塑性接触分析时必须重视的问题。
接触对的建立是在进行接触分析时很重要的一个闯题,本文系统的总结并提出了接触对建立与调整的方法,为同类问题提供了很好的参考。
在第四节里对经典接触分析方法进行了研究,综合对比了经典接触分析方法与有限元接触分析方法的优点与缺点。
在第五节里分别运用ANSYS和经典的接触算法对简单形状物体的接触问题
第五章飞机投放挂架的弹塑性分析
格细划的方法来获德更精细的网格,以获得精确的计算结果。
划分的网格如图5.8所示:
图5.8网格划分图形
由图5.8可以看出,运用智能网格划分的有限元模型网格在各接触面处的节点比较密集,满足计算精度要求,而在没有接触的地方则网格稀疏很多,可以节省计算资源。
5.4接触对的建立
ANSYS的接触分析包括面面分析、点面分析、点点分析。
吊挂机构的分析属于面与面的接触,因此采用面面接触分析。
机构一共有六个滚珠,因此需要建立六个接触对,将可能产生接触的面生成接触对。
在建立接触对的过程中可以手动建立接触对,也可以采用接触向导建立接触对,ANSYS在进行接触分析的时候,对于只通过接触来约束的物体,接触对首先必须是接触上的,否则在进行求解时会出现无限大位移的情况而不能求解。
一般情况下,由于在进行网格划分时,模型会出现一些误差而导致接触对没有接触上,因此需要移动实体使接触面互相接触上,或者通过对面面接触的单元类型的实常数进行设置,通过程序自动将没有接触上的接触对进行微小的移动,使其接触上。
进行接触分析时,需要定义接触面和目标面,程序通过实常数对来识别物体之间的接触。
因此,首先需要判断结构中可能发生接触的地方。
对于本文的飞机投放挂架,接触主要发生在滚珠周围,项杆、过渡套和壳体在受力时,都与滚珠发生接触,因此在定义接触对时,将滚珠的表面定义为目标面,将顶杆、过渡套和壳体定义为接触面,最后获得的接触对如图5.9所示:
有限元接触分析及其在飞机投放挂架中的应用
图5.9接触对
在此,选用接触向导建立接触对,用TARGETl70单元作为日标面,C0忖rACTl74单元作为接触面,进行接触分析。
CONTAl74是一个3--D,8结点的高阶四边形单元,可能位于有中结点的3—o实体或壳单元的表面,它可以退化成6结点的三角形单元。
不能在高阶柔性体单元的表面上分成低阶接触单元,反之也不行,不能在高阶接触单元上消去中结点。
c0NTAl74单元与SOLIDl85单元都是8结点的高阶四边形单元,保证了单元的一致性。
ANSYS面面分析中有两种接触算法可以选择,分别是增广拉格朗日算法和罚函数方法,增广拉格朗日算法是为了找到精确的拉格朗日乘子而对罚函数修正项进行反复迭代,与罚函数的方法相比,拉格朗日方法不易引起病态条件,对接触刚度的灵敏度较小,然而,在有些分析中,增广拉格朗日方法可能需要更多的迭代,特别是在变形后网格变得太扭曲时。
为了避免引起病态条件,本文在计算时采用的是增广拉格朗日算法。
使用拉格朗日算法的同时应使用实常数FTOLN为拉格朗日算法指定容许的最大渗透,如果程序发现渗透大于此值时,即使不平衡力和位移增量已经满足了收敛准则,总的求解仍被当作不收敛处理,但是如果FTOLN值太小可能会造成太多的迭代次数或者不收敛。
通过反复验证,本文在分析中采用的FTOLN为O.1是一个比较合理的值。
这里需要确定的一些主要参数还有:
FKN定义法向接触刚度因子
ICONT定义初始靠近因子
PNB定义“Pinball”区域
PMIN和PMAx定义初始渗透的容许范围
TAUMAX指定最大的接触摩擦
对无摩擦粗糙和绑定接触,接触单元刚度矩阵是对称的,而涉及到摩擦的接触问题产生一个不对称的刚度,而在每次迭代使用不对称的求解器比对称的求解。