(完整版)圆周运动知识点
完整版)圆周运动知识点总结

完整版)圆周运动知识点总结1.曲线运动是指轨迹是曲线的运动。
在研究曲线运动时,需要强调受力这一本质,并与直线运动进行比较。
曲线运动可以分为平抛运动和圆周运动两类。
2.曲线运动的运动学特征包括:轨迹是曲线,速度方向可能变化,取决于外力作用。
3.曲线运动的受力特征是:合力不等于零,且与速度不在同一直线上时为曲线运动,与速度在同一直线上时为直线运动。
以水平抛出小球为例,可以分解重力为水平和垂直两个分量,并根据其方向改变速度。
4.曲线运动的加速减速判断可以类比直线运动,即合力与速度夹角为锐角时为加速,为钝角时为减速,为直角时速度大小不变。
若合力恒定,则为匀变速曲线运动,如平抛运动;若合力变化,则为非匀变速曲线运动,如圆周运动。
5.运动的合成与分解可以对位移、速度、加速度进行分解与合成。
合运动与分运动的时间相等,具有独立性和等效性。
常见的运动的合成与分解问题包括小船过河,需要根据题目要求选择最短时间或最短位移的路径。
在进行船只渡河时,有三种情况需要考虑。
第一种情况是当船只速度与水流速度相等时,为了使渡河时间最短,船只需要将船头指向对岸。
第二种情况是当船只速度小于水流速度时,为了使渡河位移最短,船只需要将船头指向对岸上游,使用矢量三角形法可以求解。
第三种情况是当船只靠岸时,需要注意两个绳连接的物体沿绳子方向的速度大小相等,并且物体的实际运动为合运动,可以使用正交分解的方法来解决问题。
平抛运动是指物体在水平方向上抛出后,只在重力下进行匀变速曲线运动的过程。
在平抛运动中,轨迹是曲线,速度与水平方向不相等,受力特点为恒力,加速度为重力加速度,速度与合力垂直。
可以使用运动的合成与分解的方法来解决平抛运动问题,其中需要进行正交分解,将X、Y轴分别分解为匀速直线运动和自由落体运动。
圆周运动的轨迹是圆形,速度时刻改变,与半径垂直。
描述圆周运动的物理量有周期和频率,其中周期是一个完成圆周运动所需的时间,频率是单位时间内质点所完成的圈数。
物理必修二圆周运动知识点总结

物理必修二圆周运动知识点总结一、圆周运动的基本概念定义:质点以某点为圆心,半径为r在圆周上运动,其轨迹是圆周或圆弧的运动称为圆周运动。
圆周运动是曲线运动的一种,因此它一定是变速运动。
分类:圆周运动可分为匀速圆周运动和变速圆周运动。
匀速圆周运动指的是线速度大小处处相等的圆周运动,尽管线速度大小不变,但由于方向时刻改变,因此匀速圆周运动仍然是变速运动。
二、描述圆周运动的物理量线速度:描述质点沿圆周运动的快慢的物理量,其方向是质点在圆周上某点的切线方向。
在匀速圆周运动中,线速度大小不变,但方向时刻改变。
角速度:描述质点绕圆心转动的快慢的物理量,是矢量,其方向用右手螺旋定则确定。
在匀速圆周运动中,角速度大小和方向都不变。
周期和频率:周期是质点完成一次圆周运动所需的时间,频率是周期的倒数,表示单位时间内完成圆周运动的次数。
在匀速圆周运动中,周期和频率都不变。
向心力:使质点沿圆周运动的力,方向始终指向圆心。
向心力的大小与线速度、角速度和半径有关,其作用是改变质点的速度方向,使质点能够持续沿圆周运动。
三、圆周运动的规律和应用牛顿第二定律在圆周运动中的应用:通过向心力表达式,可以推导出圆周运动的线速度、角速度、周期等物理量之间的关系。
圆周运动在日常生活和科技领域中的应用:例如电动机转子、车轮、皮带轮等的运动都是圆周运动。
此外,人造卫星、行星运动等天体运动也可以视为圆周运动。
四、离心运动做圆周运动的物体,由于惯性,总有沿着切线方向飞去的倾向。
一旦受力突然消失或合力不足以提供所需的向心力时,物体就会做离心运动。
以上是物理必修二中关于圆周运动的主要知识点总结。
这些知识点是理解和分析圆周运动的基础,对于后续学习物理的其他部分以及应用物理知识解决实际问题具有重要意义。
圆周运动知识点

圆周运动知识点圆周运动是物体在一个固定的圆轨道上运动的过程。
它是我们日常生活和科学研究中经常遇到的一种运动形式。
下面将介绍一些与圆周运动相关的知识点。
一、圆周运动的定义和特点圆周运动指的是物体沿着形状为圆的轨道做运动。
它具有以下特点:1. 运动轨道:圆周运动的物体沿着一个固定的圆轨道运动,轨道上的点到圆心的距离是恒定的。
2. 运动速度:圆周运动的物体在轨道上的速度是不断改变的,速度的大小与物体距离圆心的距离相关。
3. 运动加速度:圆周运动的物体具有向圆心的加速度,该加速度的大小与物体速度的平方成反比,与物体距离圆心的距离成正比。
二、角度和弧度的关系在圆周运动中,角度和弧度是常用的单位。
角度度量被广泛应用于日常生活,如时钟的刻度、角度的度量等。
而在物理学和数学中,弧度被广泛采用,因为它可以更准确地描述圆周运动。
弧长是圆周上两点之间的距离,它与圆心角的关系可以用弧度来表示。
弧度是一个无量纲的物理量,定义为圆的弧长等于半径时所对应的角度。
一圆周共有2π弧度的角度,即360度等于2π弧度。
三、圆周运动的速度和加速度计算在圆周运动中,物体的速度和加速度与物体距离圆心的距离和角速度有关。
物体的线速度(V)是指物体在圆周轨道上运动的线速度,它等于物体距圆心的距离(r)与角速度(ω)的乘积,即V = rω。
物体的角速度(ω)是指物体单位时间内绕圆心旋转的角度,它的计算公式为角速度等于角度变化量(Δθ)除以时间间隔(Δt),即ω = Δθ/Δt。
物体的加速度(a)是指物体在圆周运动过程中向圆心加速度的大小,它的计算公式为加速度等于线速度(V)的平方除以物体距圆心的距离(r),即a = V^2/r。
四、离心力和向心力的作用在圆周运动中,离心力和向心力是两个重要的力。
离心力是指物体由于惯性而远离轨道中心的力,是物体离开圆轨道的原因;向心力是使物体朝向轨道中心的力,是物体在圆周运动过程中保持轨道的原因。
离心力(Fc)的大小与物体的质量(m)、线速度(v)和物体距离圆心的距离(r)有关,它的计算公式为F_c = m*v^2/r。
圆周运动知识点总结

圆周运动知识点总结一、圆周运动的定义物体沿着圆周的运动称为圆周运动。
在圆周运动中,物体的运动轨迹是一个圆或者一段圆弧。
二、线速度1、定义:物体通过的弧长与所用时间的比值,叫做线速度。
2、公式:\(v =\frac{\Delta s}{\Delta t}\)(\(\Delta s\)表示弧长,\(\Delta t\)表示时间)3、单位:米每秒(m/s)4、物理意义:描述物体沿圆周运动的快慢。
5、线速度是矢量,其方向沿圆周的切线方向。
三、角速度1、定义:连接物体与圆心的半径所转过的角度与所用时间的比值,叫做角速度。
2、公式:\(\omega =\frac{\Delta \theta}{\Delta t}\)(\(\Delta \theta\)表示角度,\(\Delta t\)表示时间)3、单位:弧度每秒(rad/s)4、物理意义:描述物体绕圆心转动的快慢。
四、周期和频率1、周期(T)定义:做圆周运动的物体运动一周所用的时间。
单位:秒(s)公式:\(T =\frac{2\pi r}{v}\)(r 为圆周运动的半径)2、频率(f)定义:单位时间内完成圆周运动的次数。
单位:赫兹(Hz)公式:\(f =\frac{1}{T}\)五、线速度、角速度、周期、频率之间的关系1、\(v =\omega r\)2、\(v =\frac{2\pi r}{T}\)3、\(\omega =\frac{2\pi}{T} = 2\pi f\)六、向心加速度1、定义:做圆周运动的物体,由于速度方向不断改变,必然存在加速度,这个加速度指向圆心,叫做向心加速度。
2、公式:\(a_n =\frac{v^2}{r} =\omega^2 r\)3、方向:始终指向圆心,与线速度方向垂直。
4、物理意义:描述线速度方向变化的快慢。
七、向心力1、定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2、公式:\(F_n = m \frac{v^2}{r} = m\omega^2 r\)3、方向:始终指向圆心,与速度方向垂直。
圆周运动知识点总结

圆周运动知识点总结圆周运动是物体在原地绕着固定轴线做的运动,是物理学中的重要概念之一。
本文将对圆周运动的基本概念、相关定理以及应用进行总结。
一、圆周运动的基本概念1. 圆周:圆周指的是一个平面上的圆(或圆弧),在物体进行圆周运动时,物体的运动轨迹便是圆周。
2. 轴线:轴线是圆周运动的轴心,物体绕着该轴线做圆周运动。
轴线可位于物体的质心或其他特定位置。
3. 角度:角度是圆周运动的基本单位,常用弧度来表示。
一个完整的圆周等于2π弧度。
4. 角速度:角速度用来描述物体在单位时间内绕轴线转过的角度,通常用ω表示。
角速度的单位为弧度/秒(rad/s)。
5. 周期:周期是圆周运动完成一次所需要的时间,通常用T表示。
周期的倒数称为频率,即f = 1/T,单位为赫兹(Hz)。
6. 线速度:线速度指的是物体在圆周运动中某一点的速度,是该点的切线方向上的速度。
线速度的大小等于该点所对应圆心角的弧长除以时间。
7. 向心加速度:向心加速度是指物体在圆周运动中由于受到向心力的作用而产生的加速度。
向心加速度的大小等于线速度的平方除以半径,即a = v^2 / r。
二、圆周运动的相关定理1. 牛顿第二定律:对于圆周运动的物体,其向心加速度与向心力成正比。
根据牛顿第二定律可以得到向心力的大小为F = m * a = m * v^2 / r。
2. 角动量守恒定律:当物体在圆周运动中没有外力作用时,其角动量守恒。
角动量等于物体质量乘以线速度与半径之积,即L = m * v * r。
3. 力矩定律:力矩等于力与力臂的乘积,力臂是力在物体径向上的投影长度。
力矩的大小与角加速度成正比,即τ = I * α,其中I是物体的转动惯量,α是物体的角加速度。
三、圆周运动的应用1. 圆周运动在自然界和生活中广泛存在,如行星围绕太阳的运动、地球自转等。
2. 圆周运动的原理被广泛应用于各种机械设备中,如汽车、飞机的转向系统,摩托车的转弯等。
3. 在舞台灯光和音响系统中,旋转的灯光和音响设备往往采用圆周运动的原理来实现。
圆周运动知识点

圆周运动知识点圆周运动是物体在圆的轨迹上做匀速运动的过程。
在日常生活和科学研究中,我们经常会遇到和使用圆周运动的知识。
本文将介绍一些与圆周运动相关的知识点。
1. 圆周运动的定义和特点圆周运动是指物体沿着圆形轨迹做匀速运动的过程。
在圆周运动中,物体的速度大小保持不变,但方向不断变化,沿圆形轨迹做匀速运动。
圆周运动中,物体的加速度的大小恒定,方向指向圆心。
这种运动通常是由一个力提供的,称为向心力。
2. 向心力与圆周运动的关系向心力是使物体保持圆周运动的力。
在圆周运动中,物体所受的向心力的大小等于物体的质量乘以向心加速度的大小。
向心力的方向始终指向圆心,使物体向圆心方向做加速运动,使物体保持圆周运动。
3. 圆周运动的周期和频率圆周运动的周期是指物体完成一次完整圆周运动所需的时间。
周期可以表示为T,通常以秒为单位。
频率是指单位时间内圆周运动发生的次数,通常以赫兹(Hz)为单位。
频率可以表示为f,计算方法为频率等于1除以周期。
4. 圆周运动的角速度和线速度角速度是指物体在圆周运动中单位时间内所转过的角度大小。
角速度可以表示为ω,通常以弧度/秒为单位。
角速度与圆周运动的周期之间有关系,角速度等于2π除以周期。
线速度是指物体在圆周运动中单位时间内所走过的弧长。
线速度可以表示为v,通常以米/秒为单位。
线速度等于物体在单位时间内所转过的角度大小乘以运动的半径。
5. 圆周运动的离心力和向心加速度离心力是指物体在圆周运动中受到的相对于圆心的向外的力。
离心力的大小等于物体的质量乘以向心加速度的大小。
向心加速度是指物体在圆周运动中的加速度大小。
向心加速度可以表示为ac,计算公式为向心加速度等于线速度的平方除以运动的半径。
6. 圆周运动的应用圆周运动在生活和科学研究中有许多应用。
例如,地球绕太阳的公转运动、行星绕太阳的公转运动等都是圆周运动。
此外,圆周运动还在机械工程、电子工程、天文学等领域广泛应用。
总结:圆周运动是物体沿圆形轨迹做匀速运动的过程。
圆周运动知识点与经典练习

圆周运动知识点与经典练习一、圆周运动的基本概念圆周运动是指物体沿着圆周轨迹进行的运动。
在圆周运动中,物体的运动轨迹是一个圆,其速度方向不断变化。
线速度(v):线速度是物体沿圆周运动时通过的弧长与所用时间的比值。
公式为:v =Δs /Δt ,单位是米每秒(m/s)。
线速度的方向沿圆周的切线方向。
角速度(ω):角速度是物体在单位时间内转过的角度。
公式为:ω =Δθ /Δt ,单位是弧度每秒(rad/s)。
周期(T):做圆周运动的物体运动一周所用的时间。
周期的单位是秒(s)。
频率(f):单位时间内完成圆周运动的周数。
频率的单位是赫兹(Hz),1Hz 表示每秒完成 1 周运动。
频率和周期的关系为:f = 1 /T 。
二、圆周运动的向心力向心力是使物体做圆周运动的力。
它的方向始终指向圆心,其大小为:F = m v²/ r ,其中 m 是物体的质量,v 是线速度,r 是圆周运动的半径。
向心力不是一个独立存在的力,而是由其他力的合力或分力提供。
例如,在光滑水平面上用绳子拉着一个小球做圆周运动,绳子的拉力就提供了向心力;在地球表面,物体随地球自转做圆周运动,地球对物体的万有引力和地面的支持力的合力提供了向心力。
三、常见的圆周运动模型1、圆锥摆模型一个小球用长为 L 的细绳拴着,在水平面内做匀速圆周运动。
此时,小球受到重力和绳子的拉力,其合力提供向心力。
可以通过受力分析和几何关系求出角速度等物理量。
2、汽车在弯道上行驶汽车在水平弯道上转弯时,如果速度过大,摩擦力不足以提供所需的向心力,汽车就会发生侧滑。
为了增加向心力,可以将弯道设计成外高内低的斜面,让支持力和摩擦力的合力提供更多的向心力。
3、竖直平面内的圆周运动(1)绳球模型:小球在细绳的约束下在竖直平面内做圆周运动。
在最高点,当重力刚好提供向心力时,有:mg = m v²/ r ,此时的速度为临界速度。
如果速度小于临界速度,小球不能到达最高点。
圆周运动小结知识点总结

圆周运动小结知识点总结一、圆周运动的基本概念1. 圆周运动的定义:圆周运动是一个物体或者一个系统绕着一个固定的圆心做圆周运动。
2. 圆周运动的特点:在圆周运动中,物体绕着一个固定的圆心做圆周运动,由于物体的运动方向和加速度方向垂直,因而圆周运动中的加速度称为向心加速度。
3. 向心加速度的方向:向心加速度的方向始终指向圆心。
4. 向心加速度的大小:向心加速度的大小与圆周运动的线速度的平方和圆的半径成正比,公式为 a = v²/r,其中 a 表示向心加速度,v 表示线速度,r 表示半径。
5. 圆周运动的周期:圆周运动完成一次运动所需的时间称为圆周运动的周期,用 T 表示。
6. 圆周运动的频率:圆周运动单位时间内完成的圆周运动次数称为圆周运动的频率,用 f 表示。
7. 圆周运动的角速度:圆周运动角度在单位时间内转过的角度称为角速度,用ω 表示。
二、圆周运动的运动规律1. 圆周运动的速度:圆周运动的速度是指物体绕圆心做圆周运动时在圆周上的线速度。
2. 圆周运动的线速度公式:圆周运动的线速度 v 与角速度ω 和圆的半径 r 成正比,公式为v = ωr。
3. 圆周运动的角速度公式:圆周运动的角速度ω 与圆周运动的周期 T 成反比,公式为ω = 2π/T。
4. 圆周运动的受力分析:在圆周运动中,物体受到向心力的作用,向心力一般由拉力、重力等提供。
5. 圆周运动的牛顿运动定律:在圆周运动中,牛顿第一定律和牛顿第二定律仍然成立,不过要根据实际情况进行修正。
6. 圆周运动的能量转化:在圆周运动中,由于向心力的作用,物体的机械能将发生转换,动能和势能将不断地进行转换。
三、圆周运动的相关公式1. 圆周运动的线速度公式:v = ωr。
2. 圆周运动的角速度公式:ω = 2π/T。
3. 圆周运动的向心加速度公式: a = v²/r。
4. 圆周运动的周期和频率之间的关系: f = 1/T。
5. 圆周运动的动能公式: KE = 1/2mv²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
描述圆周运动的物理量及相互关系圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。
2、描述匀速圆周运动的物理量 (1)轨道半径(r )(2)线速度(v ): 定义式:t sv =矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上。
(3)角速度(ω,又称为圆频率):Ttπϕω2==(φ是t 时间内半径转过的圆心角) 单位:弧度每秒(rad/s )(4)周期(T ):做匀速圆周运动的物体运动一周所用的时间叫做周期。
(5)频率(f ,或转速n ):物体在单位时间内完成的圆周运动的次数。
各物理量之间的关系:r t r v f T t rf Tr t s v ωθππθωππ==⇒⎪⎪⎭⎪⎪⎬⎫======2222 注意:计算时,均采用国际单位制,角度的单位采用弧度制。
(6)向心加速度r r v a n 22ω==(还有其它的表示形式,如:()r f r T v a n 2222ππω=⎪⎭⎫ ⎝⎛==)方向:其方向时刻改变且时刻指向圆心。
对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r 为曲率半径;物体的另一加速度分量为切向加速度τa ,表征速度大小改变的快慢(对匀速圆周运动而言,τa =0) (7)向心力匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的力,常见的提供向心力的典型力有万有引力、洛仑兹力等。
对于一般的非匀速圆周运动,物体受到的合力的法向分力n F 提供向心加速度(下式仍然适用),切向分力τF 提供切向加速度。
向心力的大小为:r m rv m ma F n n 22ω===(还有其它的表示形式,如:()r f m r T m mv F n 2222ππω=⎪⎭⎫ ⎝⎛==);向心力的方向时刻改变且时刻指向圆心。
实际上,向心力公式是牛顿第二定律在匀速圆周运动中的具体表现形式。
3.分类:⑴匀速圆周运动(1)定义:物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫做匀速圆周运动。
(2)性质:向心加速度大小不变,方向总是指向圆心的变加速曲线运动。
(3)质点做匀速圆周运动的条件: 合力大小不变,方向始终与速度方向垂直且指向圆心。
例1:如图所示,已知绳长为L =20 cm ,水平杆长L ′=0.1 m ,小球质量m =0.3 kg ,整个装置可绕竖直轴转动.(g 取10 m/s 2)(1)要使绳子与竖直方向成45°角,该装置必须以多大的角速度转动才行? (2)此时绳子的张力为多大?2.如图所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑的水平面上绕O 匀速转动时,求OA 和AB 两段对小球的拉力之比是多少?(2).非匀速圆周运动(1)定义:线速度大小、方向均发生变化的圆周运动。
(2)合力的作用:①合力沿速度方向的分量F t 产生切向加速度,F t =ma t ,它只改变速度的大小。
②合力沿半径方向的分量F n 产生向心加速度,F n =ma n ,它只改变速度的方向。
例.荡秋千是儿童喜爱的一项体育运动,当秋千荡到最高点时,小孩的加速度方向是图4-3-2中的( )A .a 方向B .b 方向C.c方向D.d方向离心现象1.离心运动(1)定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,所做的逐渐远离圆心的运动。
(2)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向。
(3)受力特点:①当F=mω2r时,物体做匀速圆周运动;②当F=0时,物体沿切线方向飞出;③当F<mω2r时,物体逐渐远离圆心,做离心运动。
2.近心运动当提供向心力的合外力大于做圆周运动所需向心力时,即F>mω2r,物体将逐渐靠近圆心,做近心运动。
例:如图4-3-16所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动。
若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法正确的是( ) A.若拉力突然消失,小于将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变大,小球将沿轨迹Pb做离心运动D.若拉力突然变小,小球将沿轨迹Pc运动考点一| 传动装置问题传动装置中各物理量间的关系(1)同一转轴的各点角速度ω相同,而线速度v=ωr与半径r成正比,向心加速度大小a=rω2与半径r成正比。
(2)当皮带不打滑时,传动皮带、用皮带连接的两轮边缘上各点的线速度大小相等,两皮带轮上各点的角速度、向心加速度关系可根据ω=vr、a=v2r确定。
考点二| 水平面内的匀速圆周运动水平面内的匀速圆周运动的分析方法(1)运动实例:圆锥摆、火车转弯、汽车转弯、物体随圆盘做匀速圆周飞行等。
(2)问题特点:①运动轨迹是圆且在水平面内;②向心力的方向水平,竖直方向的合力为零。
(3)解题方法:①对研究对象受力分析,确定向心力的来源;②确定圆周运动的圆心和半径;③应用相关力学规律列方程求解。
1.(多选)“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来。
如图4-3-8所示,已知桶壁的倾角为θ,车和人的总质量为m,做圆周运动的半径为r,若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( )A.人和车的速度为gr tan θB.人和车的速度为gr sin θC.桶面对车的弹力为mgcos θD.桶面对车的弹力为mgsin θ2.(多选)公路急转弯处通常是交通事故多发地带。
如图4-3-10,某公路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向公路内外两侧滑动的趋势。
则在该弯道处( )A.路面外侧高内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小3.长度不同的两根细绳悬于同一点,另一端各系一个质量相同的小球,使它们在同一水平面内做圆锥摆运动,如图4-3-14所示,则有关两个圆锥摆的物理量相同的是( )A.周期B.线速度的大小C.向心力D.绳的拉力4.图为火车在转弯时的受力分析图,试根据图示讨论以下问题:(1)设斜面倾角为θ,转弯半径为R,当火车的速度v0为多大时铁轨和轮缘间没有弹力,向心力完全由重力与支持力的合力提供?(2)当火车行驶速度v>v0时,轮缘受哪个轨道的压力?当火车行驶速度v<v0时呢?5.在水平圆盘上分别放甲、乙、丙三个质量分别为m、2m、3m的物体,其轨道半径分别为r、2r、3r(如图所示),三个物体的最大静摩擦力皆为所受重力的k倍,当圆盘转动的角速度由小缓慢增大,相对圆盘首先滑动的是( )A.甲物体B.乙物体C.丙物体D.三个物体同时滑动考点三| 竖直平面内的圆周运动物体在竖直面内做的圆周运动是一种典型的变速曲线运动,该类运动常见的两种模型——轻绳模型和轻杆模型,分析比较如下:轻绳模型轻杆模型拱桥模型常见类型均是没有支撑的小球均是有支撑的小球向心力过最高点的临界条件由mg=mv2r得v临=grv临=0讨论分析(1)过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心(2)当0<v<gr时,-F N+v≥错误!未找到引用源。
飞离轨道错误!未找到引用源。
轨道支持产生弹力F N(2)不能过最高点v <gr,在到达最高点前小球已经脱离了圆轨道mg=mv2r,F N背向圆心,随v 的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=mv2r,F N指向圆心并随v的增大而增大求解竖直平面内圆周运动问题的思路1.(多选)荡秋千是儿童喜爱的一项体育运动,图4-3-15为小孩荡秋千运动到最高点的示意图,(不计空气阻力)下列说法正确的是( )A.小孩运动到最高点时,小孩的合力为零B.小孩从最高点运动到最低点过程中机械能守恒C.小孩运动到最低点时处于失重状态D.小孩运动到最低点时,小孩的重力和绳子拉力提供圆周运动的向心力2.秋千的吊绳有些磨损,在摆动过程中,吊绳最容易断裂的时候是秋千( )A.在下摆过程中B.在上摆过程中C.摆到最高点时D.摆到最低点时4.如图4-3-17所示,地球可以看成一个巨大的拱形桥,桥面半径R=6 400 km,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到需要的任意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.如果某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉5.一细绳与水桶相连,水桶中装有水,水桶与水一起在竖直平面内做圆周运动,如图所示,水的质量m=0.5 kg,水的重心到转轴的距离l=60cm.(g取9.8 m/s2)(1)若在最高点水不流出来,求桶的最小速率;(2)若在最高点时水桶的速率v=3 m/s,求水对桶底的压力.6.长L=0.5 m的轻杆,其一端连接着一个零件A,A的质量m=2 kg.现让A在竖直平面内绕O点做匀速圆周运动,如图所示.在A通过最高点时,求下列两种情况下A对杆的作用力大小:(1)A的速率为1 m/s;(2)A的速率为4 m/s.(g取10 m/s2)7.如图所示,质量m=2.0×104 kg的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为20 m.如果桥面承受的压力不得超过3.0×105 N,则:(1)汽车允许的最大速度是多少?(2)若以所求速度行驶,汽车对桥面的最小压力是多少?(g取10 m/s2)。