动物循环系统的进化过程

合集下载

4第十章动物的循环、呼吸和排泄系统

4第十章动物的循环、呼吸和排泄系统

1.3.2 人心脏的结构
心脏是十分重要的器官,是循环系统的 总枢纽,其收缩和舒张造成血液的循环流 动。心博一旦停止,血液循环不能进行, 各处组织不能获得营养,也不能排除废物, 生命就很快完结。 人的心脏重约400克左右。位于胸腔的 围心腔中。 心脏分为四室,即左心房左心室和右心 房右心室。左右两半界限分明。右心房右 心室的血液是从大静脉流入的带二氧化碳 的血,左心房左心室的血液是从肺流回的 带氧的血。 但它们的博动却是心房与心室分别同步。 即左右心房先同时收缩,然后左右心室再 同时收缩。
心肌的特殊传导系统 数字表示兴奋从窦房结传 递到该点的时间(秒)
Ø 心肌细胞的动作电位
以浦肯野氏细胞为例: 0期——细胞快速去极化(动作 电位的升支) 1期——短暂而快速的复极化 2期——缓慢复极化(平台期) 3期——较快复极化 4期——复极化至静息膜电位 浦肯野氏细胞的动作电位
自律细胞到达静息膜电位水平 后又开始缓慢去极化,直到阈电 位水平,再引起心肌细胞的兴奋, 又开始出现新的动作电位。
Ø Rh因子
Rh是恒河猴(Rhesus Macacus)外文名称的头两个字⺟。兰德斯 坦纳等科学家在1940年做动物实验时,发现恒河猴和多数人体内的红 细胞上存在另一种抗原物质,命名为Rh因子。 凡是人体血液红细胞上有Rh因子者,为RH阳性。反之为RH阴性。 RH阳性血型在我国汉族及大多数民族人中约占99.7%,个别少数民族 约为90%。在国外的一些民族中,RH阳性血型的人约为85%。
Ø 血液成分
淡⻩色液体,约占血液体积的53%,其中水分 血浆(plasma) 约占92%,其余8%为溶于水的晶体物质(无 机盐)和胶体物质等(血浆蛋白)。 颗粒细胞(嗜中性、嗜酸性、嗜碱性粒细胞) 白细胞 无颗粒细胞 淋巴细胞 起防御作用

人体循环系统的演化史

人体循环系统的演化史

人体循环系统的演化史人体循环系统是人体中最重要、最基础的系统之一,它负责将氧气和营养物质输送到身体的每一个角落,同时又将代谢产物排出体外。

要了解人体循环系统的演化史,需要先从人类和其他生物的起源说起。

早期生物的循环系统早期的生物不需要循环系统,因为它们的体型比较小,氧气和营养物质可以简单地通过扩散达到每个细胞。

随着生物的演化,生物体构造也变得更加复杂,呈现出多细胞、组织分化等特征,这就需要更完善的循环系统来帮助身体维持正常的生理状态。

最早期的动物循环系统可以追溯到距今4亿年前的海绵类动物。

海绵有一种基本的中空体室结构,这样可以在体内循环水流,便于摄取食物和呼吸氧气。

然而,这种本质上是被动的、没有泵的循环系统的局限性是显而易见的,无法满足大多数动物的生存需要。

无脊椎动物的循环系统无脊椎动物的循环系统比较简单,它们身体构造较为简单,没有完全分化的组织和器官。

它们的血液和淋巴液不像脊椎动物一样分开流动,而是混合在一起。

没有心脏的无脊椎动物,比如海绵、水螅、水母等,通过肌肉的舒缩来推动体液在体内流动。

而有心脏的无脊椎动物,比如蜗牛、章鱼、蛞蝓等,则通过体内的静脉和动脉以及心脏来推动血液流动。

这种循环系统比较原始,无法满足复杂的能量和物质交换需求,并且存在一定的局限性。

脊椎动物的循环系统脊椎动物的循环系统是相对比较完备的,它们拥有分化的心脏和血管系统,能够输送氧气和营养物质到身体每一个细胞,同时又将代谢产物排出体外。

脊椎动物最原始的循环系统可以追溯到古鱼类时期,它们的心脏仅有两个腔室,分别是心房和心室。

这种心脏结构虽然不够复杂,但已经具有一定的代谢和体液循环功能。

随着进化,脊椎动物的循环系统逐渐变得更加复杂。

爬行动物的心脏有三个腔室,分别是左右心房和一个混合的心室,这可以帮助它们更好地控制血流。

鸟类和哺乳动物的心脏有四个腔室,分别是左右心房和左右心室,这种心脏结构可以更好地分离氧气丰富的血液和氧气稀薄的血液,并提高有效供氧量。

心脏以及循环系统的进化

心脏以及循环系统的进化
心脏结构的变化可以应对不同氧气浓度的环 境,提高生物体的适应能力。
4 狩猎和捕食策略
心脏进化可能影响动物的狩猎和捕食策略, 提高生存能力。
人类心脏结构与功能特点
四腔心脏 心脏肌肉 瓣膜 自律性
人类心脏拥有四个腔室,实现高效的双循环,保 证足够的氧气供应。
心脏肌肉可以持续收缩,使血液流动,维持身体 的正常代谢。
心脏以及循环系统的进化
心脏的进化历程
多细胞动物的心脏
ห้องสมุดไป่ตู้
逐渐形成
多细胞动物心脏通过进化逐 渐形成,为循环系统奠定基 础。
简单结构
早期心脏简单,仅由蠕动的 血管系统组成,能够将养分 输送至全身。
基本功能
心脏初期的功能是保证细胞 能够接收足够的氧气和营养 物质。
心脏演化中的结构特化和分化
心脏腔室
心脏逐步发展出房室和心房室的分隔,以提高血液 流动效率。
心脏瓣膜的存在保证了血液顺利流动,防止回流。
心脏具有自主控制的自律性,可适应不同的体育 锻炼和情绪波动。
心脏进化研究的现状及前景
心脏进化研究帮助我们理解生命的起源和发展,对疾病的预防和治疗提供更多方向。
基因研究
通过对心脏相关基因的研究, 揭示进化中的遗传变异和功能 演化。
化石记录
通过研究化石记录,了解心脏 进化历程中的形态变化和功能 改进。
计算模拟
借助计算模拟技术,模拟心脏 结构和功能的进化过程,提供 理论支持和预测。
双循环,提高氧气供应和废物处理速度。
3
心房和心室的协调
心房和心室之间的协调运动,确保血液 顺利流动,辅助心脏正常工作。
心脏进化与环境因素的相互作用
1 物种适应
心脏的进化是为了适应不同环境的需求,确 保物种的生存和繁衍。

动物的呼吸与循环系统

动物的呼吸与循环系统

动物的呼吸与循环系统在我们这个丰富多彩的世界里,动物们以各种各样的方式生存和繁衍。

而呼吸与循环系统,就像是它们体内的“生命引擎”,为每一个细胞提供着至关重要的氧气和养分,同时带走代谢产生的废物。

呼吸,这一简单而又神奇的过程,是动物获取氧气的关键。

对于大多数小型动物,比如昆虫,它们通过气管系统来进行呼吸。

这些气管就像一系列微小的管道,直接将空气输送到细胞附近。

想象一下,昆虫的身体就像是一个布满了通风管的小工厂,氧气能够迅速而直接地到达需要的地方。

鱼类则有着独特的鳃呼吸方式。

它们在水中游动时,水从口进入,经过鳃丝,鳃丝上的毛细血管能够从水中摄取氧气,同时排出二氧化碳。

鱼鳃就像是一个精巧的过滤器,让氧气进入,把不需要的东西挡在外面。

而到了两栖动物,如青蛙,它们在幼体时期像鱼一样用鳃呼吸,而成年后则可以通过肺和皮肤来呼吸。

皮肤在这个过程中也发挥了重要作用,能够辅助气体交换,帮助它们在不同的环境中更好地生存。

爬行动物,像是蜥蜴和乌龟,已经完全依靠肺来呼吸。

它们的肺结构相对更加复杂,有着更多的肺泡和气囊,以增加气体交换的面积,提高呼吸效率。

鸟类的呼吸系统可以说是高效的典范。

它们不仅有肺,还有特殊的气囊。

当鸟类吸气时,空气不仅进入肺,还会充满气囊;呼气时,气囊中的新鲜空气再次经过肺进行气体交换。

这种独特的“双重呼吸”方式让鸟类能够在飞行这样高能耗的活动中获取足够的氧气。

哺乳动物,包括我们人类,拥有结构最为完善的肺。

肺泡是气体交换的主要场所,数量众多且表面积巨大,能够确保氧气充分进入血液,二氧化碳顺利排出。

说完了呼吸,再来说说循环系统。

循环系统就像是体内的“物流网络”,负责将氧气和养分运输到身体的各个角落,同时将代谢废物带回处理。

无脊椎动物中的环节动物,如蚯蚓,有一个简单的闭管式循环系统。

血液在封闭的血管中流动,能够更有效地控制血液的流向和流速。

软体动物,像蜗牛,它们的循环系统则相对简单,被称为开管式循环。

血液不是完全在封闭的血管中流动,而是会流入组织间隙。

动物进化的生理变化

动物进化的生理变化

动物进化的生理变化进化是生物在数百万年的漫长过程中,通过适应环境的选择性压力而逐渐改变和发展的过程。

在进化的过程中,动物经历了许多生理上的变化,这些变化使得它们可以更好地适应并在各自的生境中生存下来。

本文将探讨动物进化的生理变化。

1.呼吸系统的进化呼吸是动物生命活动的基本过程之一,它为动物提供了氧气并将二氧化碳排出体外。

在进化的过程中,动物的呼吸系统也发生了一系列的变化。

例如,水生动物的呼吸系统逐渐演化出鳃,使它们能够从水中提取氧气。

而陆生动物逐渐发展出肺,可以在空气中进行呼吸。

部分动物进一步演化出呼吸道复杂的肺,以提高氧气吸收的效率。

2.循环系统的进化循环系统是动物体内输送氧气、营养物质和代谢废物的重要系统。

在进化中,动物的循环系统也经历了一些变化。

例如,较为简单的动物拥有开放式循环系统,血液直接从心脏泵送到体腔中。

而较为复杂的动物,则演化出闭合式循环系统,血液在血管中流动,有效地将氧气和养分输送到身体各个部分。

3.消化系统的进化消化系统是动物体内将食物分解为养分并吸收的系统。

随着动物进化的过程,消化系统也发生了一些变化。

例如,草食动物的消化系统逐渐演化出较长的肠道和发达的反刍胃,以便消化植物纤维素。

肉食动物则演化出较强的胃酸和消化酶,以便更好地消化蛋白质。

不同的动物根据其食物来源和生活习性,消化系统的结构和功能也有所差异。

4.神经系统的进化神经系统是动物的指挥中枢,负责接收、处理和传递各种信息。

在进化的过程中,动物的神经系统也经历了一系列的变化。

例如,原始的神经系统由简单的神经网络组成,只能进行基本的感知和反应。

而高等动物的神经系统则经过演化,形成了复杂的大脑和神经系统,使其能够进行高级的思维、学习和记忆等活动。

总结起来,动物进化的生理变化涵盖了呼吸系统、循环系统、消化系统和神经系统等多个方面。

这些变化使得动物能够更好地适应生活环境,并在进化的过程中获得生存的优势。

通过对动物进化的生理变化的研究,我们可以更好地理解生命的奥秘,也为人类的医学和生物学研究提供了重要的参考。

动物运动的形成

动物运动的形成

动物运动的形成动物运动是生物的一种基本能力,用于获取食物、逃离掠食者、展示斗争力和进行交配。

动物根据其生态需求和生活环境,发展了各种各样的运动方式,形成了其独特的运动方式。

呼吸器官和血液循环系统的发展从单细胞生物到多细胞生物的进化过程中,呼吸器官的发展成为支持动物运动的重要因素之一。

氧气通过呼吸道进入体内,被红细胞结合成氧合血红蛋白,最后被输送到每个身体细胞中,产生能量和消除废物,维持机体正常代谢。

随着呼吸器官的发展,血液循环系统也得到了完善,才能满足活动时组织和器官对氧气和养分的需要。

高等动物的循环系统被分为两个循环系统:肺循环和体循环。

肺循环将氧气从肺部运到心脏,然后被泵送到体循环中。

体循环尤其是最末端的毛细血管,将氧气和营养物质输送到各个身体组织中,维持身体对外界的适应和响应。

骨骼肌肉的特化和协同动物身体内部还有普遍存在的一种组织类型,即骨骼肌。

骨骼肌细胞被称为肌纤维,在身体内部通过肌肉组织、肌腱和骨骼相互协作,实现身体运动的功能。

肌肉和骨骼的配合可以分为四个运动步骤:收缩、挤压、移动和放松。

骨骼肌的收缩是通过神经冲动触发的,肌肉收缩过程中,需要依赖能量供应,并产生热量和废物,所以需要强大的循环系统来支持。

协同是指不同肌肉之间的配合工作,可以将动物的运动协调一致地实现。

我们以猫为例,猫行走时,会先将前腿前移,后腿后移,然后换一只腿继续运动,这种步态被称为“蹦跑”。

人的行走步态则是“交替步行”,两只腿交替使用,使身体维持平衡。

协同的好坏程度和动物的熟练程度有关,是动物运动能力高低的重要因素之一。

生命体征和行为控制生命体征指生物体内部的各种指标,例如心跳、呼吸、体温、血氧等等。

身体状态的变化可以通过生命体征反映出来,有利于动物实现运动和适应环境。

例如,斑马在存在掠食者的情况下,身体会变得更加敏感和紧张,会加速心跳和呼吸频率,以便逃脱掠食者的追击。

行为控制是指动物的大脑和神经系统控制身体运动的过程。

脊椎动物从水生到陆生的演化

脊椎动物从水生到陆生的演化

一、呼吸的进化1、呼吸方式脊椎动物的呼吸方式可分为两大类,即水栖种类用鳃呼吸,在水与鳃上毛细血管内的血液间进行气体交换。

鳃分内鳃及外鳃二种类型,内鳃在园口类,鱼类终生存在,外鳃存在于所有两栖类的幼体及部分有尾两栖类的成体。

陆生种类用肺呼吸,在空气与肺上毛细血管内的血液间进行气体交换。

此外一些种类尚有辅助呼吸器官,如蛙的皮肤,乌鳢的口壁粘膜,泥鳅的消化管等。

2、呼吸特点a、鱼类:鱼类的鳃位于咽部两侧,由鳃弓支持着,每一鳃弓上有两列鳃丝(软骨鱼类第五对鳃弓只有1个鳃瓣,硬骨鱼类第五对鳃弓多特化为咽骨,其上无鳃丝)。

软骨鱼有鳃间隔自鳃弓伸到体表下,鳃瓣(软骨鱼的鳃瓣多不为丝状)附在鳃间两侧。

硬骨鱼鳃间隔退化,鳃丝附于鳃弓上,鳃裂被鳃盖骨所覆盖,以鳃孔通于体外。

水流从口进入以后流经鳃,水中的氧和血液中的二氧化碳进行交换。

氧进入血液中,而二氧化碳则随水流排出体外。

b、两栖类:幼体用腮呼吸,变态后,内腮消失,用肺呼吸。

鳃是由外胚层发育来的,而肺则是由原肠管突出的盲囊形成的。

因此,鳃与肺不是同源器官(同源器官是指起源相同,构造和部位相似而形态和功能不同的器官),而是同功器官(形态和功能相似,起源和构造不同的器官)。

鳔和肺才是同源器官。

虽然有些鱼类的鳔已执行肺的功能,但专门作为呼吸器官的肺则是起源于两栖类。

两栖动物的肺构造简单,仅为1对薄壁的囊(如蝾螈)或囊内稍有些隔膜(如蟾蜍)而已。

其表面积比较小,不足以满足两栖类对氧的需求。

因此,两栖类还需借助于皮肤呼吸来摄取更多的氧。

c、爬行类:爬行类的肺较两栖类进步,肺的内表面积相对比较大,这是由于肺内具有很多发达的隔膜。

一些结构高等的爬行类(如鳄和某些蜥蜴),肺内腔一再分割,腔内壁呈蜂巢状小室,从而扩大了与空气的接触面积。

由于开始形成了胸廓,靠肋间肌的收缩,胸廓的扩张与缩小,改变容积,从而使气体吸入或排出。

d、鸟类:鸟类的肺极为特殊,外观上看是一对海绵状体,内部则是由大大小小的各级支气管形成的彼此吻合相通的密网状管道系统和血管系统组成,称为网状管道肺。

动物循环系统

动物循环系统

一、循环系统概念:循环系统(Circulatory system)是生物体的细胞外液(包括血浆、淋巴和组织液)及其借以循环流动的管道组成的系统。

循环系统是进行血液循环的动力和管道系统,由心血管系统和淋巴系统组成。

从动物形成心脏以后循环系统分心脏和血管两大部分,叫做心血管系统。

淋巴系统包括淋巴管和淋巴器官,是血液循环的支流,协助静脉运回体液入循环系统,属循环系的辅助部分。

二、动物循环系统发展历程从环节动物门开始出现,环节动物有次生体腔的出现,相应的促进了循环系统的发生。

环节动物具有较完善的循环系统,结构复杂,由纵行血管和环行血管及其分支血管组成,各血管以微血管往相连,血液始终在血管内流动,不流入组织间的空隙中,构成了闭管式循环系统。

血液循环有一定方向,流速较恒定,提高了运输营养物质及携氧机能。

软体动物门的循环系统由心脏、血管、血窦及血液组成血液自心室经动脉,进入身体各部分,后汇入血窦,由静脉回到心耳,故软体动物为开管式循环。

节肢动物门循环系统开管式,包括心脏和动脉两部分。

鱼的循环系统包括液体和管道两部分,液体是指血液和淋巴液,管道为血管及淋巴管。

两栖类由单循环的血液循环方式发展为包括肺循环和体循环的双循环,循环系统包括血管系统和淋巴系统两部分。

鸟类的循环系统反映了较高的代谢水平,主要表现在:动静脉血液完全分开、完全的双循环,心脏容量大,心跳频率快、动脉压高、血液循环迅速。

三、循环系统分类1.开管式循环:大多数无脊椎动物的血液循环系统都是“开放式”的,例如蝗虫的循环系统、虾的循环系统。

2.闭管式循环系统:所有的脊椎动物和部分无脊椎动物的循环系统是“封闭式”的,如蚯蚓、人类的循环系统。

3.二者区别a.开管式循环:是指动物体内的血液不完全在心脏与血管内流动,而能流进细胞间隙的循环方式.如节肢动物体内,背有心脏和它发出的血管(动脉)。

心脏两侧有具活瓣的心门,动脉直接开口在体腔。

心脏收缩时,心门关闭,血液从动脉的开口进入体腔,浸润各组织和器官。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档