人教A高中数学选修44课件-第一讲 坐标系 2

合集下载

第一讲 坐标系 知识归纳 课件(人教A选修4-4)

第一讲 坐标系 知识归纳 课件(人教A选修4-4)

返回
[解]
如图:令 A(ρ,θ),
θ △ABC 内,设∠B=θ,∠A= , 2 又|BC|=10,|AB|=ρ. 10 由正弦定理,得 = θ, 3θ sinπ- sin2 2 化简,得 A 点轨迹的极坐标方程为 ρ=10+20cos θ. ρ
返回
互化的前提依旧是把直角坐标系的原点作为极点,x 轴 的正半轴作为极轴并在两种坐标系下取相同的单位长度. 互化公式为 x=ρcos θ,y=ρsin θ y ρ2=x2+y2,tan θ=xx≠0
π +(y-2) =4,圆心为(0,2).将 θ= (ρ∈R)化成直角坐标方 6
2
程为 x- 3y=0,由点到直线的距离公式可知圆心到直线的 |0-2 3| 距离 d= = 3. 2
答案: 3
返回
2.(2012· 上海高考)如图,在极坐标系中, π 过点 M(2,0)的直线 l 与极轴的夹角 α= . 6 若将 l 的极坐标方程写成 ρ=f(θ)的形式, 则 f(θ)=________.
化简,可得 x2+y2=56. 即所求顶点 Q 的轨迹方程为 x2+y2=56.
返回
设点 P(x,y)是平面直角坐标系中的任意一点,在变换
x′=λ· x φ: y′=μ· y
λ>0 的作用下, P(x, 点 y)对应点 P′(x′, μ>0
y′),称 φ 为平面直角坐标系中的坐标伸缩变换.
返回
[例 2]
x′=2x, y′=2y
在同一平面直角坐标系中,经过伸缩变换 后, 曲线 C 变为曲线(x′-5)2+(y′+6)2=1,
求曲线 C 的方程,并判断其形状.
[解]
x′=2x, 将 y′=2y
代入(x′-5)2+(y′+6)2=1 中,

高中数学人教新课标A版选修4-4第一章坐标系1.1.6柱坐标系与球坐标系课件2

高中数学人教新课标A版选修4-4第一章坐标系1.1.6柱坐标系与球坐标系课件2
φ称为高低角.
3.坐标系是联系数与形的桥梁,利用坐标系可以实现几何
问题与代数问题的相互转化.但不同的坐标系有不同的特点,
在实际应用时,要根据问题的特点选择适当的坐标系,使
研究过程方便、简捷.
提高训练
设地球的半径为R,在球坐标系中,点A的坐标为(R,45°,
70°),点B的坐标为(R,45°,160°),求A,B两点间的球
故点 M 的柱坐标为
π
1, ,5
2
2
.
[A
基础达标]

4, ,3
1.点 P 的柱坐标是
4
,则其直角坐标为(
)
A . 2 2,2 2,3
B . -2 2,2 2,3
C . -2 2,-2 2,3
D . 2 2,-2 2,3


解析:选 C.x=ρcos θ=4cos
=-2 2,y=ρsin θ=4sin
π
6
.故点 M 的球坐标为 2 2, ,
6

4

.
B基础训练达标
4.已知点
则|P1P2|=(



π 5π
π
P1 的球坐标为4, 2, 3 ,P2 的柱坐标为2, 6,1,




)
A. 21
B. 29
C. 30
D.4 2
解析:选 A.设点 P1 的直角坐标为(x1,y1,z1),

数学选修4-4:坐标系与参数方程
第一章 坐标系
1.1.6 柱坐标系与球坐标系
学习目标
思维脉络
1.了解在柱坐标系、
球坐标系中刻画空间 柱坐标系与球坐标系

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P







2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M




人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

1.1 平面直角坐标系 课件(人教A选修4-4)

1.1 平面直角坐标系 课件(人教A选修4-4)
x′=2x ∴ y′=y
x2 y2 ,即将椭圆 + =1 上所有点横坐标变为原来 4 9
x′2 y′2 的 2 倍,纵坐标不变,可得椭圆 + =1. 16 9
返回
6.求 4x -9y =1 方程.
2
2
x′=2x 经过伸缩变换 y′=3y
后的图形所对应的
1 x′=2x, x=2x′, 解:由伸缩变换 得: y′=3y y=1y′, 3 将其代入 4x2-9y2=1, 1 1 2 得 4· x′) -9· y′)2=1. ( ( 2 3 整理得:x′2-y′2=1. ∴经过伸缩变换后图形所对应的方程为 x′2-y′2=1.
x′=3x ∴ y′=2y
,即将圆 x2+y2=1 上所有点横坐标变为原
x′2 y′2 来的 3 倍,纵坐标变为原来的 2 倍,可得椭圆 + =1. 9 4
返回
坐标伸缩变换
x′=λx φ: y′=μy
λ>0 注意变换中的系 μ>0
数均为正数.在伸缩变换下,平面直角坐标系保持不变, 即在同一坐标系下只对点的坐标进行伸缩变换.利用坐标 伸缩变换 φ 可以求变换前和变换后的曲线方程. 已知前换 前后曲线方程也可求伸缩变换 φ.
返回
[例 3]
求满足下列图形变换的伸缩变换:由曲线
x′2 y′2 x2+y2=1 变成曲线 + =1. 9 4 [思路点拨] 得出伸缩变换. 设出变换公式,代入方程,比较系数,
返回
[解]
x′=λx,λ>0 设变换为 y′=μy,μ>0

x′2 y′2 代入方程 + =1, 9 4 λ2x2 μ2y2 得 + =1.与 x2+y2=1 比较,将其变形为 9 4 λ2 2 μ2 2 x + y =1,比较系数得 λ=3,μ=2. 9 4

人教版高中数学选修4-4课件:第一讲二极坐标

人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.

1.4.2球坐标系 课件(人教A选修4-4)

1.4.2球坐标系 课件(人教A选修4-4)

返回
(2)由变换公式得: r= x2+y2+z2= 12+12+ 22=2. z 2 由 z=rcos φ 得:cos φ=r=- . 2 3π ∴φ= . 4 y 1 又 tan θ=x= =-1.x<0,y>0. -1 3π ∴θ= . 4 3π 3π ∴它的球坐标为(2, , ). 4 4
返回
(2)由变换公式得: 3π 7π 6 x=rsin φcos θ=2sin cos =- . 4 6 2 3π 7π 2 y=rsin φsin θ=2sin sin =- . 4 6 2 3π z=rcos φ=2cos =- 2. 4 6 2 ∴它的直角坐标为(- ,- ,- 2). 2 2
返回
由直角坐标化为球坐标时,我们可以先设点 M 的球坐标 x=rsin φcos θ, 为(r,φ,θ),再利用变换公式y=rsin φsin θ, z=rcos φ,
2 2 2 2
求出 r、θ、
y φ 代入点的球坐标即可; 也可以利用 r =x +y +z , θ=x, tan z cos φ=r.特别注意由直角坐标求球坐标时, 和 φ 的取值应首 θ 先看清点所在π π 已知点 P 的球坐标为(4, , )求它的直角坐标. 4 4 直接套用变换公式求解.
[思路点拨]
[解]
由变换公式得:
3π π x=rsin φcos θ=4sin cos =2. 4 4 3π π y=rsin φsin θ=4sin sin =2. 4 4 3π z=rcos φ=4cos =-2 2. 4 ∴它的直角坐标为(2,2,-2 2).
返回
3.求下列各点的球坐标: (1)M(1, 3,2);(2)N(-1,1,- 2).
解:(1)r= x2+y2+z2= 12+ 32+22=2 2, z 2 2 由 z=rcos φ 得 cos φ=r= = . 2 2 2 π ∴φ= , 4 y 3 又 tan θ=x= = 3,x>0,y>0, 1 π ∴θ= , 3 π π ∴它的球坐标为(2 2, , ). 4 3

1.4.2球坐标系 课件(人教A选修4-4)

1.4.2球坐标系 课件(人教A选修4-4)

返回
2.将M的球坐标(π,π,π)化成直角坐标. 解:∵(r,θ,φ)=(π,π,π),
∴x=rsin θcos φ=0,
y=rsin θsin φ=0, z=rcos θ=-π. ∴点M的直角坐标为(0,0,π).
返回
[例 2]
设点 M 的直角坐标为(1,1, 2),求它的球坐标. 直接套用坐标变换公式求解.
返回
点击下图进入
返回
[思路点拨]
[解]
由坐标变换公式,可得
r= x2+y2+z2= 12+12+ 22=2. 由 rcos φ=z= 2, 2 2 π 得 cos φ= r = ,φ= . 2 4 y π 又 tan θ=x=1,θ= (M 在第一象限), 4 π π 从而知 M 点的球坐标为(2, , ). 4 4
返回
已知球坐标求直角坐标,可根据变换公式直接求
得,但要分清哪个角是φ,哪个角是θ.
返回
1.求下列各点的直角坐标: π π 3π 7π (1)M(2, , );(2)N(2, , ). 6 3 4 6 解:(1)由变换公式得:
π π 1 x=rsin φcos θ=2sin cos = , 6 3 2 π π 3 y=rsin φsin θ=2sin sin = , 6 3 2 π z=rcos φ=2cos = 3. 6 1 3 故其直角坐标是( , , 3). 2 2
返回
[例 1]
3π π 已知点 P 的球坐标为(4, , )求它的直角坐标. 4 4 直接套用变换公式求解.
[思路点拨]
[解]
由变换公式得:
3π π x=rsin φcos θ=4sin cos =2. 4 4 3π π y=rsin φsin θ=4sin sin =2. 4 4 3π z=rcos φ=4cos =-2 2. 4 ∴它的直角坐标为(2,2,-2 2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2.但是,情况终于改变了。一些急欲 挽救中 国的社 会改革 家发现 ,旧时 代的主 流意识 形态必 须改变 ,而那 些数千 年来深 入民间 社会的 精神活 力则应 该调动 起来。 因此, 大家又 重新惊 喜地发 现了墨 子。

3.中国作家结识雨果已经近一百年。 当伟大 的雨果 以其壮 丽风采 开辟着 一个理 想的正 义世界 的时候 ,当他 以浪漫 主义的 狂飙之 势席卷 风云变 幻的欧 罗巴的 时候, 中国还 是一只 沉睡的 雄狮, 尚未向 世界打 开广泛 的视听 。

6.这一前提假设在经济系统相对于生 态系统 较小时 ,即世 界是一 个“空 的世界 ”时尚 能满足 ,但在 经济系 统快速 增长, 世界逐 渐从“ 空的世 界”变 成“满 的世界 ”后, 这一假 设就很 难满足 了。

7.当人们不能改变客观的社会环境时 ,要避 免应激 性疾病 的发生 就应该 不断降 低心理 压力。 降低心 理压力 的方法 是多种 多样的 ,正确 认识事 物,获 得积极 的情感 体验是 一个重 要的方 法。

1.交代故事发生的时间、环境;描绘 出一幅 令人恐 惧的画 面,渲 染紧张 气氛。 侧面表 现人物 恐惧痛 苦的内 心世界 ,与他 所向往 的温馨 的家庭 生活环 境形成 鲜明对 比。
•Hale Waihona Puke 8.心理学上有一种认识——评估学说 ,即个 体对事 物有了 认识, 就会利 用头脑 中的旧 经验来 解释新 输入的 信息, 进行评 估,于 是产生 情绪体 验。而 个体对 事物究 竟体验 为积极 的情绪 还是消 极的情 绪,在 于怎样 认识事 物。

9.迫于现实社会生存的巨大综合压力 和人类 因物质 文明进 步而带 来的精 神困惑 ,当代 诗歌的 内容越 来越局 限于私 人性的 东西, 正日愈 失去处 理重大 社会题 材的艺 术能力 ,这就 使得它 日愈减 少获得 公众关 注的机 会,而 只有在 少数未 被现代 社会物 质化的 心灵当 中获得 知音;

4.意义的追求是每一章散文诗必须坚 持的, 是她的 生命线 。没有 任何意 义的散 文诗, 决非好 作品。 意义和 审美是 一体化 的存在 ,只有 在审美 的前提 下,在 足以强 化审美 而不是 削弱审 美的前 提下, 才能实 现意义 的追求 。

5.传统的经济理论不考虑经济系统和 生态系 统的物 质和能 量交换 是基于 以下的 假设: 生态系 统的物 质和能 量是取 之不尽 、用之 不竭的 。
相关文档
最新文档