空调温度传感器
空调感温探头工作原理

空调感温探头工作原理
空调感温探头的工作原理是基于温度传感器的原理,主要包括以下几个步骤:
1. 感温元件:空调感温探头内含有温度传感器,常见的有热电阻和热敏电阻。
热电阻是根据材料的电阻随温度的变化而变化,而热敏电阻则是根据材料的电阻随温度的变化呈正比例变化。
2. 温度测量:当空调感温探头接触到或被暴露在温度环境中时,感温元件的电阻值会随着温度的变化而发生相应的变化。
温度传感器会测量电阻值的变化,并将其转化为电信号。
3. 信号转换:电信号会经过信号转换电路,将电阻值的变化转换为与温度成线性关系的电压或电流信号。
这个信号将被传递给空调系统的控制单元。
4. 温度控制:控制单元接收到温度信号后,会根据设定的温度目标与实际温度进行比较。
如果实际温度高于设定温度,控制单元将启动空调系统的制冷功能,通过控制制冷剂的流动来降低温度。
如果实际温度低于设定温度,则控制单元会停止制冷功能。
总之,空调感温探头通过测量温度传感器的电阻值变化,并将其转换为与温度成线性关系的电压或电流信号,从而实现温度的测量和控制。
空调温度传感器的应用原理

空调温度传感器的应用原理1. 概述空调温度传感器是空调系统中非常重要的一个部件,用于测量环境的温度,并根据测量结果调节空调系统的运行模式,以达到室内温度的控制和调节。
本文将介绍空调温度传感器的应用原理以及其在空调系统中的作用。
2. 应用原理空调温度传感器的应用原理主要基于热敏电阻的特性。
热敏电阻是一种随温度变化而改变电阻值的元件。
空调温度传感器中常用的热敏电阻有负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。
2.1 NTC热敏电阻NTC热敏电阻的电阻值会随温度的升高而下降。
当温度上升时,电阻值会急剧下降;当温度下降时,电阻值会逐渐上升。
空调温度传感器通过测量NTC热敏电阻的电阻值来确定环境的温度。
2.2 PTC热敏电阻PTC热敏电阻与NTC热敏电阻相反,其电阻值会随温度的升高而上升。
空调系统中较少使用PTC热敏电阻作为温度传感器,因为其特性不适合用于温度测量。
3. 空调温度传感器的工作原理空调温度传感器一般由一个热敏电阻和一个电路组成。
热敏电阻负责感知环境的温度变化,而电路则负责将热敏电阻的电阻值转换成与温度相对应的电信号。
具体的工作原理如下:1.当空调温度传感器暴露在环境中时,热敏电阻会受到环境温度的影响,其电阻值会随温度变化而改变。
2.通过测量热敏电阻的电阻值,空调温度传感器可以得知当前环境的温度。
3.空调温度传感器的电路会将热敏电阻的电阻值转换成与温度相对应的电信号。
这个电信号可以是模拟信号,也可以是数字信号。
根据不同的传感器和空调系统设计,电信号的处理方式可能会有所不同。
4.空调系统会根据接收到的电信号来调节空调的工作模式和参数,以控制室内的温度。
4. 空调温度传感器的应用•温度检测和控制:空调温度传感器广泛应用于空调系统中的温度检测和控制。
通过测量室内的温度,空调系统可以根据预设的温度范围来控制空调的开关和风速,从而实现对室内温度的控制和调节。
•温度补偿:在某些特殊的空调系统中,空调温度传感器还可以用于温度补偿。
美的空调温度传感器规格表 十

美的空调温度传感器规格表十美的空调温度传感器规格表空调温度传感器的温度特性是十分重要的参数,若温度特性不满足要求,极易造成空调误动作,使空调无法按设定要求正常工作。
但温度传感器类型较多,同种类型又有不同的供应商,为了便于有关部门现场正确判断温度传感器的性能,现将有关注意事项汇总如下:一、室温管温传感器:室温传感器用于测量室内和室外的环境温度,管温传感器用于测量蒸发器和冷凝器的管壁温度。
室温传感器和管温传感器的形状不同,但温度特性基本一致。
按温度特性划分,目前美的使用的室温管温传感器有二种类型:1、常数B值为4100K±3%,基准电阻为25℃对应电阻10KΩ±3%。
温度越高,阻值越小;温度越低,阻值越大。
离25℃越远,对应电阻公差范围越大;在0℃和55℃对应电阻公差约为±7%;而0℃以下及55℃以上,对于不同的供应商,电阻公差会有一定的差别。
兹附“南韩新基”传感器的温度与电阻的对应关系表(中间为标称值,左右分别为最小最大值):0℃→(32.8812─35.2024─37.6537)KΩ;5℃→(25.3095─26.8778─28.5176)KΩ;10℃→(19.6624─20.7184─21.8114)KΩ;15℃→(15.4099─16.1155─16.8383)KΩ;20℃→(12.1779─12.6431─13.1144)KΩ;30℃→(7.67922─7.97078─8.26595)KΩ;35℃→(6.12564─6.40021─6.68106)KΩ;40℃→(4.92171─5.17519─5.43683)KΩ;45℃→(3.98164─4.21263─4.45301)KΩ;50℃→(3.24228─3.45097─3.66978)KΩ;55℃→(2.65676─2.84421─3.04214)KΩ;60℃→(2.18999─2.35774─2.53605)KΩ。
空调温度感应器工作原理

空调温度感应器工作原理一、引言空调温度感应器作为空调系统中的关键部件,起着感知室内温度并控制空调系统运行的重要作用。
本文将从感应器的工作原理、结构和应用等方面进行介绍。
二、温度感应器的工作原理温度感应器基于热敏特性,通过测量温度与电阻之间的关系来实现温度的感知。
常见的温度感应器主要有热电偶、热敏电阻和红外线传感器等。
1. 热电偶热电偶是一种利用两种不同金属的热电效应产生电动势的温度传感器。
当热电偶的两个接点温度不同时,将产生一定的电压信号。
通过测量这个电压信号的大小,可以得到温度的信息。
热电偶具有响应速度快、测量范围广等优点,被广泛应用于工业领域。
2. 热敏电阻热敏电阻是一种温度敏感的电阻器件,其电阻值随温度的变化而发生相应变化。
常见的热敏电阻有NTC热敏电阻和PTC热敏电阻。
NTC热敏电阻的电阻值随温度的升高而下降,而PTC热敏电阻的电阻值则随温度的升高而增加。
通过测量热敏电阻的电阻值,可以反推得到温度的信息。
热敏电阻具有结构简单、成本低廉等优点,广泛应用于家电、汽车等领域。
3. 红外线传感器红外线传感器是一种利用红外线辐射特性进行温度测量的传感器。
红外线传感器可以感知物体发出的红外线辐射,通过测量红外线辐射的强度来得到物体的温度信息。
红外线传感器具有非接触式测量、高精度等特点,被广泛应用于工业自动化、医疗诊断等领域。
三、温度感应器的结构温度感应器的结构主要由感测元件、信号处理电路和输出端口三部分组成。
1. 感测元件感测元件是温度感应器的核心部分,用于感知环境温度。
根据不同的原理,感测元件可以是热电偶、热敏电阻或红外线传感器等。
2. 信号处理电路信号处理电路用于将感测元件的输出信号进行放大、滤波和线性化等处理,以保证输出的准确性和稳定性。
信号处理电路通常包括放大器、滤波器和模数转换器等。
3. 输出端口输出端口用于将信号处理电路处理后的温度信息输出给控制系统或显示设备。
输出端口可以是模拟信号输出或数字信号输出,具体形式根据应用需求而定。
空调器温度显示不准确的处理方法

空调器温度显示不准确的处理方法近年来,随着夏季气温的攀升,空调器成为了人们日常生活中必不可少的家电之一。
然而,有些用户在使用过程中会发现空调器的温度显示不准确,影响了使用的舒适度和准确性。
在本文中,将介绍一些处理空调器温度显示不准确的有效方法,帮助用户解决这一问题。
一、故障检查与排除当空调器的温度显示不准确时,首先需要进行故障的检查与排除。
具体步骤如下:1.检查空调温度传感器:空调器的温度传感器负责测量室内温度,并将其显示在控制面板上。
如果温度传感器受损或出现故障,就会导致温度显示不准确。
检查温度传感器的连接是否稳固,清洁是否得当,并确保传感器没有被异物覆盖。
2.检查空调传输线:空调器的温度传感器通常通过传输线与控制面板连接。
如果传输线受损或接触不良,也会导致温度显示不准确。
检查传输线是否完好无损,且连接良好。
3.检查空调器控制面板:如果温度传感器与传输线正常,那么问题可能出现在空调器的控制面板上。
检查面板是否显示异常,如有液晶屏幕模糊、显示内容不正常等,可能需要修复或更换控制面板。
二、调整空调器设置如果排除了故障的可能性,但温度显示仍然不准确,可以尝试通过调整空调器的设置来解决问题。
以下是几种常见的调整方法:1.校准温度显示:某些空调器具有温度校准功能,可以通过此功能来调整温度显示。
查阅空调器的说明书,按照说明书中的操作步骤进行校准,使温度显示更加准确。
2.调整温度传感器位置:温度传感器的位置可能影响到其测量的准确性。
确保温度传感器没有被遮挡或受到外部影响,可将其位置稍微调整一下,避免受到其他热源或直接阳光照射。
3.清洁空调器滤网:空调器滤网的积灰或杂物会影响空气流通和温度的感知。
定期清洁空调器滤网,保持清洁,有助于提高温度显示的准确性。
三、寻求专业维修如果经过上述方法的尝试后,温度显示仍然不准确,那么可能需要寻求专业维修师傅的帮助。
专业维修人员可以对空调器进行进一步的检查和维修,确保其温度显示的准确性和正常运行。
各品牌空调温度传感器阻值表,附测量方法

各品牌空调温度传感器阻值表,附测量⽅法由于温度传感器(俗称感温探头)的阻值,在不同的温度,对应不同的阻值,并且元件本⾝没有任何⼚家的型号和参数标识,这给我们维修空调时增加了判断难度。
这⾥有⼀些技巧,可帮⼤家解决这样的问题。
⼀般同⾏在维修过程中是以实测阻值和资料对⽐,或者⽤⼿握感温头,⽤表测其阻值是否有变化来判断其好坏。
这些可以⼤概判断出传感器的好坏。
不过有些传感器,在⽤加温法时,阻值也是变化的,但其阻值已经严重偏离正常值.还有些机型不熟悉,⽆法知其确定的阻值。
⼩编观看许多空调的电路图发现,空调的传感器电路基本相似,都是以电阻分压形式提供信号电压给CPU进⾏⽐较计算,以此判断外界温度的⾼低。
CPU向感温头供电⼀般是+5V,经过感温头电阻变化分压后,输⼊CPU的电压⼀般在+2.0V~3.0V之间,这也是传感器两头的电压。
如果测出的电压严重偏离,可判断传感器已经损坏.1、不同类型感温头的阻值不同,但如何判别感温头的好坏呢?很简单,就是在线测量它的电压,25度时正常的电压⼀般是在+2~+2.5V之间.2、因为⼈的体温恒定,所以⽤⼿握感温头⼀时,它的在路电压是⼀定的(约为2.17V)。
3、拔掉感温头的插头,在线路测量其座⼦的两个插针的电阻,所得的阻值基本就是感温头在25℃时的型号值(经实际检验此⽅法不准确)。
如果是8K左右的电阻,那传感器感温头的型号值⼀般是10K;如果是4.7K电阻,则是5K感温头;以此类推。
(但有部分⼤型空调,变频空调外机控制板温度传感器的阻值是下偏置电阻的3倍,即以上述⽅法测出的阻值乘以3,就是传感器在25C时的阻值。
)4、感温头的型号值就是它在25℃时的电阻值,通常是5K,10K,15K,20K,50K这⼏种,⼀般都是负温度系数的,即温度越⾼,电阻值反⽽越⼩。
5、⼀般来说内机管温和室温阻值是⼀样的。
(1)5K温度阻值电压值温度阻值电压值℃KΩ 4.3K℃KΩ 4.3K0161.0200.130052158.7660.340911153.0000.136682256.1890.355442145.4200.143602353.7380.370453138.2600.150812451.4080.385944131.5000.158322549.1910.401945126.1700.164792647.0820.418436119.0800.174262745.0740.435457113.3700.182712843.1630.452988107.9600.191522941.3130.471369102.8500.200653039.6100.489641098.0060.210153137.9580.508781193.4200.220023236.3840.528461289.0750.230253334.8830.548711384.9560.240883433.4530.569491481.0520.251903532.0880.590851577.3490.263323630.7870.612761673.8960.274953729.5440.635271770.5030.287423828.3590.658321867.3380.300123927.2270.681961964.3330.313264026.1470.706152061.4780.32686(2)10K温度阻值电压值温度阻值电压值℃KΩ8.1K℃KΩ8.1K030.3431.05352111.3272.03384128.9281.093762211.3272.08472227.5871.134862310.8642.1356326.3171.176742410.4222.1865425.1121.219432510 2.23756523.97 1.26286269.598 2.28842622.8861.30704279.214 2.33916721.8571.35193288.847 2.3897820.8811.3974298.498 2.4401919.9541.44364308.163 2.49021019.0731.49045317.84 2.54014 1118.2361.53781327.539 2.58969 1217.44 1.58574337.247 2.6389 1316.6841.6341134 6.969 2.6877 1415.9651.6829435 6.702 2.73611 1515.2811.7321736 6.447 2.78407 1614.63 1.7817837 6.203 2.83155 1714.01 1.8317538 5.97 2.87854 1813.42 1.8819739 5.746 2.92499 1912.8581.9324340 5.532 2.97088 2012.3231.9830541 5.328 3.01618 (3)15K温度阻值电压值温度阻值电压值℃KΩ15K℃KΩ15K 049.0201.17152117.9302.2776 146.8001.21362217.1402.3335 244.3101.26452316.3902.3893 342.1401.31262415.6802.4446 440.0901.36142515.0002.5000 538.1501.41112614.3602.5545 636.3201.46142713.7402.6096 734.5801.51272813.1602.6634 832.9401.56452912.6002.7174 931.3801.61713012.0702.7706 1039.9001.67043111.5702.8227 1128.5101.72373211.0902.8747 1227.1801.77813310.6302.9263 1325.9201.83283410.2002.9762 1424.7301.8877359.779 3.0268 1523.6001.9430369.382 3.0760 1622.5301.9984379.003 3.1246 1721.5102.0542388.642 3.1723 1820.5402.1103398.297 3.2193 1919.6302.1658407.967 3.2656 2018.7502.2222(4)20K温度阻值电压值温度阻值电压值℃KΩ20K℃KΩ20K 065.371.17152123.902.2776 162.131.21362222.852.3335 259.081.26452321.852.3893 356.191.31262420.902.4446 453.461.36142520.002.5000 550.871.41112619.142.5545 648.421.46142718.322.6096 746.111.51272817.552.6634 843.921.56452916.802.7174 941.841.61713016.102.7706 1039.871.67043115.432.8227 1138.011.72373214.792.8747 1236.241.77813314.182.9263 1334.571.83283413.592.9762 1432.981.88773513.043.0268 1531.471.94303612.513.07601630.041.99843712.003.1246 1728.682.05423811.523.1723 1827.392.11033911.063.2193 1926.172.16584010.623.2656 2025.012.2222(5)50K温度阻值电压值温度阻值电压值℃KΩ 4.3K℃KΩ 4.3K 0161.0200.130052158.7660.34091 1153.0000.136682256.1890.35544 2145.4200.143602353.7380.37045 3138.2600.150812451.4080.38594 4131.5000.158322549.1910.40194 5126.1700.164792647.0820.41843 6119.0800.174262745.0740.43545 7113.3700.182712843.1630.45298 8107.9600.191522941.3130.47136 9102.8500.200653039.6100.48964 1098.0060.210153137.9580.50878 1193.4200.220023236.3840.52846 1289.0750.230253334.8830.54871 1384.9560.240883433.4530.56949 1481.0520.251903532.0880.59085 1577.3490.263323630.7870.61276 1673.8960.274953729.5440.63527 1770.5030.287423828.3590.65832 1867.3380.300123927.2270.68196 1964.3330.313264026.1470.70615 2061.4780.326864125.1140.73094常见空调传感器阻值、品牌对照表传感器阻值封装形式使⽤部位适⽤品牌5kΩ环氧树脂封装室温春兰、格⼒、东宝、三菱、海尔、⽇⽴、志⾼、5kΩ铜管封装管温科龙、TCL、乐声、东芝、⼤⾦、星星、海信、波尔卡、长虹、松下等10kΩ环氧树脂封装室温华宝、美的、海尔、新科、华凌、长虹、三星、新飞、⽇⽴、飞歌、松下等10kΩ环氧树脂封装室温15kΩ铜管封装管温松下、格⼒⼤柜机等50kΩ铜管封装管温50kΩ铜管封装管温海尔、飞歌、华宝⼤柜机等20kΩ铜管封装管温50kΩ铜管封装管温飞歌、长虹、格⼒等。
空调温度传感器阻值对照表

空调温度传感器阻值对照表是用于比较和参考传感器在特定温度下的阻值,从而进行相应的调整和校准。
一般来说,空调温度传感器分为室内环温传感器和室内盘管传感器两种。
室内环温传感器的阻值在25℃时为10KΩ±2.5%,而室内盘管传感器的阻值在25℃时为10KΩ±3%。
感温头的型号值就是它在25℃时的电阻值,通常是5K、10K、15K、20K、50K这几种,一般都是负温度系数的,即温度越高,电阻值反而越小。
此外,美的空调传感器温度与阻值也有相应的对照表,但需要注意的是,不同类型感温头的阻值不同,而且在实际应用中,还需要考虑感温头的插脚长度的不同,以获得更准确的测量结果。
总的来说,空调温度传感器阻值对照表是一种重要的工具,可以帮助工程师快速准确地调整和校准传感器,从而确保空调的正常运行和舒适度。
在实际应用中,还需要结合具体的情况进行相应的调整和改进。
空调温度传感器分类、作用与阻值

空调温度传感器分类、作用与阻值空调温度传感器,是指利用物质各种物理性质随温度变化的规律机械性能把空调各处温度转换为电量的传感器。
这些呈现规律性变化的物理性质主要有体。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和接触式两大类,按照感测材料及电子元件特性分为热电阻和热电偶两类。
那么空调温度传感器一般都用来检测空调哪几处的温度?1、室内环境温度传感器:室内环境温度传感器通常安装在室内机热交换器的出风口处,它的作用多半有三个:第一:是在制冷或制热期间检测户外室内的温度,控制压缩机运转的时间;第二:是在自动运行模式下控制工作状态;第三:是控制顶楼风扇的转速。
2、室内盘管温度传感器:室内盘管温度传感器采用金属外壳,安装在顶楼热交换器的表面上,它的主要作用有四个:第一:是制冷期间防过冷保护;第二:是制热期间防过热保护;第三:是控制室内风扇电机的户外转速;第四:是制热期间用于辅助室外除霜。
3、室外环境温度传感器:室外环境温度传感器通过塑料架安装在不锈钢室外热交换器上,它的主要作用有七个:第一:是在制冷或制热期间相对湿度检测室外的环境温度;第二:是用直于控制室外风机转速。
4、室外盘管温度传感器:室外盘管温度传感器采用金属外壳,室外安装在在室外热交换器的表面上所,它的主要包括作用有三个:第一:是制冷期间防过热保护;第二:是制热期间防盗冻结保护;第三:是除霜期间控制热交换器的温度。
5、压缩机排气指示器:压缩机排气指示器也采用金属外壳,它咱装在泵排气管上,它的主要作用有两个:第一:通过检测轴承排气管温度,控制膨胀阀的开启度的压制压缩机转速;第二:是用于描述排气管过热保护。
提示,通常厂家根据空调室内机微型电脑控制主板的参数来确定温度传感器的阻值是,一般当阻值随相对湿度升高而降低,随温度减低而增大。
《空调管温传感器(10K)温度-电阻对照表》单位:温度℃/电阻K。
下图做参考:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.NTC温度空调传感器介绍及用途。 2.传感器不良内容及对策。
3.信赖性试验及简单数据。
4.提案。
0
1.空調用传感器介绍
1)外観形状及用途
Semitec特殊材质 銅Pipe品
用途 :
室内・室外温度用
用途 :
熱交換器・配管温度用
使用温度範囲 :-20℃~105℃(芯片) -20℃~120℃(玻璃)
(涂上保护层)
・还有考虑在作業工程中素子受到(応力・抗击)、
各工程中应用缓冲材料等。
9
3.耐候性試験結果
耐候性能試験
項目
浸水后,确认是否阻值异常确认方法
試験方法 -40℃±3℃1分→常温1.5分→105℃±3℃1分, 1周期为4,000次 判定基準 試験終了後阻值、 B定数的初期期変化率如下 。 ⊿R ±3%以内 ⊿B ±3%以内
2 )水分浸入检验手法。(非常苛刻)
A,试验条件
项目 试验方法 合否判定标准
PCT(高温、蒸汽高压、高湿)
121℃ 2atm 500小时 不可有环氧树脂溶出,阻值异常等
高温高湿试验
85℃ 85%RH 4000小时
12
4.对空调传感器的提案
3.试验结果 PCT 时间(h) A※ B※ C D E F G
200H
ΔR25(%) 煮沸試験 ΔB25/50(%) Max Ave Min Max Ave Min 0.04 0.03 0.02 -0.02 -0.02 -0.08
400H
0.07 0.07 0.06 -0.03 -0.07 -0.10
600H
0.12 0.11 0.10 -0.09 -0.11 -0.13
管材质 100 200 300 400 500
高温高湿試験 時間(h) 1000 2000 3000 4000 6000
下述为印加10V(DC)电,物被覆 酸化物被覆 硫化物被覆
被覆表面の厚さd<50mm
Cu
短絡時間
7 min 10~19μA 5 min 没有发生 同上 10~16μA 没有发生 同上
Pb
短絡時間
7 min 5 min 10~16μA
短絡時間
50 s 53 s 45 s ≧3 min
温度冲击周期試験①
ΔR25(%)
ΔB25/50(%)
Max Ave Min Max Ave Min
温度冲击周期試験②
ΔR25(%)
ΔB25/50(%)
Max Ave Min Max Ave Min
1000サイクル 2000サイクル 3000サイクル 4000サイクル 5000サイクル 6000サイクル 0.01 0.05 0.06 0.07 0.10 0.12 -0.01 -0.01 -0.04 -0.05 -0.06 -0.07 -0.02 -0.04 -0.12 -0.13 -0.14 -0.17 0.05 0.09 0.12 0.16 0.23 0.29 0.03 0.05 0.08 0.11 0.14 0.18 0.01 0.03 0.04 0.05 0.08 0.11
2
2.空調传感器不良类型及对策
1)银迁移(Migration) 所谓迁移(金属迁移)是指受电场影响金属成分横穿非金属体移动现象。
電気中常使用的金属有、銀、銅、錫、鉛、镍、金、焊锡等,但是,迁移最易发生
的是银。
<表面処理和迁移>
在陶瓷基板上把各种材料(Ag,Cu,Pb)蒸着在焊盘上,在焊盘间滴下纯水、
使用温度範囲:-20℃~105℃(芯片) -20℃~150℃(玻璃)
1
1.空調用传感器介绍
2)有关使用素子
Chip-ASSY品 CT-ASSY品
Semitec特殊材质
形状:Φ3×13mm
Pipe品 ①
形状:Φ6×30mm
Pipe品 ②
形状:Φ4×25mm 套管挿入规格
Pipe品 ③
形状:Φ6*24mm 2重被覆电线规格
温度冲击试验①
温度冲击试验②
-40℃±3℃1分→常温1.5分→105℃±3℃1分, 1周期为6,000次 100℃熱水中通電DC5V 1000H
試験終了後 确认电气性能。
煮沸試験
10
3.耐候性試験結果
結果
1000サイクル 2000サイクル 3000サイクル 4000サイクル -0.01 -0.04 -0.07 -0.15 -0.03 -0.06 -0.11 -0.16 -0.05 -0.08 -0.15 -0.19 0.02 0.03 0.15 0.19 0.00 0.01 0.05 0.08 -0.02 -0.01 0.01 0.02
【 内部構造 】
封入特殊材质
5
2.空調传感器不良类型及对策
1)銅Pipe品的絶縁問題 推定要因为絶縁不良 素子hePipe間的距離極端接近时,认为是絶縁不良。
【 X線写真 】
CT-ASSY Pipe封入品内部
6
2.空調传感器不良类型及对策
対策> ・满足耐電圧(AC 1800V)要求的产品方面,敝公司的 約0.1mm以上膜厚必要。 为了确保膜厚、敝公司涂2次特殊材质与Pipe保持 絶縁距離。
3
2.空調传感器不良类型及对策
2)银迁移(Migration)参考相片
4
2.空調传感器不良类型及对策
1)由于水分浸透不良 由于水分浸入推定为不良要因
①电阻值的异常,银迁移。
②绝缘性能劣化 対策> ・为了防止钢管内浸入水分,日本semitec集团研发新材质, 防水性能优异,可保证在相同环境情况下使用寿命比铜管产品高出2倍以上。
800H
0.21 0.20 0.19 -0.11 -0.13 -0.16
1000H
0.23 0.21 0.20 0.15 0.11 0.09
11
4.对空调传感器的提案
1)铜管传感器,在高温或者高湿或者长期在水分的环境下,阻值会慢慢异常。 整体来看阻值会下降。 A,高温高湿环境下,可能环氧树脂溶解从铜管露出。 B,长期的冷凝水的环境下,水分浸入导致阻值下降。 C,每个公司的封装是否好坏,直接影响其水分浸入和产品寿命。
【 Pipe品 内部構造 】 特殊材质封装
・作業工程内实施絶縁検査。
7
2.空調传感器不良类型及对策
1)阻值异常(玻璃裂开) 根据玻璃被破,阻值异常推定要因。 ①熱应力 ②電気应力
③外力
対策>
・为了防止由于玻璃破坏阻值异常,素子内作为緩衝材涂上
特殊材质的涂层。
8
2.空調传感器不良类型及对策
【 内部構造 】