电磁铁及其应用(4)
电磁铁的原理和应用解析

电磁铁的原理和应用解析电磁铁是一种利用电流产生磁场的装置,其原理基于电流通过导线时会形成磁场的特性。
电磁铁广泛应用于各个领域,如电动机、电磁吸盘、磁悬浮列车等。
本文将对电磁铁的原理和应用进行解析。
一、电磁铁的原理电磁铁的原理基于安培定律和法拉第电磁感应定律。
安培定律指出,通过一段导线的电流会在其周围产生磁场。
而法拉第电磁感应定律则说明,当导线中的电流发生变化时,会在导线附近产生感应电动势。
结合这两个定律,我们可以解析电磁铁的原理。
电磁铁由导线圈绕在铁芯上构成。
当通过导线通电时,电流会在导线周围形成一个磁场。
由于铁芯是铁磁材料,它会增强磁场的强度。
这是因为铁磁材料具有高磁导率,可以导引磁场线,使其在铁芯中形成闭合回路,从而增强磁场的强度。
当电流通过导线时,磁场会将铁芯磁化,使其成为一个临时的磁体。
铁芯在通电时会吸引磁性物质,如铁钉等。
这是因为铁芯的磁力会对磁性物质产生吸引力。
当断开电流时,铁芯会立即失去磁性。
二、电磁铁的应用1. 电动机电动机是电磁铁最常见的应用之一。
电动机通过电流在导线中形成磁场,使得导线周围的磁场与电动机的磁场相互作用,从而产生旋转力。
这种力可以驱动电动机的转子旋转,从而实现机械能转换为电能。
2. 电磁吸盘电磁吸盘是一种利用电磁铁吸引力的装置。
当通电时,电磁吸盘会产生强大的磁力,使其能够吸附在金属表面上。
这种装置广泛应用于工业生产中的各种夹具、吸盘等设备中,用于固定、搬运金属物体。
3. 磁悬浮列车磁悬浮列车是一种利用电磁铁原理实现悬浮运行的交通工具。
磁悬浮列车通过在轨道上安装电磁铁,产生与列车上的磁铁相互作用的磁力,从而使列车悬浮在轨道上运行。
这种技术可以大大减少摩擦力,提高列车的运行速度和平稳性。
4. 电磁制动器电磁制动器是一种利用电磁铁原理实现制动的装置。
当电流通过电磁制动器时,它会产生磁力,使制动器的摩擦片与制动盘接触,从而实现制动效果。
这种装置广泛应用于汽车、电梯等机械设备中,用于控制速度和停止运动。
生活中应用电磁铁的例子

生活中应用电磁铁的例子电磁铁是一种可以通过电流产生磁场的装置,广泛应用于生活中的各个领域。
下面将列举十个生活中应用电磁铁的例子。
1. 电磁吸盘电磁吸盘是一种利用电磁铁吸附物体的装置。
比如,我们在门上安装的门磁,通过电流控制电磁铁的开关,当门关闭时,电磁铁吸附在门框上,起到固定门的作用。
2. 电磁炉电磁炉是利用电磁铁产生的磁场加热锅具的一种厨房电器。
电磁炉通过电流激发电磁铁产生磁场,将电能转化为热能,从而加热锅底,实现烹饪。
3. 电磁制动器电磁制动器是一种利用电磁铁产生的力来实现制动的装置。
比如,电梯上的紧急制动器就是利用电磁铁产生的吸力来制动电梯,确保乘客的安全。
4. 电磁铁拍卖在拍卖行,经常会看到使用电磁铁的拍卖器。
拍卖师通过控制电磁铁的开关,使得拍卖器可以精确地敲击拍卖台,提醒买家竞标。
5. 电磁阀门电磁阀门是一种利用电磁铁控制液体或气体流动的装置。
比如,我们常见的洗衣机水龙头就是通过电磁阀门控制水流的开关。
6. 电磁锁电磁锁是一种利用电磁铁产生的吸力来实现锁闭的装置。
比如,我们常见的酒店房间门上就安装有电磁锁,只有通过刷卡或输入密码才能解除电磁铁的吸力,打开门锁。
7. 电磁升降机电磁升降机是一种利用电磁铁产生的磁场来实现物体的升降的装置。
比如,一些汽车维修厂会使用电磁升降机来举起汽车,方便进行维修工作。
8. 电磁驱动器电磁驱动器是一种利用电磁铁产生的力来实现物体运动的装置。
比如,一些电动玩具车就是通过电磁驱动器驱动的,电磁铁产生的力可以使车辆前进或后退。
9. 电磁振动器电磁振动器是一种利用电磁铁产生的振动来实现物体振动的装置。
比如,我们常见的手机震动功能就是通过电磁振动器实现的,电磁铁产生的振动可以使手机发出震动提醒。
10. 电磁传感器电磁传感器是一种利用电磁铁感应物体或环境变化的装置。
比如,一些安防系统中常使用的门磁传感器就是通过感应电磁铁的状态来监测门的开关状态,实现入侵报警。
电磁铁在生活中有着广泛的应用。
电磁铁的应用和工作原理

电磁铁的应用和工作原理电磁铁是一种利用电流通过导线产生磁场的装置。
它在现代生活和工业中有广泛的应用。
本文将介绍电磁铁的工作原理以及它在不同领域的应用。
一、电磁铁的工作原理电磁铁的工作原理基于安培定律和右手定则。
当通过导线中通电时,电流会产生磁场。
而电磁铁通过将导线绕成螺线形并通电,可以增强磁场的强度。
电磁铁由导线圈绕成的形状,通常将导线绕成圆柱形或者螺线形。
当电流通过导线时,磁场的方向与电流的方向有关。
根据右手定则,将右手伸直,将拇指指向电流的方向,其他四个手指的弯曲方向就是磁场的方向。
二、电磁铁的应用1. 电子设备电磁铁在电子设备中有着重要的应用。
例如,电磁继电器利用电磁铁的吸引力和释放能力,通过控制电路的通断来控制电流的流向。
另外,电磁铁还被用于扬声器、电动马达以及电磁炉等设备中。
2. 电动机电磁铁是电动机的核心组件之一。
电动机利用电流通过导线产生的磁场与永磁体的交互作用,从而产生旋转力。
电动机广泛应用于交通工具、工业制造以及家用电器等领域。
3. 磁悬浮技术磁悬浮技术利用电磁铁的吸引力和排斥力来实现物体的悬浮。
通过在导线中施加电流,电磁铁产生的磁场可以与悬浮体上的磁场相互作用,从而使物体悬浮在空中。
磁悬浮技术被应用于高铁、磁悬浮列车以及磁悬浮演艺设备中。
4. 实验室应用电磁铁在科学研究和实验室应用中也占有重要地位。
许多实验室的仪器和设备都需要电磁铁来产生磁场。
例如,实验室中的粒子加速器、磁共振成像设备以及磁力拉力计等都离不开电磁铁的应用。
5. 安全门安全门利用电磁铁的磁场特性来实现门锁的开合。
电磁铁通电时,产生的磁力可以吸引门锁,将门锁打开。
这种应用广泛用于公共场所的安全门和防盗门中,提供方便快捷的出入口。
6. 电磁吸盘电磁吸盘是一种利用电磁铁的吸引力来固定或者吸附物体的设备。
在工业制造和建筑领域,电磁吸盘被广泛应用于吊装和固定重物,提供安全和稳定的工作环境。
三、总结电磁铁通过利用电流通过导线产生磁场的原理,在各个领域有着广泛的应用。
电磁铁初中物理中电磁铁的原理与应用

电磁铁初中物理中电磁铁的原理与应用电磁铁:初中物理中电磁铁的原理与应用电磁铁是一种利用电流在导体中产生磁场的器件。
它在初中物理中被广泛研究和应用。
本文将介绍电磁铁的原理和一些常见的应用。
一、电磁铁的原理电磁铁的原理基于安培定律和右手定则。
根据安培定律,电流通过导线会在其周围产生磁场。
当将导线绕成线圈并通电时,磁场会在线圈内形成,并具有特定的方向。
使用右手定则可以确定电磁铁磁场的方向。
把右手伸直,将拇指指向电流的方向,四指弯曲的方向就是磁场线的方向。
这一规则可以帮助我们理解电磁铁的原理。
二、电磁铁的应用1. 电磁吸铁器电磁吸铁器是电磁铁的常见应用之一,它利用电磁铁的吸力将物体吸附在其上。
当电流通过电磁铁时,会形成一个磁场,在吸铁器的接触面上产生磁力。
电磁吸铁器在工业生产线上常被用于搬运和移动金属物品。
通过控制电流的开关,可以灵活地控制吸铁器的吸附和释放,提高生产效率。
2. 电磁励磁器电磁励磁器是利用电磁铁的原理来产生磁场,从而对磁性材料进行磁化。
它在钢铁加工和制造业中广泛应用。
电磁励磁器通过通电产生的磁场,可以对金属物体进行磁化处理。
这种磁化可以有助于改善材料的性能,例如提高钢材的强度和硬度。
3. 电磁驱动器电磁驱动器是一种能够将电能转化为机械能的装置。
它利用电磁铁的磁力来推动磁性物体产生运动。
电磁驱动器广泛应用于交通工具、机械设备和家用电器等领域。
例如,电动车中的电磁驱动器可以将电能转化为动力,推动车辆行驶。
4. 电磁继电器电磁继电器是一种电器装置,可以利用电磁铁的原理来控制电路的开关。
它常被用于电路的自动控制和信号传递。
电磁继电器通过控制电磁铁的通断来控制电路的连接和断开。
当电流通过电磁继电器时,电磁铁会受到吸引力,改变开关状态,从而控制电流的流动。
5. 电磁感应电磁感应是指在导体中产生电流的现象。
电磁感应原理的应用包括变压器、发电机和感应炉等。
变压器利用电磁感应的原理将电能从一个线圈传输到另一个线圈,起到电压升降的作用。
电磁铁的应用及原理

电磁铁的应用及原理电磁铁是一种通过电流激发磁场的装置,通常由一个铁芯和绕在铁芯上的线圈组成。
通过施加电流于线圈,磁场将在铁芯周围产生。
电磁铁具有许多应用,并且在现代科技领域中扮演着重要角色。
电磁铁的工作原理可以简单地归结为安培电流环路定理。
根据这一定理,当电流通过线圈时,会产生一个磁场,而磁感应强度与电流强度成正比。
铁芯的存在可以增强磁感应强度,因为铁是一种易于磁化的材料。
电磁铁在各个领域中都有广泛的应用。
下面是一些常见的应用:1. 电磁铁在电动机中的应用:电动机是工业中最常见的机械装置之一,而电磁铁在电动机中起到关键的作用。
电动机的核心部分是转子和定子,其中定子中的线圈绕制在铁芯上,这个铁芯也就是电磁铁。
当电流通过定子绕组时,电磁铁产生的磁场会与磁场相互作用,从而使得定子绕组的线圈受力并开始旋转,从而带动电动机的运行。
2. 电磁铁在磁悬浮列车中的应用:磁悬浮列车是一种新型的高速列车,它利用电磁力来实现列车的悬浮和推动。
电磁铁通过产生磁场,与列车下方的轨道上的磁场相互作用,从而产生一个推动力,使得列车悬浮在轨道上,并推动列车运行。
3. 电磁铁在磁共振成像(MRI)中的应用:磁共振成像(MRI)是一种常用的医学成像技术,它通过使用强磁场和无线电波来生成详细的人体组织图像。
在MRI设备中,电磁铁产生一个均匀的强磁场,从而使得人体内部的原子核的磁矩排列变得有序。
随后,通过向人体施加无线电波,原子核会吸收能量并重新辐射出来,从而得到人体内部的详细图像。
4. 电磁铁在电磁炮中的应用:电磁炮是一种利用电磁力来发射高速物体的装置。
电磁炮使用电磁铁产生强大的磁场,然后将高速导体通过磁场加速,使其获得高速并发射出去。
电磁炮可以用于军事作战和航天领域。
5. 电磁铁在传感器中的应用:电磁铁可以用于制作各种传感器,如磁场传感器和震动传感器等。
这些传感器通过感应到与其相互作用的物体或环境产生的变化的磁场,从而实现测量和检测。
电磁铁的原理与应用

电磁铁的原理与应用电磁铁是一种通过电流激活产生磁场的装置,在现代工业和科技领域中有着广泛的应用。
本文将介绍电磁铁的原理、结构和应用领域,并通过相关实例来阐述其重要性。
一、电磁铁的原理电磁铁的原理基于安培的电流环路定理和电流在导线中产生磁场的现象。
当通过导线中的电流流过时,就会在导线周围产生一个磁场,这一原理被称为电流生磁。
通过将导线绕在铁芯上,可以增强磁场的强度。
同时,当电流通过导线时,磁场也会引起电流产生的磁感应强度变化,进而形成导线中的感应电动势。
二、电磁铁的结构电磁铁通常由铁芯、线圈和电源组成。
铁芯的材质通常选择具有较高磁导率的材料,如铁、镍等。
线圈则是将导线绕绕在铁芯上,通过电流使线圈成为一具有磁性的部件。
电源则为线圈提供电流,使其产生磁场。
三、电磁铁的应用1. 电磁吸盘:电磁铁的一个主要应用是制作电磁吸盘。
通过将电磁铁安装在机械装置中,可以产生强大的磁力,用于吸附金属物体。
这种吸盘广泛应用于物流、制造业和自动化生产线等领域,可以实现金属零件的自动拾取和定位。
2. 电磁驱动器:电磁铁还被广泛应用于电磁驱动器中,如电磁阀和电磁继电器等。
例如,电磁阀可控制液体或气体的流动,广泛应用于自动控制系统和工业领域。
电磁继电器则常用于电路的控制和保护,用于实现电流的开关和传递。
3. 磁力发电机:电磁铁也在可再生能源领域发挥重要作用。
磁力发电机利用磁场的相互作用来产生电能。
通过将电磁铁与旋转的磁铁转子相连,通过磁场的变化产生感应电动势,实现发电。
磁力发电机已成为风力发电和水力发电等可再生能源系统中的关键组件。
4. 电磁悬浮列车:高速磁悬浮列车是电磁铁应用的又一重要领域。
通过在列车车体和轨道上安装电磁铁,可以产生强大的磁力,实现列车与轨道的悬浮和驱动。
相较于传统的轮轨摩擦方式,磁悬浮列车具有更低的摩擦阻力和更高的运行速度,是未来城市交通发展的重要方向。
总结:电磁铁凭借其磁性可控制的特点,以及在电流通路中产生磁场的原理,广泛应用于科技和工业领域。
电磁铁原理及其在生活中的广泛应用

电磁铁原理及其在生活中的广泛应用
一、电磁铁原理
电磁铁是一种能够通过电流产生磁场的器件,它由线圈、铁芯和电源组成。
当
电流通过线圈时,会在铁芯周围产生一个磁场,这个磁场使铁芯磁化,从而形成一个磁铁。
电磁铁的磁性可以被控制,只需改变通过线圈的电流大小或方向,就可以改变磁场的大小和方向。
二、电磁铁在生活中的应用
1. 电磁吸盘
电磁吸盘是电磁铁在生活中常见的应用之一。
它通过控制电流来控制磁铁的吸力,可以吸附金属物体,如门窗上的磁铁吸盘、家用吸尘器中的电动吸盘等。
这些应用使得我们的生活更加方便。
2. 电磁马达
电磁铁也被广泛应用于电磁马达中。
电磁马达是利用电磁力来产生旋转运动的
装置,它可以用于汽车发动机、家用电器、工业设备等领域。
通过控制电流的大小和方向,可以控制电磁马达的转速和转向,实现各种功能。
3. 电磁起重机
在工业领域,电磁铁还被广泛应用于电磁起重机中。
电磁起重机利用电磁吸盘
的原理,可以吸附和吊起重物,如钢板、铁管等,实现快速、高效的搬运。
这种设备大大提高了工作效率,广泛应用于仓储、物流等领域。
4. 电磁阀
电磁阀是一种利用电磁铁控制介质流通的装置,常见于空调、洗衣机、冰箱等
家用电器中。
通过控制电磁铁的开关状态,可以控制介质的流动方向和流量,实现系统的自动控制功能。
三、结语
电磁铁作为一种重要的电磁器件,在生活中有着广泛的应用。
通过控制电流大
小和方向,我们可以实现各种功能,使生活更加便利和高效。
希望通过本文的介绍,能让更多人了解电磁铁原理及其在生活中的广泛应用。
物理知识总结电磁铁的原理与应用

物理知识总结电磁铁的原理与应用电磁铁的原理与应用电磁铁是一种利用电流通过导线产生磁场的装置。
它的原理基于安培环路定理和法拉第电磁感应定律。
在应用方面,电磁铁广泛用于各种领域,如电动机、发电机、磁悬浮列车等。
本文将对电磁铁的原理及其应用进行总结。
一、电磁铁的原理电磁铁的工作原理是通过通过导线通过电流产生磁场,从而形成有较强磁性的铁器。
1. 安培环路定理安培环路定理是电磁铁原理的基础之一,它指出通过一定区域的任意闭合回路的总磁场强度等于通过该区域的电流总和。
根据安培环路定理,电磁铁可以通过增大电流来增强磁场强度。
2. 法拉第电磁感应定律法拉第电磁感应定律是另一个对电磁铁原理至关重要的定律。
它表明,当导线中的电流变化时,会在导线周围产生电磁感应磁场。
因此,当电流通过导线时,导线周围会产生磁场。
二、电磁铁的应用电磁铁由于其可控性和可重复性而具有广泛的应用。
下面将介绍几个常见的应用领域。
1. 电动机电动机是利用电能转化为机械能的装置,它是电磁铁最常见的应用之一。
电磁铁通过产生磁场,与固定磁铁相互作用,使得电动机转动。
通过调节电流的大小可以控制电动机的速度和转向。
2. 发电机与电动机原理相反,发电机是将机械能转化为电能的装置。
在发电机中,通过旋转导线圈在磁场中切割磁力线,产生电流。
电磁铁作为一个产生磁场的关键元素,用于提供初始磁场。
3. 磁悬浮列车磁悬浮列车是一种运行在磁场中的交通工具。
电磁铁在磁悬浮列车系统中起到重要作用。
磁悬浮列车通过通过电磁铁产生的磁场与轨道上的磁铁进行作用,实现列车的悬浮和推动。
4. 实验室应用电磁铁在实验室中也被广泛应用。
它可以用于制造各种实验装置,如电磁铁式天平、电磁铁式计时器等。
通过调节电流,可以控制电磁铁的磁力大小,从而实现实验目的。
总结:电磁铁是一种利用电流通过导线产生磁场的装置。
它的工作原理基于安培环路定理和法拉第电磁感应定律。
在应用方面,电磁铁广泛用于电动机、发电机、磁悬浮列车以及实验室中的各种实验装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
控制变量法 转换法
(5)如何显示磁性的强弱 吸引 大头针的数量
实验探究:
①电流的变化对电磁铁磁性的影响;
②有无铁芯对电磁铁磁性的影响;
③线圈匝数的变化,对电磁铁磁性的影响。
1、研究磁性强弱与电流大小的关系时,控制匝数不变 2、研究磁性强弱与匝数多少的关系时, 控制电流不变
电磁铁的磁性强弱与电流大小流__的__大__小_________、__线__圈__圈__数__的__多__少__ 和__有__无__铁__芯________等因素会影响电磁铁磁性的强弱。
(7)结论:
影响电磁铁磁性强弱的因素有:
➢1、电流的大小:
➢电流 越大 ,电磁铁的磁性
越强
;
2、 线圈的匝数: ➢线圈匝数 越多,电磁铁的磁性 越强;
4、小明先改变电磁铁线圈的缠绕方向后,再改变电磁铁的电流方向,此时
的电磁铁( B )。
A、南北极改变 B、南北极不变 C、磁力强弱发生变化
电磁铁
5、改变下图中电磁铁南北极最简单的方法是( B )。
A、改变线圈缠绕方向 B、改变电池的连接方式 C、改变电池的数量
画图题
电磁铁
1、下图中,电磁铁的钉尖是S极还是N极?请标出。
(1)研究电磁铁的 磁性有无
实验 闭合和断开开关 现 通电时电磁铁 象 _吸__引__大__头__针__
断电时电磁铁 _不__吸__引__大__头__针_ 结论 电磁铁通电时_产__生__磁性,断电时磁性_消__失__.
提出问题
实验:
你们有什么办法让电磁铁吸引的大头针多一 些吗?
问:电磁铁磁性的强弱与什么有 关?
电磁起重机
工作原理:不同
矿物质具有不同 的磁性,用可以 旋转的圆形电磁 铁吸引这些矿物 质,由于它们受 到的磁力不同, 从而可以把不同 磁性的矿物质分 开。
电磁选矿机
电 磁 选 矿 机 不含铁的矿渣 含铁的矿渣
遥 控 开 关
电 磁 自 动 门
电铃
电磁
起重机
电 铃
电 磁 阀
电 话
磁浮列车
3、有无铁芯: ➢ 插入铁芯 ,电磁铁的磁性增强。
3.电磁铁的优点
(1)电磁铁的磁性有无可以控制:
通电有磁性、断电无磁性。
(2)电磁铁的磁性强弱可以控制:
通过改变电流大小改变电磁铁的磁性强弱。
电磁铁的优点
电磁铁磁性有无,可用_通__断__电___来控制 电磁铁磁性强弱,可用_改__变__电__流__大__小__和匝数来控制 电磁铁的极性变换,可用_改__变__电__流__方__向__来实现。
(3)探究:
铁芯的有无对电磁铁磁性的强弱是否有影响
结论:有铁芯时磁性增强
影响电磁铁 磁性强弱的因素
电流大小
《电磁铁》实验报告单
变量条件 匝数相同、 电流较大
最多能吸起 大头针的枚数量
匝数相同、电流较小
线圈圈数 有无铁芯
电流相同、圈数较多 电流相同、圈数较少 匝数电流相同、 有铁芯 匝数电流相同、无铁芯
猜测:
电磁铁的磁性强弱可能跟哪些因素有关?
是否带铁芯 影响因素: 电流的大小
线圈匝数的多少 ……
动脑巧设计
2.影响电磁铁磁性强弱的因素
(1)猜想: 磁性强弱可能与电流的大小、线圈的
匝数和有无铁芯有关。
(2)实验器材: 电源、开关、变阻器、导线、
电流表、大头针、电磁铁
(3)设计电路图:
(4)实验方法:
2.如图所示,当滑动变阻器的滑片
向右移动时,电路中的电流 将 变小 ,电磁铁中的磁性 将减弱 。
3.如图所示,要使电磁铁磁性最强,
正确的接法是 ( D )
A. S1接1,S2接3
B. S1接1,S2接4 C. S1接2,S2接4
D. S1接2,S2接3
R 12 S1
R
3 S2
4
4.如图所示,若
1、电磁铁与一般的磁铁不同的是( A )。
A、磁力大小可以改变
B、没有南北极
C、不能指示方向
2、下列不能改变电磁铁的磁极的是( C )。
A 、改变电流的方向 B、改变线圈缠绕的方向 C 、增加线圈的圈数
3、只改变电磁铁电流的方向,电磁铁( A )。
A、南北极改变 B、南北极不变 C、磁力强弱发生变化
(2)研究电磁铁的磁性跟线圈匝数的关系 实验 改变线圈匝数
现象 匝数越___多___, 磁性越__强____.
结论 当电流一定时,电磁铁线圈的匝数__越__多__, 磁性_越__强___.
电磁铁的磁性强弱与有无铁芯的关系?
不变量:电流的大小 线圈匝数 改变量:有无铁芯 现 象: 观察吸引大头针的多少
不变量:线圈匝数、都有铁芯
改变量: 电流的大小 现 象:观察吸引 大头针的 多少
(2)研究电磁铁的磁性强弱跟电流的关系
实验 改变电流
现象 增大电流电磁铁吸引 的大头针数目_增__多__. 结论 通过电磁铁的电流越__大__,电磁铁的磁性_越__强__.
电磁铁的磁性强弱与线圈匝数的关系? 不变量:电流的大小、都插有铁芯 改变量:线圈匝数 现 象: 观察吸引大头针的多少
第四节 电磁铁的应用
学以致用
1.首先发现电流磁效应的科学家是:奥斯特 .
2.奥斯特的实验说明: 通电导体周围存在着磁 场,磁场的方向跟电流的 方向有关
3.通电螺线管的磁感应线分布与 条形磁铁 十分相似.
电磁铁
什么是电磁铁?
1.定义: 电磁铁是一个带有铁芯的螺线管.
线圈
铁芯
2.构造:
3.工作原理: 电流的磁效应
N
S
这个电磁铁的南北极不同,是因为 电池正负极连接方向不同 。
画图题
电磁铁
2、下图中,电磁铁的钉尖是S极还是N极?请标出。
N
S
这个电磁铁的南北极不同,是因为 线圈缠绕的方向不同
。
争锋小勇士
1. 使通电螺线管磁性增强的操作是(A)
A 、把线圈的匝数增加一倍 B 、 改变电流方向 C 、 把电流强度大小减少一半 D 、 把螺线管中的铁芯抽出来
将变阻器的滑片向
右移动,那么悬挂 磁铁的弹簧将(B) 若再抽出铁芯则弹
N
S
R
S
簧长度将(C) A. 不变
·
S
N
B. 缩短
C. 伸长
D. 不能判断
第二课时 电磁铁的应用
4.电磁铁的用途
电 磁 起 重 机
创设情景
电磁铁在生产生活中的广泛应用:
工作原理:把
电磁铁放在被
起重的含铁质 的物体上,接通 电流,电磁铁产 生磁性,把铁质 物体吸起,放下 时,只要断开电 流即可。
磁悬浮列车上的电磁铁
• 你找到电磁铁了吗
电磁继电器
小结 1.电磁铁的磁性跟电流大小 和 _线__圈__匝__数 和___有__无__铁__芯_有关。 2.电磁铁工作的原理: 利用电流的磁效应。