拉普拉斯(Laplace)变换及其应用

合集下载

拉普拉斯变换及其在机器学习中的应用

拉普拉斯变换及其在机器学习中的应用

The Laplace Transform with Applications in Machine Learning The Laplace Transform Examples
The Laplace Transform with Applications in Machine Learning The Laplace Transform Definition
The Laplace Transform
Suppose that f is a real-or complex-valued function of the variable t ≥ 0. The Laplace transform of function f (t ) is defined by
where Kγ (·) represents the modified Bessel function of the second kind with the index γ . We denote this distribution by GIG(γ, β, α). It is well known that its special cases include the gamma distribution Ga(γ, α/2) when β = 0 and γ > 0, the inverse gamma distribution IG(−γ, β/2) when α = 0 and γ < 0, the inverse Gaussian distribution when γ = −1/2, and the hyperbolic distribution when γ = 0.
The Laplace Transform with Applications in Machine Learning

拉氏变换)

拉氏变换)
2
1 1 3 1 2 1 1 1 F(s) . . . . 2 (s 1 )2 4 s 1 3 s 12 s 3 1 t 3 t 2 1 3t f(t) te e e 2 4 3 12
常系数线性微分方程的拉普拉斯变换解法
利用拉普拉斯变换可以比较方便地求解常系 数线性微分方程(或方程组)的初值问题,其 基本步骤如下: (1)根据拉普拉斯变换的微分性质和线性 性质,对微分方程(或方程组)两端取拉普拉 斯变换,把微分方程化为象函数的代数方程; (2)从象函数的代数方程中解出象函数; (3)对象函数求拉普拉斯逆变换,求得微分 方程(或方程组)的解.
三 拉氏变换的几个重要定理
(1)线性性质 (2)微分定理
f ( n ) (t ) s n F ( s ) s n 1 f (0) s n 2 f (0) f ( n 1) (0) ℒ
(3)积分定理
(4)实位移定理
(5)复位移定理 (6)初值定理 (7)终值定理
(终值确实存在时)
应用拉氏变换的终值定理求 y ()
注意拉氏变换终值定理的适用条件:
sY ( s) 的极点均处在复平面的左半边。
不满足终值定理的条件。
事实上:
《自动控制原理》国家精品课程
浙江工业大学自动化研究所
9
四 拉氏反变换
(1)反演公式
f (t )
2 j j
1
j
F(s)
12 12 s1 s 3
f(t)
1 t 1 3t e e 2 2
s 2 5s 5 例3 已知 F ( s ) 2 ,求 f ( t ) ? s 4s 3
( s 2 4 s 3) ( s 2 ) s2 F(s) 1 2 解. s 4s 3 ( s 1)( s 3) 1 1 f(t) ( t ) e t e 3 t 2 2

拉普拉斯变换的应用

拉普拉斯变换的应用

毕业设计(论文)题目:拉普拉斯变换的应用院(系)数学科学学院专业信息与计算科学届别学号姓名指导老师摘要拉普拉斯变换是重要的定理.本文首先叙述拉普拉斯变换的相关定理及其推广,然后通过了举例子的方法来列举了拉普拉斯变换在广义积分、微分方程求解中应用, 以及拉普拉斯变换的延迟性质的应用关键词:拉普拉斯变换; 拉普拉斯变换应用;拉普拉斯变换的推广.ABSTRACTThe theorem of Laplace transform is important.This paper described the related theorem and its extension of the Laplace transformation, then an example through the way of enumerating the Laplace transformation applied in the generalized integral, differential equation, and delay the nature of the application of Laplace transformKeywords:Laplace transform; Laplace transform application; A generalization of Laplace transform.目录第一章拉普拉斯变换的概念及存在定理 (4)引言 (4)1.拉普拉斯变换的定义 (4)2.拉普拉斯变换的存在定理 (4)3.拉普拉斯变换的基本性质 (6)第二章拉普拉斯变换的推广及其逆变换 (7)1.拉普拉斯变换的推广 (7)2.拉普拉斯逆变换 (7)第三章拉普拉斯变换的应用 (9)1.利用拉普拉斯变换解微分方程(组) (9)2.用拉普拉斯变换解积分方程 (12)第四章利用拉普拉斯变换求解广义积分 (13)1.主要方法及证明 (13)2.计算⎰∞0)(dtttf型积分 (15)3.计算⎰∞>)0(),(tdxxtf型积分 (16)第五章延迟性质在拉普拉斯变换中的应用 (18)结语 (20)参考文献 (21)后记 (22)第一章 拉普拉斯变换的概念及存在定理引 言复变函数论产生于18世纪,它是数论、代数、方程等理论研究中的重要方法之一,以其完美的理论与精湛的技巧成为数学的一个重要组成部分.在数学中为了把较复杂的运算转化为较简单的运算,常常采取一种变换手法,如数量乘积或商通过对数变换变成和或者差然后再作指数变换即得原来数量的乘积和商.所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换,一般是化为含参数的积分.积分变换理论和方法不仅在数学许多分支中,而且在其他自然科学和各种工程技术领域中有广泛应用,已经成为不可缺少的运算工具 ,本论文主要总结归纳了拉普拉斯的变换几个重要方面的应用.通过本论文,不仅能使你对拉普拉斯的变换有更加深入的了解,而且能掌握其运用,增强自身的实际运用能力,使得自己对于拉普拉斯的变换有了真正意义上的掌握,而不是仅仅是停留在课本上的认识.1.拉普拉斯变换的定义:设函数ƒ(t)在[0,∞]上有定义,如果对于复参变量jw s +=β,积分dt e t f s F st -+∞⎰=0)()(在复平面s 的某一个区域内收敛,则称)(s F 为函数)(t f 的拉普拉斯变换,记为)]([£)(s f s F =;对应地,称函数)(s f 为)(s F 的拉普拉斯逆变换,记为)]([£)(-1s F t f =.同时,)(s F 和)(s f 分别被称为像函数和原函数.2.拉普拉斯变换的存在定理:若函数)(t f )满足下列条件:(1)在0≥t 的任一有限区间上连续或者分段连续;(2)当∞→t 时,)(t f 具有有限的增长性,即存在常数0>M 及0≥c ,使得 ct Me t f ≤)( )0(∞<≤x (1) 成立(其中c 称为)(t f 的增长指数,或者称)(t f 的增长是不超过指数级的).则)(t f 的拉普拉斯变换F(s)在半平面c s >)Re(上一定存在,拉普拉斯积分在c c >≥1Re 上绝对收敛而且一致收敛,并且)(s F 在c s >)Re(的半平面内解析.证 设jw s +=β,则t st e e β--=,由不等式(1),可得dt e M dt e t f s F t c st ⎰⎰+∞--+∞-≤=0)(0)()(β 又由c s >=β)Re(,即0>-c β,可知上式右端积分收敛,因此)(s F 在半平面c s >)Re(上存在.注1 上述拉普拉斯变换存在定理证明表明,一个函数即使它的绝对值随着t 的增大而增大,但只要不比某个指数函数增长得快,则它的拉普拉斯变换就存在,这一点可以从拉普拉斯的变换与傅里叶变换的关系中得到一种直观的解释.大多数物理和工程技术中常见的函数都满足存在定理的条件,因而拉普拉斯变换的应用范围较傅里叶更广泛.注2 存在定理中的条件是充分而非必要条件.例如,对于函数m t t f =)(来说,当1->m 时,拉普拉斯变换是存在的;但当21=m 时,t t f 1)(=却不满足存在定理中的条件(1),因为这时)(t f 在0=t 时为无穷大,不满足在0≥t 的任一有限区间上连续或者分段连续的要求.同理,单位脉冲函数)(t δ也不满足定理中的条件,但)(t δ的拉普拉斯变换是存在的.注3 当满足拉普拉斯变换存在定理条件的函数)(t f 在0=t 处有界时,积分dt e t f t f st ⎰+∞-=0)()]([ψ中的下限取+0或者-0不会影响其结果。

第五章 拉普拉斯变换-数学物理方法

第五章 拉普拉斯变换-数学物理方法

d2 L[t 2 f ( t )] ( 1)2 2 F ( p) dp
……
dn n pt n F ( p) ( t ) f ( t )e dt ( 1) [t n f ( t )]e pt dt n 0 0 dp
dn L[t n f ( t )] ( 1)n n F ( p) dp
这个性质很容易从Laplace变换的定义得到,因为它只不 过是积分运算的线性性质的反映.
77
性质2 :原函数的导数的拉氏变换
L 设f (t)及 f ' (t ) 都满足拉氏变换存在的充分条件, [ f ( t )] F ( p),
则: 0 f ( t )e dt f ( t ) e
' pt
n n
【证明
】 F ( p) f ( t )e pt dt
0

d pt F ( p) t f ( t )e dt [t f ( t )]e pt dt 0 0 dp d L[t f ( t )] F ( p) dp 2 d 2 pt 2 F ( p) ( t ) f ( t )e dt ( 1) [t 2 f ( t )]e pt dt 2 0 0 dp
L[ f ( t )] f ( t )e
'' '' 0 pt
dt e
0

pt
df ( t ) f ( t ) e
' '
pt 0
p f ' ( t )e pt dt
0

f ' (0) p[ pF ( p) f (0)] p2 F ( p) pf (0) f ' (0)

拉普拉斯定理

拉普拉斯定理

拉普拉斯定理拉普拉斯定理(Laplace's theorem),又称拉氏变换定理(Laplace transform theorem),是拉普拉斯变换理论中的重要定理之一。

它描述了一个函数经过拉普拉斯变换后的性质,被广泛应用于各个科学领域,如物理学、工程学等。

下面将详细介绍拉普拉斯定理的定义、性质以及应用。

首先,我们需要了解拉普拉斯变换。

拉普拉斯变换是一种将一个时间或空间域函数转化为一个复平面上的函数的数学工具。

对于一个函数f(t),它的拉普拉斯变换表示为F(s),其中s是复变量。

拉普拉斯变换可以将原函数从时间域转换到频率域,从而方便地进行信号分析和处理。

拉普拉斯定理是指当函数f(t)及其导数在t=0存在时,它们的拉普拉斯变换具有以下性质:1. 常数项性质:如果f(t)的拉普拉斯变换为F(s),那么f(t)中的常数项c的拉普拉斯变换为c/s。

这意味着拉普拉斯变换可以方便地处理包含常数项的函数。

2. 积分性质:如果f(t)的拉普拉斯变换为F(s),那么∫[0,t]f(u)du 的拉普拉斯变换为F(s)/s。

这个性质对于计算函数的积分非常有用,并且可以简化一些复杂的积分计算。

3. 初值定理:如果f'(t)的拉普拉斯变换为F(s),那么f(0)的拉普拉斯变换为lim(s->∞)sF(s)。

这个定理描述了函数f(t)在t=0处的初始值与其拉普拉斯变换之间的关系。

4. 终值定理:如果lim(t->∞)f(t)存在,并且函数f(t)的拉普拉斯变换为F(s),那么lim(s->0)sF(s)为f(t)的终值。

这个定理描述了函数f(t)在t趋近于无穷大时的极限与其拉普拉斯变换之间的关系。

拉普拉斯定理的这些性质可以方便地用于求解微分方程、差分方程以及其他许多数学问题。

它可以将一个复杂的微分方程转化为一个简单的代数方程,从而更加容易通过数值方法求解。

此外,拉普拉斯定理还在控制系统理论中有广泛的应用。

谈拉普拉斯定理及其应用

谈拉普拉斯定理及其应用

一、谈拉普拉斯定理及其应用拉普拉斯定理拉普拉斯(Pierre-Simon Laplace,1749-1827)是法国分析学家、概率论学家和物理学家,法国科学院院士。

他用数学方法证明了行星轨道大小只有周期性变化,此即著名的拉普拉斯定理. 他的著名杰作《天体力学》是经典力学的代表著作,在《宇宙系统论》这部书中,他提出了第一个科学的太阳系起源理论——星云说. 他在数学和物理方面有重要贡献,他是拉普拉斯变换和拉普拉斯方程的发现者。

在了解Laplace 定理之前,首先要了解如下概念在一个 n 级行列式 D 中任意选定 k 行 k 列 (k\leq n) ,位于这些行和列的交叉点上的 k^2 个元素按照原来次序组成一个 k 级行列式 M ,称为行列式 D 的一个 k 级子式;在 D 中划去这 k 行 k 列后,余下的元素按照原来的次序组成 n-k 级行列式 M' ,称为 k 级子式 M 的余子式;若 k 级子式 M 在 D 中所在的行、列指标分别是 i_1,i_2,\cdots,i_k;j_1,j_2,\cdots ,j_k ,则在 M 的余子式 M' 前加上符号 (-1)^{i_1+i_2+\cdots+i_k+j_1+j_2+\cdots +j_k}M' 后称之为 M 的代数余子式,记为 A=(-1)^{i_1+i_2+\cdots+i_k+j_1+j_2+\cdots +j_k}M' .Laplace 定理:设在行列式 D 中任取 k (1\leq k\leq n-1) 行,由这 k 行元素所组成的一切 k 级子式与它们的代数余子式的乘积和等于 D . 即,若 D 中取定 k 行后,由这 k 行得到的 k 级子式为 M_1,M_2,\cdots,M_t ,它们对应的代数余子式分别为 A_1,A_2,\cdots,A_t ,则 D=M_1A_1+M_2A_2+\cdots+M_tA_t为了更好的理解Laplace 定理,下面看个例子:先有行列式 D=\left| \begin{array}{ccc} 1 & 2 & 1 & 4 \\ 0 & -1 & 2 & 1 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \\ \end{array} \right| ,取定其第一、三行,求其子式和代数余子式,并计算其值解:去定其第一、三行,其子式为:M_1=\left| \begin{array}{ccc} 1 & 2 \\ 1 & 0 \\ \end{array}\right|=-2,\quad M_2=\left| \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ \end{array} \right|=0,\quad M_3=\left| \begin{array}{ccc} 1 & 4 \\ 1 & 3 \\ \end{array} \right|=-1 \\M_4=\left| \begin{array}{ccc} 2 & 1 \\ 0 & 1 \\ \end{array}\right|=2,\quad M_5=\left| \begin{array}{ccc} 2 & 4 \\ 0 & 3 \\\end{array} \right|=6,\quad M_6=\left| \begin{array}{ccc} 1 & 4 \\ 1 & 3 \\ \end{array} \right|=-1 \\它们的代数余子式为:A_1=(-1)^{1+3+1+2}\left| \begin{array}{ccc} 2 & 1 \\ 3 & 1 \\\end{array} \right|=1,\quad A_2=(-1)^{1+3+1+3}\left|\begin{array}{ccc} -1 & 1 \\ 1 & 1 \\ \end{array} \right|=-2,\quad A_3=(-1)^{1+3+1+4}\left| \begin{array}{ccc} -1 & 2 \\ 1 & 3 \\ \end{array} \right|=5 \\A_4=(-1)^{1+3+2+3}\left| \begin{array}{ccc} 0 & 1 \\ 0 & 1 \\\end{array} \right|=0,\quad A_5=(-1)^{1+3+2+4}\left|\begin{array}{ccc} 0 & 2 \\ 0 & 3 \\ \end{array} \right|=0,\quad A_6=(-1)^{1+3+3+4}\left| \begin{array}{ccc} 0 & -1 \\ 0 & 1 \\ \end{array} \right|=0 \\所以其行列式为D=M_1A_1+M_2A_2+\cdots+M_6A_6=-7 \\经Matalb验证如下:M=[1,2,1,4;0,-1,2,1;1,0,1,3;0,1,3,1];det(M)___________-7二、证明如何证明行列式的拉普拉斯定理?首先回顾一下行列式的计算方法一个 n 阶矩阵的行列式等于其按第 i 行展开,对应元素与其代数余子式乘积的代数和,用符号表示为D=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}=\sum_{j=1}^{n}{ a_{ij}A_{ij}}\quad (i=1,2,\cdots ,n) \\上式在很多教科书上被用作行列式的定义,现通常被称为“(行列式的)拉普拉斯展开式(Laplace expansion)/(行列式的)余因子展开式(cofactor expansion)”;然而,此式首先由范德蒙(Vandermonde)给出。

拉普拉斯变换的应用及综合举例(D)

拉普拉斯变换的应用及综合举例(D)

(2) 求 Laplace 逆变换,得
x(t ) 3 2
e 2t ,
t
y(t )
1 2
e
t
1 2
t
2
3 2
.
14
§9.4 Laplace 变换的应用及综合举例 第 九 章
P232 例9.24
(跳过?)
拉 解 (1) 由于 f ( t ) sin t t f ( x ) sin( t x ) d x , 0 普 拉 因此原方程为 f ( t ) a t f ( t ) sin t . 斯 变 (2) 令 F ( s ) [ f ( t ) ] , 在方程两边取 Laplace 变换得 换
§9.4 Laplace 变换的应用及综合举例 第 九 章 拉 普 拉 斯 变 换
§9.4 Laplace 变换的应用及综合举例
一、求解常微分方程(组) 二、综合举例 *三、利用 Matlab 实现 Laplace 变换
1
§9.4 Laplace 变换的应用及综合举例 第 一、求解常微分方程(组) 九 (n) n n1 n2 (n1) [ f (t ) ] s F ( s) s f (0) s f ( 0 ) f (0) . 章 工具 拉 步骤 (1) 将微分方程(组)化为象函数的代数方程(组); 普 (2) 求解代数方程得到象函数; 拉 斯 (3) 求 Laplace 逆变换得到微分方程(组)的解。 变 换 得到象函数 微分方程(组) 解 Laplace Laplace 求
求解得 X ( s )
,
Y ( s)
1 s( s 1)
2
.
8
§9.4 Laplace 变换的应用及综合举例 第 九 章 拉 普 解 (1) 令 X ( s ) [ x ( t ) ] , Y ( s ) [ y ( t ) ] , 拉 斯 1 1 2s 1 , , 2 求解得 X ( s ) 2 变 2 2 s ( s 1) s ( s 1) 换

拉普拉斯变换及其应用

拉普拉斯变换及其应用

第二章 拉普拉斯变换及其应用
2.3
拉氏反变换
① A(s)=0无重根
第二章 拉普拉斯变换及其应用
2.3
拉氏反变换
② A(s)=0有重根
第二章 拉普拉斯变换及其应用
2.3
拉氏反变换
② A(s)=0有重根
第二章 拉普拉斯变换及其应用
2.4
拉氏变换应用举例
例:求典型一阶系统的单位阶跃响应
第二章 拉普拉斯变换及其应用
4 积分定理
上式表明,在初始条件为零的前提下,原函数的n重积分的拉氏式等于其象函 数除以 。
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
5 位移定理
上式表明, 即可,
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
6 延迟定理
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
6 延迟定理
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
7 相似定理
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
拉氏变换是经典控制理论的数学基础。
第二章 拉普拉斯变换及其应用
2.1 拉氏变换的概念
第二章 拉普拉斯变换及其应用
2.1 拉氏变换的概念
具体实例如下:
第二章 拉普拉斯变换及其应用
2.1 拉氏变换的概念
例:求单位阶跃函数(Unit Step Function)1(t)的象函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
lim f (t ) lim sF ( s)
s 0
பைடு நூலகம்
2.3 拉氏反变换

由象函数求取原函数的运算称为拉氏反变 换(Inverse Laplace Transform)。拉氏反 变换常用下式表示:
f (t ) L [ F ( s)]
1
2 j
1
c j
c j
F ( s )e
表2-1 常用函数的拉氏变换对照表
2.2 拉氏变换的运算定理
1.叠加定理 两个函数代数和的拉氏变换等于两个函数拉氏变换 的代数和。即:
L[ f1 (t ) f 2 (t )] L[ f1 (t )] L[ f 2 (t )] F1 ( s) F2 ( s)
2.比例定理 K倍原函数的拉氏变换等于原函数拉氏变换的K倍。 即:

f (t )dt
t 0


f (t )dt
2
t 0 f (t )dt

s
n
n 1 t 0
0
则:L[ f (t )dt ]
n
F ( s)
上式表明,在零初始条件下,原函数的 n 重积分的 n 拉氏式等于其象函数除以 s
5.延迟定理 当原函数 f (t )延迟 时间,成为 f (t )时,它 的拉氏式为: s L[ f (t )] e F ( s) 上式表明,当原函数 f (t ) 延迟 ,即成 f (t ) 时, 相应的象函数 F (t )应乘以因子 e s 。 6.终值定理 上式表明原函数在 f (t ) 时的数值(稳态值),可以通过 将象函数 F (t )乘以 s 后,再求 s 0的极限值来求得。 条件是当 t 和 s 0 时,等式两边各有极限存在。 终值定理在分析研究系统的稳态性能时(例如分析系统 的稳态误差,求取系统输出量的稳态值等)有着很多的 应用。因此终值定理也是一个经常用到的运算定理。
2
利用初始条件,得到
p Y ( p ) 1 2 p Y ( p ) 3Y ( p )
2
1 p 1
3 8
Y ( p)
p2 ( p 1)( p 1)( p 3)


1 4
p 1
1 4

t
p 1


1 8
p3
1 8
y (t )
L
-1{Y(p)}

e

3 8
第2章 拉普拉斯变换及其应用

拉氏变换的概念 拉氏变换的运算定理 拉氏反变换 应用拉氏变换求解微分方程
2.1 拉氏变换的概念
Laplace变换是求解线性常微分方程常用的一 种数学工具。与线性常微分方程的经典求解 方法相比,Laplace变换有如下两个显著的特 点: 只需一步运算就可以得到微分方程的通解 和特解。 微分方程通过Laplace变换转化成含有s的 一代数方程,然后运用简单的代数法则就 可以得到代数方程在s域上的解,而只要再 作一次Laplace反变换就可以得到最终我们 所需的时域上的解。
e
t
e
3t

例2
y x x y e t 2 2 y x 2 y x t y (0 ) y (0 ) x (0 ) x (0 ) 0
解:设L{y(t)}=Y(p),L {x(t)}=X(p),方程组两边取 Laplace变换,并利用初始条件,得到
t RC
)
第六章 Laplace变换

第一节 Laplace变换 第二节 Laplace变换之应用
第一节 Laplace变换

Laplace变换
L( p)


f (t ) e
0
pt
dt
(其 中 p是 复 数 )

Laplace逆变换
f (t ) H (t ) 1 2 i

p p p
2 2 2
(R e p | R e |) (R e p | R e |)
L
例9: L
co sh ( t ) H ( t )
e
t
sin ( t ) H ( t ) co s( t ) H ( t )

p
2

2
(R e p 0 ) (R e p 0 )
这个平面就被 我们称为是S 域或复数域


+1


dt 由于 是一个定积分, 将在新 t F (s 函数中消失。因此, ) 只取决于 , s 它是复变数 的函数。拉氏变换将原 s f (t 来的实变量函数 ) 转化为复变量函 数 。 f (t ) F (s 拉氏变换是一种单值变换。 和 ) 之 f (t 间具有一一对应的关系。通常称 ) 为 F (s 原函数, ) 为象函数。 f (t )e
其中,A、B是待定系数,将上式进行通分后可得:
A( s 1) Bs s( s 1)
A B 2 比较以上两式的分子,可得: A B 1 A 1
通过查表,可求得:
f (t ) L (
1
)L [ ] 1 e s( s 1) s s 1

t 0
f ( ) d
p L( p)
1
0
性质3(相似性质) L
pt 性质4(延迟性质) L f ( t t 0 ) e L ( p )
p f ( a t ) L a a 1
性质5(位移性质) L
e
t
f ( t ) L ( p )
i
i
L ( p )e dp
pt
L
-1
L = I

举例
H ( t )
n
例1: L
1 p
(R e p 0 ) n! p
n 1
例2: L t 例3: L 例4: L
H ( t )
(R e p 0 )
sin ( t ) H ( t ) co s( t ) H ( t )
把 uR i R 和 ic C
duc dt
代入电路,可得到电路的
微分方程:
RC duc dt uc U s
现在,我们就来解这个微分方程
RC duc dt uc U s 0
duc uc U s dt RC
uc U s RC
duc dt
分离变量,有:
L[ Kf (t )] KL( f (t ) KF ( s)
3.微分定理 在零初始条件下,即:f (0) f ' (0) f n1 (0) 0 则: [ f n (t )] s n F ( s) L 上式表明,在初始条件为零的前提下,原函数的 n n 阶导数的拉氏式等于其象函数乘以 s 。 4.积分定理 在零初始条件下,即:
性质6(卷积性质) L f 1 ( t ) f 2 ( t ) L1 ( p ) L 2 ( p )

举例
n
例7: L t
e H ( t )
st
n!
p s
2
n 1
(R e p R e s )
例8: L sin h ( t ) H ( t )

两边同时积分: ln( uc U s ) 两边再同时取指数:e
t RC
c1
ln(uc U s )
e
( t
RC
) c1
整理得:uc U s e
( t
RC
)
e
c1
并令:c2 e
c1
则有: uc U s e
( t
RC
)
c2
将初始条件:t=0时,Uc(0-)=0代入上式,可得:
] Us
利用待定系数法可求得:
A 1 ARC B 0 A 1 B RC
将所求系数带入上述方程,有:
U c ( s) U s ( ) Us ( ) s 1 RCs s (1 RC s ) 1 RC 1 1
再对上式进行Laplace反变换,得:
uc U s (1 e
2s 1
1
1
1
t
2.4 应用拉氏变换求解微分方程
S (t=0)
R + UC -
+
Us
-
C
这是一个一阶RC电路,我们取 电容两端的电压为输出电压,设 开关S闭合前,电路处于零初始状 态,即: uc (0 ) 0 在t=0时,开关S闭合,电路 接入直流电源Us。则根据KVL 定理,有:
u R uc U s
L e
t
p
p
2
2
第二节 Laplace变换之应用

用于求解常微分方程的初始问题

例1
y 2 y 3 y e t y (0 ) 0, y (0 ) 1
1 p 1
解:设L{y(t)}=Y(p),方程两边取Laplace变换,有
p Y ( p ) p y (0 ) y (0 ) 2[ p Y ( p ) y (0 )] 3Y ( p )
由题可知:开关闭合瞬间的输入信号可视为阶跃信号, 且当t=0时,Uc(0+)=0,所以上式有:
( RCs 1)U c ( s ) U s 1 s
单位阶跃函数的Laplace变换
整理,可得:
U c (s) U s U s[ 1 s (1 RCs ) A(1 RC ) s (1 RCs ) Us ( A s Bs s (1 RCs ) B 1 RCs ) A ( ARC B ) s s (1 RCs )
相关文档
最新文档