新七年级数学PPT 有理数课件
合集下载
2.2.1.1有理数乘法法则 课件(共55张PPT) 七年级数学上册

要点归纳: 几个不等于零的数相乘,积的符号由 _负__因__数__的__个__数__决定. 当负因数有_奇__数__个时,积为负;
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
1.2.1 有理数的概念课件 -人教版(2024)数学七年级上册

C. 0是自然数,但不是有理数
D. 0既不是正数也不是负数
1
2
3
4
知识点2 有理数的分类
2. [母题 教材P7例1] 将下列各数填在相应的横线上.
,-3.01,0,-2
·
025,-1 ,+15%,101,3.1 ,
0.618.
(1)整数:
(2)负数:
;
0,-2 025,101
-3.01,-2 025,-1
理数:
-1(答案不唯一)
(1)是整数又是负数:
- (答案不唯一)
(2)不是整数且不是正数:
1
;
0
(3)既不是正数也不是负数:
(4)是正数但不是整数:
;
;
0.2(答案不唯一) .
2
3
4
· ·
(3)正有理数集合:{4,6. , ,+9,20%,…};
(4)负有理数集合:{-10,-8.9,-
1
2
3
4
,…}.
1. [2023·江西]下列各数中,正整数是(
A
2. -2 025不是(
B
)
A. 有理数
B. 自然数
C. 整数
D. 负有理数
(3)正有理数:
;
·
,+15%,101,3.1 ,0.618
1
2
3
4
.
变式2[2024·佛山顺德区月考]把下列各数填在相应的集合内.
· ·
2.1.2 有理数的减法(第2课时 有理数加减混合运算)(课件)七年级数学上册(人教版2024)

(3)12-(-18)+(-7)-15;
1 5 2 1
(2)- + + - ;
4 6 3 2
(4)4.7-(-8.9)-7.5+(-6);
7
1
1
1
(5)(-4 )-(-5 )+(-4 )-(+3 );
8
2
4
8
2
1
5
1
(6)(- )+|0-5 |+|-4 |+(-9 ).
3
6
6
3
3
解:(1)原式 = 3.1.(2)原式 = . (3)原式 = 8.
写为:
可以读作
(-20) + (+3) -(-5) -(+7)
“负20、正3、正5、负7的和” =-20+3 +5-7
=-20-7+3 +5
或读作
=-27+8
“负20加3加5减7”.
=-19
概念归纳
有理数的加减混合运算可以统一为 加法
即a+b-c= a+b+(-c) .
运算,
1.加减混合运算的一般步骤:
哪一种书写更
简洁?运算理
方便呢?
=1.3+1.1-1.4
=2.4-1.4
=1
有理数加
减混合运算如
何进行呢?
例1. 计算:(-20)+(+3)-(+5)-(+7)
运用减法
法则,将减法
转化为加法
解: (-20)+(+3)-(-5)-(+7)
=( 20) ( 3) ( 5) ( 7)
=[(-20)+(-7)]+[(+5)+(+3)]
②策略:同号的加数一起加,同分母(易通分)的加数一起加,和
1 5 2 1
(2)- + + - ;
4 6 3 2
(4)4.7-(-8.9)-7.5+(-6);
7
1
1
1
(5)(-4 )-(-5 )+(-4 )-(+3 );
8
2
4
8
2
1
5
1
(6)(- )+|0-5 |+|-4 |+(-9 ).
3
6
6
3
3
解:(1)原式 = 3.1.(2)原式 = . (3)原式 = 8.
写为:
可以读作
(-20) + (+3) -(-5) -(+7)
“负20、正3、正5、负7的和” =-20+3 +5-7
=-20-7+3 +5
或读作
=-27+8
“负20加3加5减7”.
=-19
概念归纳
有理数的加减混合运算可以统一为 加法
即a+b-c= a+b+(-c) .
运算,
1.加减混合运算的一般步骤:
哪一种书写更
简洁?运算理
方便呢?
=1.3+1.1-1.4
=2.4-1.4
=1
有理数加
减混合运算如
何进行呢?
例1. 计算:(-20)+(+3)-(+5)-(+7)
运用减法
法则,将减法
转化为加法
解: (-20)+(+3)-(-5)-(+7)
=( 20) ( 3) ( 5) ( 7)
=[(-20)+(-7)]+[(+5)+(+3)]
②策略:同号的加数一起加,同分母(易通分)的加数一起加,和
(2024秋新版本)北师大版七年级数学上册 《 有理数的乘方》PPT课件)

−
1 2
×
−
1 2
×
−
1 2
=18
(3)
−
1 4
2
=
−
1 4
×
−
1 4
=116
连接中考
1. (-1)2等于( B )
A.-1
B.1
C.-2
D.2
2. 32可表示为( C )
A.3×2
B.2×2×2
C.3×3 D.3+3
课堂检测
基础巩固题
1.关于-74的说法正确的是( C )
A.底数是-7
B.表示4个-7相乘
探究新知
想一想 (-2)4 , -24,它们一样吗?说说它们的意义与读法.
(-2)4 =(-2)×(-2)×(-2)×(-2) =16,表示4个(-2)相乘, 读作“负2的4次方” . -24 =-2×2×2×2=-16 ,表示4个2相乘的相反数, 读作“负的2的4次方”或 “2的4次方的相反数”. 思考:它们的底数分别是什么?相同么?
素养目标
3.运用乘方的意义解决相关问题;体会解决问题策略的多 样性,发展实践能力与创新意识. 2.能够正确进行有理数的乘方运算.
1.理解有理数的乘方,幂,底数,指数概念.
探究新知 细胞分裂:
知识点 有理数的乘方
一次 2
二次 2×2
三次 2×2×2
探究新知
想一想 1个细胞30分钟后分裂成2个,经过5小时,这种细胞 由1个能分裂成多少个?
探究新知
计算:(1)
−
3 4
2
(2)-
3 4
2
(3)-342
解:
(1)
−
3 4
2
七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版

解:小狗一共行走了0米.
【想一想】
–2 + (+3) = +(3–2) –3 + (+2)= –(3–2) –2 + (+2)= (2–2)
加数异号
加数的绝对值不相等
你从上面三个式子中发现了什么?
【比一比】
有理数加法法则二:
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.
有理数加法法则一:
【比一比】
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?
东
解:小狗两次一共向西走了(3–2)米.
用算式表示为 –3+(+2)= –(3–2)(米)
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1) (–0.6)+(–2.7); (2) 3.7+(–8.4);(3) 3.22+1.78; (4) 7+(–3.3).
加法运算律
(1)
【思考】
3
–5
﹢
﹦
__
)
–7
–9
(
﹢
3
–5
﹢
﹢
﹦
__
–7
–9
(
)
(3)
8
–4
﹢
﹦
__
)
–6
–2
(
﹢
8
–4
﹢
﹢
﹦
__
–6
–2
【想一想】
–2 + (+3) = +(3–2) –3 + (+2)= –(3–2) –2 + (+2)= (2–2)
加数异号
加数的绝对值不相等
你从上面三个式子中发现了什么?
【比一比】
有理数加法法则二:
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.
有理数加法法则一:
【比一比】
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?
东
解:小狗两次一共向西走了(3–2)米.
用算式表示为 –3+(+2)= –(3–2)(米)
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1) (–0.6)+(–2.7); (2) 3.7+(–8.4);(3) 3.22+1.78; (4) 7+(–3.3).
加法运算律
(1)
【思考】
3
–5
﹢
﹦
__
)
–7
–9
(
﹢
3
–5
﹢
﹢
﹦
__
–7
–9
(
)
(3)
8
–4
﹢
﹦
__
)
–6
–2
(
﹢
8
–4
﹢
﹢
﹦
__
–6
–2
1.2.1 有理数的概念 课件 2024—2025学年人教版数学七年级上册

引入负数后,我们对数的认识就扩大到了有理数范围.
典例剖析
例 下列各数:
- 7 ,1.01001001 ,1 , 8 ,0 ,- ,-2.626626662( 每两个2之间多一个6)
4
33
3
0.12 ,10% ,0.3 其中有理数的个数是( D )
A.8
B.5
C.6
D.7
解 循题环秘小方数:,因能此化它成不分是数有形理式数的。数-都2.是6有26理6数26。6162, -(3
把满足一定条 件的所有数放 在一起,就组 成了一个集合
⋯}.
⋯}.
练一练
1.将下面一组数填入相应的集合圈内: -60%,-8,+2.1,-809,-212,89.9,0,4.
-60%,-2
···
1 2
,--·88··,09,0··.·4,
负有理数集合 整数集合
-8,
-809,
4,
0,··· ···
3 4 52
还有其他分类方法吗?
思考:整数是否能写
正整数:1,5
整
数 负整数:-1,-3 0
成分数的形式?
正整数、0和负整数统称为整数
正分数:13
,1
3 4
,+20%,0.5
分
数
负分数:-
1 5
,-
5 2
正分数、负分数统称为分数
思考:探究小数和分数的关系
问题:目前我们所学的小数有哪几类?
有限小数 小 数 无限小数
3. (教材课本例题) 指出下列各数中的正有理数、负有理数,
并分别指出其中的正整数、负整数: 13,4.3,-38,8.5%,-30,-12%, 19,-7.5,20,-60,1.2ሶ
典例剖析
例 下列各数:
- 7 ,1.01001001 ,1 , 8 ,0 ,- ,-2.626626662( 每两个2之间多一个6)
4
33
3
0.12 ,10% ,0.3 其中有理数的个数是( D )
A.8
B.5
C.6
D.7
解 循题环秘小方数:,因能此化它成不分是数有形理式数的。数-都2.是6有26理6数26。6162, -(3
把满足一定条 件的所有数放 在一起,就组 成了一个集合
⋯}.
⋯}.
练一练
1.将下面一组数填入相应的集合圈内: -60%,-8,+2.1,-809,-212,89.9,0,4.
-60%,-2
···
1 2
,--·88··,09,0··.·4,
负有理数集合 整数集合
-8,
-809,
4,
0,··· ···
3 4 52
还有其他分类方法吗?
思考:整数是否能写
正整数:1,5
整
数 负整数:-1,-3 0
成分数的形式?
正整数、0和负整数统称为整数
正分数:13
,1
3 4
,+20%,0.5
分
数
负分数:-
1 5
,-
5 2
正分数、负分数统称为分数
思考:探究小数和分数的关系
问题:目前我们所学的小数有哪几类?
有限小数 小 数 无限小数
3. (教材课本例题) 指出下列各数中的正有理数、负有理数,
并分别指出其中的正整数、负整数: 13,4.3,-38,8.5%,-30,-12%, 19,-7.5,20,-60,1.2ሶ
有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:
-
(1)
; 解:原式=-9;
-
(2)
;
-
56 7
原式=48=6;
-
(3)
; 原式=-30=-2;
45
3
-
(4) ;
.
原式=-30.
总结归纳
一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3
分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0
1.1 有理数的引入 课件(共40张PPT)华东师大版(2024)数学七年级上册

感悟新知
2. 用正数、负数表示具有相反意义的量为了更好地区分这些具有相反意义的量,若我们把其中一种意义的量用正数表示,则与它具有相反意义的量就可以用负数表示 .
知1-讲
感悟新知
知1-讲
特别提醒用正数、负数表示具有相反意义的量时,一般地,向指定趋势变化用正数表示,向指定趋势的相反趋势变化用负数表示.
B
感悟新知
知4-讲
知识点
有理数的分类
4
1. 有理数的分类(1) 按定义分类 有理数
感悟新知
知4-讲
(2)按性质分类有理数
知4-讲
感悟新知
特别警示1. 不管按什么标准分类,最终都将有理数分为五类:正整数、 0、负整数、正分数、负分数.2. 正有理数都是正数,但正数不一定都是正有理数.
感悟新知
3. 有理数 整数和分数统称为有理数 .4. 部分常用的数的名称(1) 正整数: 大于 0 的整数; 负整数: 小于 0 的整数 .(2) 正分数: 形如 的数; 负分数: 形如 - 的数 . (m, n 都是正整数, n 不能被 m 整除)(3) 非负数: 正数和 0; 非正数: 负数和 0.
-5,6,45,0
感悟新知知5-讲源自知识点数集51. 定义 把一些数放在一起,就组成一个数的集合,简称数集 .2. 数集的两种常见形式
感悟新知
知5-讲
3. 拓展 两个数集的交叉部分即为两个数集的公共部分,如正数集和分数集的交叉部分为正分数集 .
知5-讲
感悟新知
特别解读若一个数的集合有无数个数,则表示这个数的集合时,除写题中给定的有限个数之外,必须加上省略号.
0 m
知1-练
感悟新知
(3)某地区的平均高度高于海平面 310 m,记作海拔高度+310 m,则海拔高度 -270 m 表示 __________________.
2. 用正数、负数表示具有相反意义的量为了更好地区分这些具有相反意义的量,若我们把其中一种意义的量用正数表示,则与它具有相反意义的量就可以用负数表示 .
知1-讲
感悟新知
知1-讲
特别提醒用正数、负数表示具有相反意义的量时,一般地,向指定趋势变化用正数表示,向指定趋势的相反趋势变化用负数表示.
B
感悟新知
知4-讲
知识点
有理数的分类
4
1. 有理数的分类(1) 按定义分类 有理数
感悟新知
知4-讲
(2)按性质分类有理数
知4-讲
感悟新知
特别警示1. 不管按什么标准分类,最终都将有理数分为五类:正整数、 0、负整数、正分数、负分数.2. 正有理数都是正数,但正数不一定都是正有理数.
感悟新知
3. 有理数 整数和分数统称为有理数 .4. 部分常用的数的名称(1) 正整数: 大于 0 的整数; 负整数: 小于 0 的整数 .(2) 正分数: 形如 的数; 负分数: 形如 - 的数 . (m, n 都是正整数, n 不能被 m 整除)(3) 非负数: 正数和 0; 非正数: 负数和 0.
-5,6,45,0
感悟新知知5-讲源自知识点数集51. 定义 把一些数放在一起,就组成一个数的集合,简称数集 .2. 数集的两种常见形式
感悟新知
知5-讲
3. 拓展 两个数集的交叉部分即为两个数集的公共部分,如正数集和分数集的交叉部分为正分数集 .
知5-讲
感悟新知
特别解读若一个数的集合有无数个数,则表示这个数的集合时,除写题中给定的有限个数之外,必须加上省略号.
0 m
知1-练
感悟新知
(3)某地区的平均高度高于海平面 310 m,记作海拔高度+310 m,则海拔高度 -270 m 表示 __________________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3的倍数为-其它为+ ; ______________ 奇数为+ 偶数为-
规律是
(3)-1,2,-3,4,-5,6,-7,8 ,-9……
其中第279个数为 -279 _____ ,第320个数的符号
奇数为- 偶数为+ + 规律是______________ 为___, ;
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
0
数怎么不够用了?
生活中你见过 带有“-”号的 数吗?
全国主要城市天气预报
城市 天气 高温 低温 15 6 城市 长春 天气 多云 高温 18 低温 10
哈尔滨 小雨
沈阳
西宁 兰州
小雨
小雪 小雪
19
5 3
7
-4 -3
天津
银川 西安
小雨
小雪 小雨
12
0 16
8
-3 7
像10、1.2、17…这样的数叫做正数,它 们都比0大 在正数前面加上“-”号的数叫做负数, 例如-10,-3 …
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么? 解 :(1)扣20分记作-20分; (2)沿顺时针方向转12圈记作-12圈; (3)-0.03克表示乒乓球的质量低于标 准质量0.03克. (4)如果向东运动4m记作+4m,那么向西运动 7m应记作什么?若在原地不动又记作什么?
第二章
有理数及其运算
有理数
第一节
学过的数:
货币购物,用数如何表示10元5 角3分——有了小数。 古代猎人打了一只老鹰,用数如何表示一 只老鹰——有了整数
二人分一只西瓜,用数如何表示 半只西瓜——有了分数
瓦罐没有东西了
有了0
用小学学过的数能表示下列数吗
零上5º C
零下5º C
用 小 学 学 过 的 数 能 表 示 下 列 数 吗
你认为0应该放在什么地方?
0既不是正数,也不是负数
获得新知
零上与零下
盈利与亏损 加分与扣分 高出与低于 具有相反意义的量:上升与下降、增与减、收入 与支出、胜与负、进与退、多与少、盈利与亏损 向东与向西、顺与逆、过剩与不足、重与轻等 具有相反意义的量
用正数和负数可以表示具有相反意义的量
知 识 运 用
做一做 1、填空题
随堂练习
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
(2)东、西为两个相反方向,如果-4米表示一个 物体向西运动4米,那么+2米表示___________,物 体原地不动记作________。
(3)某仓库运进面粉7.5吨,那么运出3.8吨应记作 _______________。
课堂小结
1、正数与负数都来自于实际生活;用正、负数可 以表示实际问题中具有相反意义的量,例如… 2、小学里学过的数除0外都是正数;正数前面添 上“-”号的数是负数;0既不是正数,也不是负 数,它表示正、负数的界限。 3、有理数的分类方法不是唯一的,可以按整数和 分数分成两大类,也可以按正有理数、零、负有 理数分成三大类。 4、我学得怎样?
1、找规律:
(1)1,-2,3,-4,5,-6,7,-8 ,………
-2002, 其中第199个数为199 _____ ,第2002个数_____
规律是______________; (2)1,2,-3,4,5,-6,7,8 ,-9 ……… 其中第345个数为 -345 _____ ,第2002个数2002 _____ ,
名称
做一做
随堂练习
3、某厂计划每天生产零件800个,第一天生产 零件850个,第二天生产零件800个,第三天生 产零件750个, 你能正、负数表示该厂每天的超产量吗?
解:第一天超产零件是50个. 第二天超产零件是0个.
第三天超产零件是-50个
关键:以800个零件为正、负数的标准(分界限)
必做题
1、在-2;+1/2;-3.5;11中,正数 是
-3
.
6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,
- 3.8 记作
.
7.把下列数分别填在对应的括号内:
Байду номын сангаас13,-0.5,2.7,123,0,2/5 ,-4,7/4 。
2 7 -4 -0.5 , 2.7 , ─,─ (1)分数( 5 4 );(2)负整数( );
7 ); (4)有理数( 全都是 )。 (3)正分数( 2.7,─ 4
你会把我们所学过的所 有的数进行分类吗?
请你将到目前为止学过的数进行
分类,并与你的同伴进行交流。 正有理数 0 负有理数 有 理 数
整数
正整数:如 1、2、3……
零: 0
负整数:如-1、-2、-3…
正分数: 如 1/2 、1/3、5.2
分数
负分数:如 -1/5、-3.5、-5/6
整数与分数统称为有理数
+1/2、 11
.5 ;负数是 -2、 -3 。
2、+1350米表示高于海平面1350米, 低于海平面200米,记作 -200 。 3、如果上升10米记作+10米,那么下降12
米,记作 -12
。 。
4、如果规定向西走30米记作+30米,那么
-40米,表示 向东走了40米
必做题
5.如果零上5记作+5,那么零下3 记作
• 里面食品的重量为比150g左右,多不会超过155g, • 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。
A:20元 B:-20元 C:-20 D:100元 进一步来看,一周来他的账本上的数据为 周一 周二 周三 周四 周五 周六 周日 120元 -20元 80元 0元 -10元 150元 100元 如此看来他这一周是赚了还是赔了?有多少?
做一做
随堂练习
2、下表是某日上海发行的部分债券行情表,试说 明各债券当天涨跌情况。
99国债 99国债 99国债 01通化 01三峡 债券 (1 ) (2 ) (3) 债券 涨跌/元 +0.01 -0.05 -1.24 +0.15 -2.01
涨0.01元 跌0.05元 99国债(1)__________;99 国债(2)_________; 跌1.24元 0.15元 99国债(3)__________;01 通化债券涨 ________; 跌2.01元 01三峡债券___________.
规律是
(3)-1,2,-3,4,-5,6,-7,8 ,-9……
其中第279个数为 -279 _____ ,第320个数的符号
奇数为- 偶数为+ + 规律是______________ 为___, ;
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
0
数怎么不够用了?
生活中你见过 带有“-”号的 数吗?
全国主要城市天气预报
城市 天气 高温 低温 15 6 城市 长春 天气 多云 高温 18 低温 10
哈尔滨 小雨
沈阳
西宁 兰州
小雨
小雪 小雪
19
5 3
7
-4 -3
天津
银川 西安
小雨
小雪 小雨
12
0 16
8
-3 7
像10、1.2、17…这样的数叫做正数,它 们都比0大 在正数前面加上“-”号的数叫做负数, 例如-10,-3 …
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么? 解 :(1)扣20分记作-20分; (2)沿顺时针方向转12圈记作-12圈; (3)-0.03克表示乒乓球的质量低于标 准质量0.03克. (4)如果向东运动4m记作+4m,那么向西运动 7m应记作什么?若在原地不动又记作什么?
第二章
有理数及其运算
有理数
第一节
学过的数:
货币购物,用数如何表示10元5 角3分——有了小数。 古代猎人打了一只老鹰,用数如何表示一 只老鹰——有了整数
二人分一只西瓜,用数如何表示 半只西瓜——有了分数
瓦罐没有东西了
有了0
用小学学过的数能表示下列数吗
零上5º C
零下5º C
用 小 学 学 过 的 数 能 表 示 下 列 数 吗
你认为0应该放在什么地方?
0既不是正数,也不是负数
获得新知
零上与零下
盈利与亏损 加分与扣分 高出与低于 具有相反意义的量:上升与下降、增与减、收入 与支出、胜与负、进与退、多与少、盈利与亏损 向东与向西、顺与逆、过剩与不足、重与轻等 具有相反意义的量
用正数和负数可以表示具有相反意义的量
知 识 运 用
做一做 1、填空题
随堂练习
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
(2)东、西为两个相反方向,如果-4米表示一个 物体向西运动4米,那么+2米表示___________,物 体原地不动记作________。
(3)某仓库运进面粉7.5吨,那么运出3.8吨应记作 _______________。
课堂小结
1、正数与负数都来自于实际生活;用正、负数可 以表示实际问题中具有相反意义的量,例如… 2、小学里学过的数除0外都是正数;正数前面添 上“-”号的数是负数;0既不是正数,也不是负 数,它表示正、负数的界限。 3、有理数的分类方法不是唯一的,可以按整数和 分数分成两大类,也可以按正有理数、零、负有 理数分成三大类。 4、我学得怎样?
1、找规律:
(1)1,-2,3,-4,5,-6,7,-8 ,………
-2002, 其中第199个数为199 _____ ,第2002个数_____
规律是______________; (2)1,2,-3,4,5,-6,7,8 ,-9 ……… 其中第345个数为 -345 _____ ,第2002个数2002 _____ ,
名称
做一做
随堂练习
3、某厂计划每天生产零件800个,第一天生产 零件850个,第二天生产零件800个,第三天生 产零件750个, 你能正、负数表示该厂每天的超产量吗?
解:第一天超产零件是50个. 第二天超产零件是0个.
第三天超产零件是-50个
关键:以800个零件为正、负数的标准(分界限)
必做题
1、在-2;+1/2;-3.5;11中,正数 是
-3
.
6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,
- 3.8 记作
.
7.把下列数分别填在对应的括号内:
Байду номын сангаас13,-0.5,2.7,123,0,2/5 ,-4,7/4 。
2 7 -4 -0.5 , 2.7 , ─,─ (1)分数( 5 4 );(2)负整数( );
7 ); (4)有理数( 全都是 )。 (3)正分数( 2.7,─ 4
你会把我们所学过的所 有的数进行分类吗?
请你将到目前为止学过的数进行
分类,并与你的同伴进行交流。 正有理数 0 负有理数 有 理 数
整数
正整数:如 1、2、3……
零: 0
负整数:如-1、-2、-3…
正分数: 如 1/2 、1/3、5.2
分数
负分数:如 -1/5、-3.5、-5/6
整数与分数统称为有理数
+1/2、 11
.5 ;负数是 -2、 -3 。
2、+1350米表示高于海平面1350米, 低于海平面200米,记作 -200 。 3、如果上升10米记作+10米,那么下降12
米,记作 -12
。 。
4、如果规定向西走30米记作+30米,那么
-40米,表示 向东走了40米
必做题
5.如果零上5记作+5,那么零下3 记作
• 里面食品的重量为比150g左右,多不会超过155g, • 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。
A:20元 B:-20元 C:-20 D:100元 进一步来看,一周来他的账本上的数据为 周一 周二 周三 周四 周五 周六 周日 120元 -20元 80元 0元 -10元 150元 100元 如此看来他这一周是赚了还是赔了?有多少?
做一做
随堂练习
2、下表是某日上海发行的部分债券行情表,试说 明各债券当天涨跌情况。
99国债 99国债 99国债 01通化 01三峡 债券 (1 ) (2 ) (3) 债券 涨跌/元 +0.01 -0.05 -1.24 +0.15 -2.01
涨0.01元 跌0.05元 99国债(1)__________;99 国债(2)_________; 跌1.24元 0.15元 99国债(3)__________;01 通化债券涨 ________; 跌2.01元 01三峡债券___________.