离散(最短路径和关键路径)
数据结构第19讲_关键路径与最短路径_C

数据结构第19讲_关键路径与最短路径_C 在数据结构的学习过程中,我们经常会遇到需要寻找最短路径的问题。
最短路径问题是指在图中寻找连接两个顶点之间最短路线的问题。
在实际生活中,最短路径问题广泛应用于交通、通信等领域。
在本篇文章中,我们将介绍关键路径和最短路径的概念,以及它们在实际问题中的应用。
首先,让我们来介绍关键路径。
关键路径是指在项目管理中,连接起始点和终止点的最长路径,也是项目完成所需要的最短时间。
关键路径可以通过计算活动的最早开始时间(EST)和最晚开始时间(LST)来确定。
活动的EST是指在没有任何限制条件下,活动可以最早开始的时间;而LST则是指在不影响项目完成时间的前提下,活动可以最晚开始的时间。
关键路径的长度等于项目的最早完成时间和最晚完成时间相等的活动的持续时间之和。
通过确定关键路径,我们可以优化项目进度,提高项目的整体效率。
接下来,让我们来介绍最短路径。
最短路径是指在图中寻找连接两个顶点之间最短路线的问题。
最短路径可以通过使用一些经典的算法来解决,例如迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法是一种贪心算法,通过计算出从起点到其他顶点的最短路径,然后逐步扩展路径长度来逐步求解最短路径问题。
弗洛伊德算法是一种动态规划算法,通过构建一个关于各个顶点之间最短路径长度的矩阵来求解最短路径问题。
最短路径问题在实际生活中具有广泛应用,例如在地图导航中,我们需要找到从起点到目的地的最短路线;在网络通信中,我们需要找到网络中两个节点之间传输数据的最短路径。
在本篇文章中,我们介绍了关键路径和最短路径的概念,以及它们在实际问题中的应用。
关键路径用于确定项目完成所需的最短时间,而最短路径用于寻找连接两个顶点之间最短路线的问题。
这些概念都是数据结构中的重要内容,对于我们理解和解决实际问题具有重要意义。
第20讲-关键路径与最短路径

数据结构第20次课(续表)思考.题作业题试对下图所示的AOE网络,解答下列问题。
(1) 这个工程最早可能在什么时间结束。
(2) 求每个事件的最早开始时间Ve[i]和最迟开始时间Vl[I]。
(3) 求每个活动的最早开始时间e( )和最迟开始时间l( )。
(4) 确定哪些活动是关键活动。
画出由所有关键活动构成的图,指出哪些活动加速可使整个工程提前完成。
*参考资料《数据结构辅导与提高》,徐孝凯编著,清华大学出版社《数据结构习题解答与考试指导》,梁作娟等编著,清华大学出版社授课内容关键路径对整个工程和系统,人们关心的是两个方面的问题:一)工程能否顺利进行(对AOV网进行拓扑排序)二)估算整个工程的完成所必须的最短时间(对AOE网求关键路径)1. AOE-网}与AOV-网相对应的是AOE-网(Activity On Edge),即边表示活动的网。
AOE-网是一个带权的有向无环图,其中,顶点表示事件(Event),弧表示活动,权表示活动持续的时间。
通常,AOE-网可用来估算工程的完成时间。
例:下图是一个假想的有11项活动的AOE-网。
其中有9个事件v1,v2,…,v9,每个事件表示在它之前的活动已经完成,在它之后的活动可以开始。
如v1表示整个工程开始,v9表示整个工程结束,v5表示a4和a5已经完成,a7和a8可以开始。
与每个活动相联系的数是执行该活动所需的时间。
比如,活动a1需要6天,a2需要4天等。
和AOV-网不同,对AOE-网有待研究的问题是:(1)完成整项工程至少需要多少时间(2)哪些活动是影响工程进度的关键2. 关键路径由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上各活动持续时间之和,不是路径上弧的数目)。
路径长度最长的路径叫做关备注:回顾键路径(Critical Path)。
假设开始点是v1,从v1到v i的最长路径长度叫做事件v i的最早发生时间。
离散数学最短路径和关键路径

*
1
关键路径(续)
vi的缓冲时间TS(vi)=TL(vi)-TE(vi), i=1,2,,n vi在关键路径上TS(vi)=0
*
例2 求PERT图中各顶点的最早完成时间, 最晚完成
时间, 缓冲时间及关键路径.
解 最早完成时间
TE(v1)=0
TE(v2)=max{0+1}=1
TE(v3)=max{0+2,1+0}=2
设带权图G=<V,E,w>, 其中eE, w(e)0. 设V={v1,v2,,vn}, 求v1到其余各顶点的最短路径 p标号(永久性标号) : 第r步获得的v1到vi最短路径的 权 t标号(临时性标号) : 第r步获得的v1经过p标号顶点 到达vi的路径的最小权, 是v1到vi的最短路径的权的上 界 第r步通过集Pr={v | v在第r步已获得永久性标号} 第r步未通过集Tr=V-Pr
*
带权图G=<V,E,w>, 其中w:ER. eE, w(e)称作e的权. e=(vi,vj), 记w(e)=wij . 若vi,vj不 相邻, 记wij =. 设L是G中的一条路径, L的所有边的权之和称作L的 权, 记作w(L). u和v之间的最短路径: u和v之间权最小的通路.
标号法(, 1959)
*
标号法(续)
例1(续) 求v0到v5的最短路径 v0 v1 v2 v3 v4 v5 0 0 1 4 1 1/v0 3 8 6 2 3/v1 8 4 3 7 4/v2 10 4 7/v4 9 5 9/v3 w 0 1 3 7 4 9 =v0v1v2v4v3v5, w()=9
*
关键路径
vi的最早完成时间TE(vi): 从始点v1沿最长路径到vi
离散数学 最短路径问题ppt课件

比较以上各点的指标可知,b是最小指标点。但b不是目标
点,所以挖去b,于是可得: 精选ppt
14
(2)令T2=T1-{b}={c,d,e,f,g,z},T2中各点的指标为: DT2(c)=min(DT1(c), DT1(b)+W(b,c))=min(4,2+3)=4 (a c) DT2(d)= min(DT1(d), DT1(b)+W(b,d))=min(3,∞)=3 (a d)
最短路径问题
例:如下图所示的单行线交通网,每个弧旁边的
数字表示这条单行线的长度。现在有一个人要从v1出
发,经过这个交
通网到达v6, 要寻求总路 程最短的线 v1
路。
v2
6
3 14
5 1
v4
3
2
v6
6
v3
v5
精选ppt
1
从v1到v6的路线是很多的。比如从v1出发, 经过v2 ,v4到达v6或者从v1出发,经过v2,v3, v5到达v6等等。但不同的路线,经过的总长 度是不同的。例如,按照第一个线路,总长 度是3+6+3=12单位,按照第二个路线,总长 度是3+1+1+6=11单位。
精选ppt
2
一、问题的提法及应用背景
(1)问题的提法——寻求网络中两点间的最 短路就是寻求连接这两个点的边的总权数为 最小的通路。
(2)应用背景——管道铺设、交通网络、线 路安排、厂区布局、设备更新等。
精选ppt
3
二、赋权图的定义
在图的点或边上表明某种信息的数称为权。 含有权的图称为赋权图。 如图
c) b e) d f)
DT3(g)=min(DT2(g), DT2(d)+W(d,g))=min(∞,3+7)=10(a d g) DT3(z)=min(DT2(z), DT2(d)+W(d,z))=min(∞,∞)=∞
关键路径和最短路径及树

关键路径和最短路径:基本思路:1.关键路径法:关键路径法对于一个项目而言,只有项目网络中最长的或耗时最多的活动完成之后,项目才能结束,这条最长的活动路线就叫关键路径。
2.最短路径法:求一个顶点到其余顶点的最短路径主要运用Dijkstra 算法,把图中的顶点分为两个集合S 和T ,集合S 皴法已确定最短路径的顶点,集合T 存放尚未确定最短路径的顶点。
按最短路径长度递增的次序逐个将T 集合中的顶点加入到S 中,直到从源点出发可以到达的所有顶点都在S 中为止。
演算过程:1.关键路径各项活动的最早时间,t(A)=0t(B)=max{2,15+4}=19t(C)=15t(D)=19+10=29t(E)=max{19+19,15+11}=38t(F)=max{29+6,38+5}=43事项的最早时间为43各事项的最迟时间,t(F)=43t(D)=43-6=37t(E)=43-5=38t(B)=min{37-10,38-19}=19t(C)=min{19-4,38-11}=15t(A)=15-15=0.所以关键路径为:A →C →B →E →FA B C DE F 2 1111 465起终2.最短路径首先将A 点分到S集合中,其余各点分到T集合,S(A)=0,其余各点为T=+∞与A相关的边(A,B),(A,C)T(B)=min{T(B),S(A)+2}=min{+∞,0+2}=2T(C)=min{T(C),S(A)+15}=min{+∞,0+15}=15∴S(C)=15,记录路径(A,C)与C相关的边(C,B),(C,E)T(B)=min{T(B),S(C)+4}=min{2,15+4}=2T(E)=min{T(E),S(C)+11}=min{+∞,15+11}=26∴S(B)=2,记录路径(A,B)与B相关的边(B,D),(B,E)T(D)=min{T(D),S(B)+10}=min{+∞,2+10}=12T(E)=min{T(E),S(B)+19}=min{26,2+19}=21∴S(D)=12,记录路径(B,D)与D相关的边(D,F)T(F)=min{T(F),S(D)+6}=min{+∞,12+6}=18∴S(E)=21,记录路径(B,E)与E相关的边(E,F)T(F)=min{T(F),S(E)+5}=min{18,21+5}=18∴S(F)=18,记录路径(D,F)从A点到到其余各顶点最短路为:所以A到F的最短路为A→B→D→FB+树和B*树:针对上述文件建立4阶的B+树和B*树索引结构,用图形描述在该文件中先后新增ID为50和45的记录,用图形分别描述新增两条记录后索引结构(B+树和B*树)的变化B+树和B*树的区别:B+叶子结点中存储记录,在B+树中,所有的非叶子结点可以看成是索引,而其中的关键字是作为“分界关键字”,用来界定某一关键字的记录所在的子树。
第7章 图论 [离散数学离散数学(第四版)清华出版社]
![第7章 图论 [离散数学离散数学(第四版)清华出版社]](https://img.taocdn.com/s3/m/58b7923143323968011c9244.png)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e
2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)
数据结构第19讲关键路径与最短路径

数据结构第19讲关键路径与最短路径关键路径与最短路径是数据结构中非常重要的概念和算法。
它们在许多领域中都有广泛的应用,包括项目管理、网络通信、物流运输等等。
本文将介绍关键路径和最短路径的概念、算法以及它们的应用。
一、关键路径关键路径是指在一个项目中,所有活动中最长的路径,也即完成整个项目所需的最长时间。
关键路径的长度决定了项目的最短完成时间,因此对于项目管理非常重要。
关键路径的计算通常使用网络图来表示项目的各个活动以及它们的前后关系。
在网络图中,每个活动用一个节点表示,活动之间的关系用边来表示。
活动之间的关系可以分为两种:顺序关系和并行关系。
1.顺序关系:活动A必须在活动B之前完成,这种关系用有向边表示。
2.并行关系:活动A和活动B可以同时进行,这种关系用无向边表示。
关键路径算法通过在网络图上进行正向遍历和逆向遍历来计算关键路径。
具体步骤如下:1.正向遍历:从起始节点出发,计算每个节点的最早开始时间。
最早开始时间是指在没有任何延迟的情况下,从起始节点到达该节点所需的最短时间。
2.逆向遍历:从终点节点出发,计算每个节点的最晚开始时间。
最晚开始时间是指在不延误整个项目完成时间的情况下,从终点节点回到该节点所需的最短时间。
3.计算关键路径:根据每个节点的最早开始时间和最晚开始时间,找出那些最早开始时间和最晚开始时间相等的节点,这些节点就是关键路径上的节点。
关键路径的计算可以有效地帮助项目管理者确定项目的最短完成时间,并将各个活动按照优先级进行排序和调度,从而提高项目的管理效率。
二、最短路径最短路径是指在一个加权图中,从起点到终点所经过的边的权值之和最小的路径。
最短路径算法有很多种,下面介绍两种常用的最短路径算法:迪杰斯特拉算法和弗洛伊德算法。
1.迪杰斯特拉算法:迪杰斯特拉算法是一种贪心算法,用于解决单源最短路径问题。
具体步骤如下:-创建两个集合S和V-S,分别用于存放已确定最短路径的节点和待确定最短路径的节点。
离散数学 最短路径dijkstra算法

离散数学是数学的一个分支,研究离散对象和不连续对象的数量关系及其结构的数学学科。
离散数学对于计算机科学和信息技术领域有着重要的应用,其中最短路径dijkstra算法是离散数学中的一个重要算法,它被广泛应用于计算机网络、交通规划、电路设计等领域,在实际应用中发挥着重要的作用。
一、最短路径dijkstra算法的基本原理最短路径dijkstra算法是由荷兰计算机科学家艾兹赫尔·达斯提出的,用于解决带权图中的单源最短路径问题。
该算法的基本原理是:从一个源点出发,按照权值递增的顺序依次求出到达其它各个顶点的最短路径。
具体来说,最短路径dijkstra算法的实现步骤如下:1. 初始化:将源点到图中各个顶点的最短路径估计值初始化为无穷大,将源点到自身的最短路径估计值初始化为0;2. 确定最短路径:从源点开始,选择一个离源点距离最近的未加入集合S中的顶点,并确定从源点到该顶点的最短路径;3. 更新距离:对于未加入集合S中的顶点,根据新加入集合S中的顶点对其进行松弛操作,更新源点到其它顶点的最短路径的估计值;4. 重复操作:重复步骤2和步骤3,直到集合S中包含了图中的所有顶点为止。
二、最短路径dijkstra算法的实现最短路径dijkstra算法的实现可以采用多种数据结构和算法,比较常见的包括邻接矩阵和邻接表两种表示方法。
在使用邻接矩阵表示图的情况下,最短路径dijkstra算法的时间复杂度为O(n^2),其中n表示图中顶点的个数;而在使用邻接表表示图的情况下,最短路径dijkstra 算法的时间复杂度为O(nlogn)。
三、最短路径dijkstra算法的应用最短路径dijkstra算法可以应用于计算机网络中路由选择的最短路径计算、交通规划中的最短路径选择、电路设计中的信号传输最短路径计算等领域。
在实际应用中,最短路径dijkstra算法通过寻找起始点到各个顶点的最短路径,为网络通信、交通规划、电路设计等问题提供有效的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标号法(E.W.Dijkstra, 1959)
设带权图G=<V,E,w>, 其中eE, w(e)0. 设V={v1,v2,,vn}, 求v1到其余各顶点的最短路径 p标号(永久性标号)l i( r ): 第r步获得的v1到vi最短路径的 权 t标号(临时性标号) l i( r ) : 第r步获得的v1经过p标号顶点 到达vi的路径的最小权, 是v1到vi的最短路径的权的上 界 第r步通过集Pr={v | v在第r步已获得永久性标号} 第r步未通过集Tr=V-Pr
15.3 最短路径与关键路径
带权图 最短路径与Dijkstra标号法 PERT图与关键路径
1
白帽和黑帽问题
老师让6 名学生围坐成一圈,另让一名学生坐 在中央,并拿出七顶帽子,其中四顶白色,三 顶黑色。然后蒙住七名学生的眼睛,并给坐在 中央的学生戴一顶帽子,而只解开坐在圈上的 六名学生的眼罩。这时,由于坐在中央的学生 的阻挡,每个人只能看到五个人的帽子。老师 说:“现在,你们七人猜一猜自己的头上戴的 帽子颜色。”大家静静地思索了好大一会。最 后,坐在中央的、被蒙住双眼的学生举手说: “我猜到了。”问:中央的被蒙住双眼的学生 带的是什么颜色的帽子?他是怎样猜到的?
4
标号法(续)
算法: 1. v1获p标号: l i( 0 ) =0, P0={v1}, T0=V-{v1}, vj(j=2,3,,n)获t 标
(0) 号: l j =wij. 令r1.
( r 1) min {l (j r 1) } , vi获得p标号: l i( r ) l i( r 1) . 2. 设 li v j Tr 1
9
关键路径(续)
vi的缓冲时间TS(vi)=TL(vi)-TE(vi), i=1,2,,n vi在关键路径上TS(vi)=0
10
例2 求PERT图中各顶点的最早完成时间, 最晚完成 时间, 缓冲时间及关键路径. 解 最早完成时间 TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12
v0
0Leabharlann v11 1/v0v2
4 3 3/v1
v3
8 8 7 7/v4 7
v4
6 4 4/v2
v5
10 9 9/v3 9
0
1
3
4
=v0v1v2v4v3v5,
w()=9
6
货郎担(旅行商)问题
哈密顿
7
PERT图(计划评审技术图)
设有向图G=<V,E>, vV v的后继元集 +(v)={x|xV<v,x>E} v的先驱元集 -(v)={x|xV<x,v>E}
2
最短路径
带权图G=<V,E,w>, 其中w:ER. eE, w(e)称作e的权. e=(vi,vj), 记w(e)=wij . 若vi,vj不 相邻, 记wij =. 设L是G中的一条路径, L的所有边的权之和称作L的 权, 记作w(L). u和v之间的最短路径: u和v之间权最小的通路. 例1 L1=v0v1v3v5, w(L1)=10, L2=v0v1v4v5, w(L2)=12, L3=v0v2v4v5, w(L3)=11.
令 Pr=Pr-1{vi}, Tr=Tr-1-{vi}. 若Tr=, 则结束. 3. vjTr, 令 l (j r ) min{ l (j r 1) , l i( r ) w ij }
令r=r+1, 转2.
5
标号法(续)
例1(续) 求v0到v5的最短路径
r 0 1 2 3 4 5 w vi
11
例2(续) 最晚完成时间 TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0
PERT图:满足下述条件的n阶有向带权图D=<V,E,w>, (1) D是简单图, (2) D中无回路, (3) 有一个入度为0的顶点, 称作始点; 有一个出度为0 的顶点, 称作终点. 通常边的权表示时间, 始点记作v1, 终点记作vn
8
关键路径
关键路径: PETR图中从始点到终点的最长路径 vi的最早完成时间TE(vi): 从始点v1沿最长路径到vi 所需的时间 TE(v1)=0 TE(vi)=max{TE(vj)+wji|vj -(vi)}, i=2,3,,n vi的最晚完成时间TL(vi): 在保证终点vn的最早完成 时间不增加的条件下, 从始点v1最迟到达vi的时间 TL(vn)=TE(vn) TL(vi)=min{TL(vj)-wij|vj +(vi)}, i=n-1,n-2,,1
12
例2(续) 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1v3v7v8
13