金属塑性变形与断裂
第二章 金属材料的塑性变形与性能

9
根据载荷作用性质不同:
a)拉深载荷 --拉力 b)压缩载荷 —压力 c)弯曲载荷 --弯力 d)剪切载荷--剪切力 e)扭转载荷--扭转力
10
2.内力 (1)定义 工件或材料在受到外部载荷作用时,为使其不变形,在 材料内部产生的一种与外力相对抗的力。 (2)大小 内力大小与外力相等。 (3)注意 内力和外力不同于作用力和反作用力。
2
§1.金属材料的损坏与塑性变形
1.常见损坏形式
a)变形
零件在外力作用下形状和尺寸所发生的变化。 (包括:弹性变形和塑性的现象。
c)磨损
因摩擦使得零件形状、尺寸和表面质量发生变化的现象。
3
2.常见塑性变形形式 1)轧制 (板材、线材、棒材、型材、管材)
28
2)应用范围 主要用于:测定铸铁、有色金属及退火、正火、 调质处理后的各种软钢或硬度较低的 材料。 3)优、缺点 优点:压痕直径较大,能比较正确反映材料的平均 性能;适合对毛坯及半成品测定。 缺点:操作时间比较长,不适宜测定硬度高的材料; 压痕较大不适合对成品及薄壁零件的测定。
29
2.洛氏硬度(HR)——生产上应用较广泛 1)定义 采用金刚石压头直接测量压痕深度来表示材料的硬度值。 2)表示方法
11
3.应力 (1)定义 单位面积上所受到的力。 (2)计算公式 σ= F/ S( MPa/mm2 ) 式中: σ——应力; F ——外力; S ——横截面面积。
12
二、金属的变形 金属在外力作用下的变形三阶段: 弹性变形 弹-塑性变形 断裂。 1.特点 弹性变形: 金属弹性变形后其组织和性能不发生变化。 塑性变形: 金属经塑性变形后其组织和性能将发生变化。 2.变形原理 金属在外力作用下,发生塑性变形是由于晶体内部 缺陷—位错运动的结果,宏观表现为外形和尺寸变化。
大学材料科学基础第八章材料的变形与断裂(1)

六方晶系则需画图判定。
滑移系数量与金属的塑性 滑移系代表了晶体滑移时可能采取的空间取向,晶 体中滑移系数量越多,滑移时可能采取的空间取向就 越多,滑移就越容易进行,金属的塑性便越好。 面 心 立 方 金 属 : Cu,Al,Au,Ag,,Ni,γ-Fe, 奥氏体钢,体心立方金属α-Fe,铁素体,Mo,Nb的 塑性很好,而密排六方金属Mg,Zr,Be,Zn的塑性 则较差。当然滑移系数量并不是决定金属塑性高低唯 一的因素,合金的成分、强度的高低、加工硬化的能 力等也会影响到金属的塑性。试验表明,奥氏体钢的 塑性要优于铁素体钢。
金属拉伸曲线分析。 1 弹性变形阶段:ζ-ε呈直线关系。
(弹)塑性变形阶段: ζ-ε不遵循虎克定律
2 均匀塑性变形阶段:屈服阶段:ε增加,ζ基本保 持不变, ζ-ε呈非线性关系。 3 颈缩阶段(局部变形阶段):变形集中在局部区 域。 4 断裂阶段:从颈缩到断裂。
拉伸试验可以得到以下强度指标和塑性指标:
拉伸条件下滑移系上分切应力的计算。
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark used herein under license.
θ-滑移面法线与拉伸轴的夹角
4 力轴作用在任意方向
二、孪晶(孪生)变形
孪生也是金属塑性变形的一种形式,一般情况下, 金属晶体优先以滑移的方式进行塑性变形,但是当滑 移难以进行时,塑性变形就会以生成孪晶的方式进行, 称为孪生。例如滑移系较少的密排六方晶格金属,当 处于硬取向时,滑移系难以开动,就常以孪生方式进 行变形。滑移系较多的fcc、bcc结构的金属一般不发 生孪生变形,但在极低的温度下变形或是形变速度极 快时,也会以孪生的方式进行塑性变形。 定义:晶体在难以进行滑移时而发生的另一种塑 性变形方式,其特点是变形以晶体整体切变的形式 进行而不是沿滑移系发生相对位移。
焊接材料的塑性变形与断裂机理

焊接材料的塑性变形与断裂机理焊接是一种常见的金属加工方法,通过高温加热和冷却过程将两个或多个金属材料连接在一起。
在焊接过程中,焊接材料的塑性变形和断裂机理是非常重要的因素,它们直接影响着焊接接头的质量和性能。
首先,我们来探讨焊接材料的塑性变形机理。
塑性变形是指金属材料在受到外力作用下发生的可逆形变过程。
在焊接过程中,焊接材料会受到焊接电弧或热源的加热,从而达到熔化温度。
一旦焊接材料熔化,它就会变得可塑性,可以通过外力进行塑性变形。
焊接材料的塑性变形主要是通过热塑性变形和冷塑性变形来实现的。
热塑性变形是指焊接材料在高温下受到外力作用时发生的塑性变形。
在焊接过程中,焊接材料受到焊接电弧或热源的加热,使其达到熔化温度,然后通过焊接工具施加的外力进行塑性变形。
热塑性变形的优点是能够使焊接接头的形状更加精确,缺点是容易产生热裂纹和变形。
冷塑性变形是指焊接材料在冷却过程中受到外力作用时发生的塑性变形。
在焊接过程中,焊接材料在熔化后会迅速冷却,形成焊缝。
在冷却过程中,焊接材料会受到外力的作用,使其发生塑性变形。
冷塑性变形的优点是能够增加焊接接头的强度和硬度,缺点是容易产生冷裂纹和变形。
除了塑性变形,焊接材料的断裂机理也是非常重要的。
断裂机理是指焊接材料在受到外力作用下发生破裂的过程。
在焊接过程中,焊接材料会受到焊接电弧或热源的加热和冷却过程的影响,从而产生内部应力。
如果这些内部应力超过了焊接材料的强度极限,就会导致焊接接头的断裂。
焊接材料的断裂机理主要有两种,一种是脆性断裂,另一种是韧性断裂。
脆性断裂是指焊接材料在受到外力作用下迅速破裂的过程。
脆性断裂的特点是断口平整,没有明显的塑性变形。
脆性断裂主要是由于焊接材料中存在的缺陷或内部应力引起的。
韧性断裂是指焊接材料在受到外力作用下发生延展性破裂的过程。
韧性断裂的特点是断口不平整,有明显的塑性变形。
韧性断裂主要是由于焊接材料中的晶粒细化和断口韧化等因素引起的。
综上所述,焊接材料的塑性变形和断裂机理是影响焊接接头质量和性能的重要因素。
第5章 金属的塑性变形

塑性变形及随后的加热,对金属材料组织和性能有 显著的影响。了解塑性变形的本质、塑性变形及加 热时组织的变化,有助于发挥金属的性能潜力,正 确确定加工工艺
单晶体的塑性变形 多晶体的塑性变形 变形后金属的回复与再结晶 金属的热塑性变形
1
第一节 单晶体的塑性变形 一、单晶体纯金属的塑性变形
T再与ε的关系
如Fe:T再=(1538+273)×0.4–273=451℃
39
2)、金属的纯度 金属中的微量杂质或合金元素,尤其高熔点元素, 起阻碍扩散和晶界迁移作用,使再结晶温度显著 提高。
40
3)、再结晶加热速度和加热时间 提高加热速度会使再结晶推迟到较高温度发生;
延长加热时间,使原子扩散充分,再结晶温度降低。
3、产生织构:金属中的晶粒的取向一般是无规则的随机排列,尽管每个 晶粒是各向异性的,宏观性能表现出各向同性。当金属经受大量(70% 以上)的一定方向的变形之后,由于晶粒的转动造成晶粒取向趋于一致, 形成了“择优取向”,即某一晶面 (晶向)在某个方向出现的几率明 显高于其他方向。金属大变形后形成的这种有序化结构叫做变形织构, 它使金属材料表现出明显的各向异性。 24
在应力低于弹性极限σ e时, 材料发生的变形为弹性变形; 应力在σ e到σ b之间将发生的变 形为均匀塑性变形;在σ b之后 将发生颈缩;在K点发生断裂。
s e
弹性变形的实质是:在应力的作用下,材料内部的原子偏离了平衡位 置,但未超过其原子间的结合力。晶格发生了伸长(缩短)或歪扭。 原子的相邻关系未发生改变,故外力去除后,原子间结合力便可 2 以使变形的塑性:fcc>bcc>chp
8
哪个滑移系先滑移?
当作用于滑移面上滑移方向的切应力分量c(分切应力)大于等于一定的 临界值(临界切应力,决定于原子间结合力),才可进行。
金属的断裂条件及断口

金属的断裂条件及断口金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。
断裂是裂纹发生和发展的过程。
1. 断裂的类型根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。
韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。
脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。
韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。
韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。
2. 断裂的方式根据断裂面的取向可分为正断和切断。
正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。
切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。
3. 断裂的形式裂纹扩散的途径可分为穿晶断裂和晶间断裂。
穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。
晶间断裂:裂纹穿越晶粒本身,脆断。
机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。
断裂是机器零件最危险的失效形式。
按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。
韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。
脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。
宏观脆性断裂是一种危险的突然事故。
脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。
因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。
. 金属材料产生脆性断裂的条件(1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。
温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。
(2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。
谈塑性变形与断裂的关系

谈塑性变形与断裂的关系----------------------塑性变形是断裂的基础,断裂是塑性变形的最终结果。
0 引言塑性变形指的是永不可恢复的变形,其具体的机制包括位错滑移、孪生、晶界滑动、扩散性蠕变。
其中一般情况下位错滑移起主要作用,孪生多发生在低温、高应变速率时滑移系少的材料中,而晶界滑动与扩散性蠕变一般在高温下发生。
断裂指材料在应力的作用下分离两个或多个部分的现象。
如若有上文四种机制的作用,我们便可认为材料发生了塑性变形,因此,讨论塑性变形与断裂的关系就可转化为讨论各种不同断裂的机理与塑性变形机制的关系,以明确塑性变形在断裂中的作用,阐明他们之间的必然联系。
本文核心论点为:塑性变形是断裂的基础,断裂是塑性变形的必然结果。
接下来讨论以下从八个具有不同断裂机理的断裂,以阐明塑性变形与断裂的关系,论证塑性变形是断裂的基础,断裂是塑性变形的最终结果。
1延性断裂延性断裂是指在断裂过程中,塑性变形起主导作用的断裂形式,包括切离和微孔聚集型断裂。
首先来看切离断裂,单晶体在拉伸塑性变形中只有一个滑移系统开动(如hcp中只沿基面滑移的情况),试样将沿着滑移面分离,对于多晶体,多滑移系统同时动作,协调变形,试样将经过均匀变形和颈缩等阶段,变形至颈部截面积为零时断裂,形成尖锥状的断口。
切离断裂是位错无限发展的结果,位错运动贯穿切离断裂的始终,没有位错不断滑移,就不可能发生切离断裂。
由微孔的形核、长大聚合而导致的断裂叫做微孔聚集型断裂,微孔形成的机制共有三种,分别为空位扩散机制、强化相脱粘机制与强化相碎裂机制。
空位的形成是由于位错割阶的非保守运动而产生的,空位的扩散聚集成为微孔,其过程是通过位错的运动。
而强化相脱粘机制与强化相碎裂机制是由于强化相在材料中阻碍滑移,使得强化相前方位错塞积,应力集中,当应力大于强化相强度或者强化相与基体的结合强度时,就导致了强化相本身的折断或者脱离,也即在此处产生了微孔。
而微孔的长大与连接也是塑性变形的结果:微孔间的材料形成“内颈缩”并随位错运动越来越细,内颈缩断裂,使得微孔与最近微孔相连,微孔不断聚合导致裂纹扩展,最终断裂。
学习情境三金属材料塑性变形对组织性能的影响

2. 晶粒位向的影响
由于各相邻晶粒位向不同,当一处利于滑移方向晶粒发生滑 移时,必然受到周围位向不同的其他晶粒的约束,使滑移受 到阻碍,从而提高金属塑性变形抗力。
(二) 晶粒大小的影响 晶粒越细,其强度和硬度越高。
细晶强化
晶粒越细晶界越 ,不同位向的晶粒也越 滑 移抗力 强度
晶粒越细晶粒数目越 变形均匀性 应力集 中,裂纹过早产生、扩展 塑性、韧性
一、金属材料变形特性
材料在外力的作用下,变形过程一般可分三个阶段:弹性 变形、塑性变形和断裂。其中对组织和性能影响最大的是 塑性变形阶段。
单晶体的滑移
多晶体
二、单晶体的塑性变形
单晶体塑性变形基本形式:滑移和孪生。
(一)滑移
1、滑移定义
滑移:指晶体在切应力的作用下, 晶体的一部分沿一定的晶面 (滑移面)上的一定方向(滑移方向)相对于另一部分发生滑动。 滑移带:当试样经过塑性变形后,在显微镜下观察,可在表面 看到许多相互平行的线条,称之为滑移带。 若干条滑移线组成一个滑移带。
三、 多晶体的塑性变形
单个晶粒变形与单晶体相似。
而多晶体变形是一个不均匀的塑性变 形过程。
(一)晶界及晶粒位向差的影响
1. 晶界的影响
当位错运动到晶界附近时,由于 晶界处的原子排列紊乱,缺陷和 杂质多,能量高,对位错的滑移
起阻碍作用,位错受到晶界的阻
碍而堆积起来,称位错的塞积。使 位错运动阻力增大,从而使金属 的变形抗力提高。
位错运动使其由冷塑性变形时的 无序状态变为垂直分布,形成亚 晶界,这一过程称多边形化。
回复带来的组织性能变化 (1) 宏观应力基本去除,微观应
力仍然残存;
(2)力学性能,如硬度和强度稍 有降低,塑性稍有提高;
金属的塑性变形

在某些特定条件下,金属晶体的一部分相对于另一部分沿一定轴进 行镜像对称的移动,形成孪晶。
扩散机制
金属在高温下,原子扩散能力增强,通过原子间的相互移动实现塑 性变形。
应力-应变关系与曲线分析
应力-应变关系
描述金属在塑性变形过程中所受应力 与产生的应变之间的关系。应力是单 位面积上的内力,应变是物体形状或 体积的改变程度。
热处理工艺改进
退火处理
通过退火处理可以消除金属材料内部的残余应力,改善其组织结 构和力学性能,从而提高其塑性变形能力。
正火处理
正火处理可以使金属材料获得细化的晶粒和均匀的组织,提高其 强度和塑性。
回火处理
回火处理可以消除淬火应力,稳定金属材料的组织和性能,进一 步提高其塑性变形能力。
微观组织调控手段
热处理工艺对塑性影响
01
退火处理
退火处理可以消除金属内部的残余应力,改善组织结构,提高其塑性。
例如,冷加工后的金属经过退火处理,可以恢复其塑性和韧性。
02
正火处理
正火处理可以使金属获得细化的晶粒和均匀的组织,从而提高其塑性和
韧性。正火处理常用于改善中碳钢的切削性能和力学性能。
03
淬火处理
淬火处理可以使金属获得马氏体组织,提高其硬度和强度,但会降低其
金属的塑性变形
目 录
• 塑性变形基本概念与原理 • 金属塑性变形过程中的组织结构演变 • 影响金属塑性变形能力因素探讨 • 金属塑性变形实验方法及技术应用 • 提高金属材料塑性变形能力策略探讨 • 总结:金属塑性变形研究意义与未来发展趋势
塑性变形基本概念与
01
原理
塑性变形定义及特点
塑性变形定义
利用电子显微镜的高分辨率和 高放大倍数,观察金属的微观 组织和结构缺陷,如位错、层 错、孪晶等。这些信息有助于 深入了解金属的塑性变形机制 和强化机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料塑性变形与断裂的关系
摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。
材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。
任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。
金属塑性的好坏表明了它抑制断裂能力的高低。
关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀
氢脆高温断裂
一、解理断裂与塑变的关系
解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。
解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。
断裂面沿一定的晶面发生,这个平面叫做解理面。
解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。
形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。
第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。
第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。
舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。
从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。
解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。
二、准解理断裂与塑变的关系
准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。
产生原因:。