有机小分子荧光探针的研究ppt课件

合集下载

有机小分子探针

有机小分子探针

有机小分子探针黄美英 2014010714摘要细胞内生物活性化合物在细胞内作用靶点的确定是化学生物学和药物开发中的关键问题之一。

作为功能蛋白质组学中的一项重要技术, 小分子探针在确定生物活性化合物细胞内作用靶点的研究中扮演着举足轻重的角色。

PH值在生理及病理过程如受体介导的信号传导、酶活性、细胞生长和凋亡、离子运输和稳态调节、钙含量调节、细胞内吞作用、趋化作用、细胞粘附和肿瘤生长等过程中起到非常重要的作用。

本文介绍了几种小分子探针原理,技术和方法,并通过列举近年来该技术应用的成功示例进一步阐明小分子生物活性探针技术的应用原理和重要性。

关键词生物活性化合物;小分子探针;PH值;DNA探针技术一绪论荧光探针是化学传感技术领域在上个世纪八十年代的一项重大发现,目前己有愈来愈多的荧光探针应用于分子水平上进行实时检测。

荧光检测技术由于灵敏度高,操作简便,可视性强,且对细胞、生物体的损伤小,成为了用于临床分析、环境监测、生物分析及生命科学等领域不可缺少的检测工具[1]。

分子荧光探针的检测对象包括各种离子、小分子、自由基、多肽、酶,甚至还包括温度、极性、粘度等。

人们可以使用荧光显微镜、荧光光谱仪、流式细胞仪、荧光活体成像系统等仪器获取荧光探针检测的相关信息,借助荧光成像技术我们能够实时检测活细胞内分子或离子的浓度以及生物大分子结构的变化过程,也可以获得关于生物组织生理代谢过程的相关信息,还可以实现生物活体的荧光成像[2]。

另一方面研究者们能够根据需要设计合成出满足“特定要求”的探针分子,基于此,荧光探针和荧光检测技术在生命科学的发展中起到举足轻重的作用[3]。

通常一个光探针分子由荧光团(Fluorophore)和识别基团(Receptor)通过连接臂(Spacer)以共价键方式连接,荧光团作为信号转换器将识别行为转化为光信号,可以通过荧光的增强或淬灭乃至光谱位移的变化对分析物进行识别。

荧光探针分子具有非常大的可塑性和应用潜力,通过对有机分子结构进行巧妙设计和改造,就能够设计合成出满足各种需要的荧光探针。

2荧光探针设计原理

2荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。

其主要组成部件有三个(图1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。

这种结合可以通过配位键,氢键等作用实现。

2.信号报告基团(发色团,F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。

信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。

3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。

连接基团的合适与否将直接影响是否有输出信号的产生。

信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。

图1.1荧光探针的结构1.1.1荧光探针的一般设计原理(1)结合型荧光探针[21]图1.2共价连接型荧光探针结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。

该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。

在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。

(a)受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500nm以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。

(b)受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。

荧光探针的应用与进展课件

荧光探针的应用与进展课件

环境监测
污染物检测
荧光探针可以用于检测水体、土 壤等环境中的有害物质,如重金 属、有机污染物等,为环境污染 治理和生态保护提供技术支持。
生物毒性测试
荧光探针可以用来评估化学物质 对生物体的毒性作用,通过观察 荧光信号的变化,快速、准确地
评估环境中有害物质的风险。
生态研究
利用荧光探针标记生物个体或种 群,通过观察荧光信号的分布和 动态变化,研究生物在生态系统
开发适用于环境监测和食品安全检测的荧光探针,保障人类健康和 生态安全。
加强荧光探针的基础研究与人才培养
基础研究投入
加大对荧光探针基础研究的投入 ,支持科研团队开展创新性研究 ,推动荧光探针技术的持续发展 。
人才培养与交流
加强荧光探针领域的人才培养和 学术交流,鼓励跨学科合作与交 流,促进荧光探针技术的普及和 应用。
荧光探针与其他技术的结合应用
总结词
荧光探针与其他技术的结合应用是荧光探针领域的重 要发展方向,通过将荧光探针与其他技术相结合,可 以实现更高效、更准确的检测和诊断。
详细描述
随着各种技术的不断发展,研究者们将荧光探针与其 他技术相结合,如光学成像技术、质谱技术、纳米技 术等。这些技术的结合可以充分发挥各自的优势,提 高荧光探针的应用范围和效果。例如,将荧光探针与 光学成像技术相结合,可以实现生物体内的高清成像 和可视化检测;将荧光探针与质谱技术相结合,可以 实现蛋白质组学和代谢组学的高灵敏度检测。
荧光探针的分类
总结词
荧光探针可以根据激发波长、发射波长、荧光染料类型等进 行分类。
详细描述
根据激发波长,荧光探针可以分为紫外激发和可见光激发两 类;根据发射波长,可以分为长波长发射和短波长发射两类 ;根据荧光染料类型,可以分为荧光染料、荧光量子点、荧 光蛋白等类型。

常见的小分子荧光探针种类

常见的小分子荧光探针种类

常见的小分子荧光探针种类1.引言1.1 概述小分子荧光探针是一类被广泛应用于生物领域的化学工具,通过其具有的荧光性质,可以用于生物成像、药物传递、疾病诊断等方面。

小分子荧光探针具有分子结构简单、稳定性好、探测灵敏度高等特点,在生物学研究中起着重要的作用。

小分子荧光探针的种类繁多,根据其不同的结构和功能特点,可以分为许多不同的类别。

常见的小分子荧光探针包括有机荧光探针、金属配合物荧光探针、聚合物荧光探针等。

有机荧光探针是指由有机化合物构成的荧光探针,其分子结构多样,可以通过调整结构来实现特定的探测目标。

常见的有机荧光探针包括荧光染料、荧光蛋白等。

荧光染料具有较强的荧光强度和良好的化学稳定性,可以用于细胞成像、生物传感等领域。

荧光蛋白是一类来源于特定生物体的蛋白质,其具有自身天然的荧光性质,可以通过基因工程技术进行改造和调整,广泛应用于生物研究中。

金属配合物荧光探针是指由金属离子与配体形成的荧光探针,其具有较强的荧光性能和较长的寿命。

金属配合物荧光探针具有选择性较高的特点,可以用于特定金属离子的探测和诊断。

常见的金属配合物荧光探针包括铜离子、锌离子、铁离子等的配合物。

聚合物荧光探针是指由高分子聚合物构成的荧光探针,其具有较好的溶解性和稳定性。

聚合物荧光探针可以通过调整聚合物的结构和链长来实现特定的探测需求。

常见的聚合物荧光探针包括聚合物分子探针、聚合物纳米探针等。

总之,常见的小分子荧光探针种类繁多,具有不同的结构和功能特点,可以根据具体的研究需求选择适合的荧光探针进行应用。

这些小分子荧光探针为生物学研究提供了有力的工具,有助于深入理解生命的基本过程和疾病的发生机制。

未来,随着技术的不断发展和突破,相信小分子荧光探针在生物领域的应用会得到更广泛的推广和应用。

1.2文章结构1.2 文章结构本文主要围绕"常见的小分子荧光探针种类"展开讨论。

文章分为引言、正文和结论三个部分。

在引言部分,将进行概述、文章结构和目的的介绍。

第十三章-荧光分析法PPT课件

第十三章-荧光分析法PPT课件
内部能量转换
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
.
6
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
.
8
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
.
24
三、影响荧光强度的外部因素
温度 溶剂 酸度 散射光
学习目的: 提高荧光分析的灵敏度和选择性
.
25
1 溶剂对荧光的影响
萘在下列哪种溶剂中的荧光强度最强? A 1-氯丙烷 B 1-溴丙烷 C 1-碘丙烷 D 1,2-二氯丙烷
1. 一般情况下,荧光波长随着溶剂极性的增强而长移, 荧光强度也增强。
OH N
C H2
芴φf 1.0
O N Mg1/2
.
21
(三)分子的刚性和共平面性
CH3
SO3Na
N
CH3 CH3
SO3NaN CH3
H CCH
H CC H
结论:在相同的长共轭分子中,分子的刚性和共 平面性越强,荧光效率越大,荧光波长长移
(四)取代基效应
给电子基团 -NH2、 -OH、-OCH3、-NHR、-NR2荧 光效率提高、荧光波长长移

• • • •
cx
cs
.
34
二、定量分析方法
2、比例法(对照法)
Fs F0 KCs
FxF0KCx
Cx
Fx Fs

荧光探针的应用与进展PPT课件

荧光探针的应用与进展PPT课件

Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
结论 利用所合成制备的两种不同的Polymer-Py/γ-CD主客体复合物, 实现了对四种不同蛋白样品的特异性识别检测。不同的聚合物链与不 同的蛋白的结合常数不同,因而所构建的聚合物基质荧光探针对蛋白 具有良好的选择性。而通过调节聚合物链的长度,还可进一步调节蛋 白识别检测的灵敏度和选择性。 这个方法不但制备简单、普适性强,而且具有较高的荧光检测灵敏度 和较强的蛋白识别选择性,为构建新型聚合物基质的主客体复合物荧 光探针的制备及蛋白识别分析提供了新的研究思路。
Analytical Chemistry(Anal. Chem., 2016, 88,1821-1826)
荧光探针的应用进展
Simultaneous Near-Infrared and Two-Photon In Vivo Imaging of H2O2 Using a Ratiometric Fluorescent Probe based on the Unique Oxidative Rearrangement of Oxonium 利用比率荧光探针实现在体内对H2O2的近红外和双光子成像
给电子取代基如:-NH2,-NR2,OH,-OR和-CN。 吸电子取代基如:-C = O,COOH,-CHO,-NO2和-
外因
溶液的PH值、温度 激发光源的选择 溶剂的性质如极性、介 电常数 染料分子间相互作用等
荧光探针的选择原则
(1)荧光的定性或定量 定性一般选择单波长激发探针,定量最好选择双波长激发的比率探针 (2)荧光探针的特异性和毒性 (3)荧光探针的适用PH (4)激发波长与发射波长 斯托克斯位移 (5)荧光强度与荧光寿命 (6)光稳定性、漂白性 (7)荧光量子产率

荧光探针的原理和应用

荧光探针的原理和应用

荧光探针的原理和应用1. 什么是荧光探针荧光探针是一种特殊的化学荧光物质,具有在一定条件下吸收和发射光的能力。

作为一种广泛应用于生物医学研究领域的工具,荧光探针可用于定量和定性分析、分子成像、检测环境变化等。

2. 荧光探针的工作原理荧光探针的发光原理基于分子的电子能级跃迁。

通常,荧光分子吸收光能后,电子从基态跃迁到激发态,接着由激发态发光跃迁到基态。

这种电子能级跃迁产生的光称为荧光。

荧光探针的发光强度与探针浓度和环境因素等因素有关。

2.1 吸收光谱荧光探针的吸收光谱是指在不同波长的光照射下,探针分子吸收光的强度特性。

吸收光谱的特征峰可以用于确定探针的波长范围。

2.2 发射光谱荧光探针的发射光谱是指在激发光下,激发后的探针分子发出的荧光光谱。

发射光谱的特征峰可用于定量和定性分析。

2.3 荧光量子产率荧光量子产率是指荧光发射过程中探针分子发射荧光光子的比例,衡量了荧光探针的发光效率。

高荧光量子产率的荧光探针对于灵敏检测尤为重要。

3. 荧光探针的应用领域荧光探针在生物医学研究中具有广泛的应用。

下面列举了一些常见的应用领域:•分子生物学研究:荧光探针可用于DNA/RNA检测、蛋白质标记、细胞示踪等分子生物学研究,以研究生物分子的结构和功能。

•药物筛选与开发:荧光探针可用于药物分子的荧光标记,以研究药物的靶向性、分布和代谢等,有助于药物筛选和开发。

•生物传感器:荧光探针结合特定受体或基质,可用于检测环境变化、生物分子测定等,如pH传感器、离子传感器等。

•医学成像:荧光探针可用于生物体内部的分子成像,如肿瘤检测、血管成像等,具有较高的诊断和监测价值。

4. 荧光探针的发展趋势随着科学技术的不断进步,荧光探针的应用领域将不断扩展,并且呈现出以下发展趋势:1.高灵敏度:研究人员正在努力开发具有更高荧光量子产率和更低检测限度的荧光探针,以实现对低浓度分子的高灵敏检测。

2.多功能性:为了满足多样化的研究需求,研究人员致力于开发具有多种功能的荧光探针,如多种靶点检测、多种荧光发光颜色选择等。

荧光探针PPT课件

荧光探针PPT课件
.
荧光探针
1
.
什么是荧光探针?
荧光探针就是以荧光物质作为指示剂,并在一定波长 光的激发下使指示剂产生荧光,通过检测所产生的荧光实 现对被检测物质的定性或者定量分析。
荧光探针受到周围环境的影响,使其发生荧光发射 发生变化,从而使人们获知周围环境的特征或者环境中 存在的某种特定信息。
2
.
荧光探针的优点
12
.
Thanks for attention
13
7
.
分子信标是一种由寡聚核酸形成的发夹型分子。它包 括一个环,环由与靶分子互补的核酸碱基序列组成; 干为两列互补的碱基序列,在分子信标中,荧光基团 共价地连接在其干部分的一个末端,猝灭基团也靠共 价键连接在干部分的另一末端。
8
.
分子信标未与靶分子结合时,由于干部分两列互 补碱基对之间的氢键连接,使得荧光基团与猝灭基团 距离很近,荧光基团将能量转移给猝灭基团而发生荧 光猝灭;当分子信标与序列互补的靶分子结合时,环 与靶序列杂交而形成了比干部分更长更稳定的碱基对 氢键连接,分子信标发生构型的变化,干部分被打开, 从而使荧光基团远离猝灭基团,荧光基团产生的荧光 得到几乎100%恢复,且所检测到的荧光强度与溶液中 靶标的量成正比。
Fluorephore Spacer hv
F
S
Receptor R
Analyte
.
strongly fluorescent
识别基团决定了探针分子的选择性和特异性,荧光基 团则决定了识别的灵敏度,而连接体部分则可起到分 子识别枢纽的作用。
4
.
荧光基团和识别基团二者连接在同一个共轭体系中,荧 光基团是该体系中最基本的组成部分,一般为芳香族的 稠环化合物,其目的是将分子识别转换成不同形式的荧 光信号,如荧光强度的增强或减弱、荧光寿命的变化、 光谱的移动等。识别基团是为了实现这一选择性识别而 合成的探针结构单元,是决定荧光分子探针和被检测体 结合的灵敏度与选择性的部分,通常也称为受体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灵敏度高 选择性好 使用方便 成本低 不需预处理 不受外界电磁场影响 远距离发光
3
荧光分子探针的结构
荧光分子探针通常由 三部分组成:
Fluorephore Spacer
识别基团(receptor)
hv
报告基团(fluorophore)
连接体部分(spacer)
F
S
Receptor R
结合被分析物
基于置换法设计的荧光探针
荧光基团
该原理是利用识别基团分别与荧光基团和被分析物结合能 力的不同来实现对被分析物的检测。
识别基团和荧光基团形成络合物,当被分析物加入到该体系中时,由 于识别基团与被分析物的结合能力要强于识别基团与荧光基团的结合能力, 因此被测物将荧光基团置换出来,从而引起了整个体系荧光等化学参数的 变化,进而为仪器或者裸眼识别,该原理常用于设计阴离子荧光探针。
15
PET1 识别基团对荧光团的PET过程发生和受阻的前线轨道理论解释
第一种是识别基团对荧光基团的电子转移(PET1),如图1.9所示, 即识别基团的HOMO轨道介于荧光基团的HUMO和LUMO轨道之间,当被 分析物不存在时,荧光基团被激发后,识别基团的HOMO轨道的电子转移 到荧光基团的HOMO轨道,致使荧光基团被激发到LUMO轨道上的电子无 法回到基态而难以产生荧光,导致荧光淬灭,即PET1过程发生。
6
作为荧光基团的香豆素和作为识别基团的邻氨基苯硫
醚以席夫碱相连,加入锌离子后,与硫醚上的硫原子、席 夫碱上的氮原子及香豆素上的氧原子配位得到结构2,抑 制了席夫碱上C=N键的旋转,实现了荧光从无到有的变化
1
2
基于键合-信号输出法设计的锌离子荧光探针
7
2、置换法
识别基团 结合荧光基团
被分析物
识别基团
14
PET识别分析物理论示意图
PET过程可以用前线轨道理论具体解释:当识别基团 不存在时,荧光团被光激发后,其最高占据轨道(HOMO) 的一个电子跃迁到最低空轨道(LUMO),能够产生荧光;
若外来识别基团的HOMO或LOMO轨道介于荧光团两轨 道能量之间,此时就可以发生识别基团与荧光团之间的电 子转移而导致荧光的猝灭。即PET过程阻止了荧光团的一 个电子从激发态到基态的非辐射跃迁途径,降低了荧光团 的量子产率,表现为荧光强度的减弱或淬灭。
12
荧光探针的响应机理
荧光分子探针主要有如下几种响应机理:
1、光诱导电子转移(PET, photo-induced electron transfer)
2、分子内电荷转移(ICT, intramolecular charge transfer)
3、荧光共振能量转移(FRET, fluorescence resonance energy transfer)
4、激基缔合物(excimer/exciplex)
13
1 光诱导电子转移(PET, photo-induced electron transfer)
光诱导电子转移是指电子给体或电子受 体受光激发后,激发态的电子给体与电子 受体之间发生电子转移的过程。
识别基团与被分析物结合之前,荧光基 团受激发,最终被光激发到激发态的电子 不能跃迁到基态,使得荧光基团的荧光淬 灭。而识别基团与被分析物结合后,PET过 程受阻,荧光基团的荧光得以恢复。
8
Cu2+
CN-
Cu(CN)2
3
4
化合物3以氟硼荧为荧光团修饰了DPA为识别基团,探 针本身荧光很强,但与铜离子络合后可形成结构3,从而淬 灭了氟硼荧的荧光,加入氰根离子后,由于铜离子与氰根离 子的结合常数更大,从而把作为荧光基团的氟硼荧衍生物从 络合状态中置换出来得到结构4,使之进入溶液,荧光恢复, 而其它的阴离子没有这样的现象,因此可以实现对氰根离子 的检测。
Analyte
strongly fluorescent
识别基团决定了探针分子的选择性和特异性,报告基 团则决定了识别的灵敏度,而连接体部分则可起到分 子识别枢纽的作用。
4
荧光分子探针的设计原理
荧光分子探针的设计原理主要有以下几种: 键合-信号输出法、置换法和化学计量计法。 1、键合-信号输出法
荧光 连接体 识别 被分析物
一、探针分子和被分析物发生化学反应后形成共价化合物(I); 二、被分析物催化探针分子反应生成两种新物质(II)。 一般而言,基于化学计量计原理设计的荧光分子探针通常具有不
可逆性和较好的选择性。
11
基于化学计量计法设计的次氯酸根离子荧光探针
根据次氯酸根可以氧化羟胺的特性,设计合成 了化合物5,当次氯酸根存在时可氧化羟胺结构, 使罗丹明开环,从而形成结构6,最终进一步水解 为罗丹明6G本身7,而产生强烈的荧光。而其它氧 化性分子没有这样的特性,因此可以实现对水相 中次氯酸根的高选择性检测。
基团
基团
信号输出
键合-信号输出法是指将探针中的识别基团和荧光基团 通过共价键连接起来设计荧光探针的方法。

5
当识别基团与被分析物结合时会引起荧 光基团的化学环境发生变化,通过颜色的 改变、光谱的移动、荧光强度的增减等现 象来表现,这些变化可被裸眼或者仪器识 别。这是目前为止在设计荧光探针中应用 最广泛的方法 。
9
3、化学计量计法
探针分子 被分析物
新物质A
探针分子 被分析物
中间体
新物质B 新物质C
基于化学计量计设计的荧光探针 (I)被分析物和探针分子反应形成了共价化合物; (II)被分析物催化探针分子反应生成两种新物质
10
化学计量计法是利用探针分子和被分析物之 间发生的特定化学反应(一般是不可逆反应) 来改变探针所处的化学环境,从而对被分析物 进行识别的一种方法。根据化学计量计法设计 的探针可以称为化学计量计,主要包括两种类 型:
有机小分子荧光探针的研究
1
什么是荧光探针?
荧光探针是建立在光谱化学和光学波导 与测量技术基础上,选择性的将分析对象 的化学信息连续转变为分析仪器易测量的 荧光信号的分子测量装置。
荧光探针受到周围环境的影响,使其 发生荧光发射发生变化,从而使人们获知 周围环境的特征或者环境中存在的某种特 定信息
2
荧光分子探针的优点
当识别基团与被分析物结合后,识别基团HOMO轨道能量降低,使 PET过程受阻,这样荧光基团的激发态电子可以返回基态,荧光恢复 。
相关文档
最新文档