常用荧光探针小结

合集下载

常见的荧光探针及其在活性氧检测中的应用

常见的荧光探针及其在活性氧检测中的应用

常见的荧光探针及其在活性氧检测中的应用作者:付艳华来源:《当代化工》2019年第02期摘 ;;;;;要:荧光探针具有高灵敏度、高活性,在物质成分测定及反应进程监测中得到了广泛的应用。

常见的荧光探针根据荧光团的不同可以分为香豆素类、氟硼荧染料、菁染料、萘酰亚胺类、荧光素和罗丹明类。

活性氧(Reactive Oxygen Species, ROS)与各种细胞过程有关,主要包括转录因子的激活、基因表达、细胞增殖和死亡。

由于活性氧的寿命短、活性高,且会与蛋白质、DNA、脂质膜等迅速反应,给其检测工作带来了困难。

荧光探针作为一种高灵敏度的检测方法,在活性氧的检测工作中起到了重要作用。

在介绍了不同荧光探针的基础上,着重对检测活性氧的荧光探针进行了详细的分类与描述。

关 ;键 ;词:活性氧;荧光探针;荧光团中图分类号:TQ422 ;;;;;;文献标识码: A ;;;;;;文章编号: 1671-0460(2019)02-0384-04Abstract: Fluorescent probes have high sensitivity and high activity, so they have been widely used in the monitoring of material composition and reaction process. Common fluorescence probes can be divided into coumarin, BODIPY, cyanine, naphthalimides, fluoresceins and rhodamines probes. Reactive oxygen species (ROS) are involved in various cell processes, including transcription factor activation, gene expression, cell proliferation and death. Due to the short life and high activity of reactive oxygen, it is easy to react with protein, DNA, lipid membrane and so on, so it is very difficult to detect ROS. As a high sensitive detection method, fluorescent probe plays an important role in the detection of ROS. In this paper, different fluorescent probes were introduced, especially the fluorescence probes for the detection of reactive oxygen species.Key words: Reactive oxygen species; Fluorescent probe; Fluorophore荧光是分子从激发单重态回到基态的过程中发射出的光,然而大多数的待测分子本身没有荧光特性,而且在化学反应的过程中,也很少能够发出荧光。

常见的小分子荧光探针种类

常见的小分子荧光探针种类

常见的小分子荧光探针种类1.引言1.1 概述小分子荧光探针是一类被广泛应用于生物领域的化学工具,通过其具有的荧光性质,可以用于生物成像、药物传递、疾病诊断等方面。

小分子荧光探针具有分子结构简单、稳定性好、探测灵敏度高等特点,在生物学研究中起着重要的作用。

小分子荧光探针的种类繁多,根据其不同的结构和功能特点,可以分为许多不同的类别。

常见的小分子荧光探针包括有机荧光探针、金属配合物荧光探针、聚合物荧光探针等。

有机荧光探针是指由有机化合物构成的荧光探针,其分子结构多样,可以通过调整结构来实现特定的探测目标。

常见的有机荧光探针包括荧光染料、荧光蛋白等。

荧光染料具有较强的荧光强度和良好的化学稳定性,可以用于细胞成像、生物传感等领域。

荧光蛋白是一类来源于特定生物体的蛋白质,其具有自身天然的荧光性质,可以通过基因工程技术进行改造和调整,广泛应用于生物研究中。

金属配合物荧光探针是指由金属离子与配体形成的荧光探针,其具有较强的荧光性能和较长的寿命。

金属配合物荧光探针具有选择性较高的特点,可以用于特定金属离子的探测和诊断。

常见的金属配合物荧光探针包括铜离子、锌离子、铁离子等的配合物。

聚合物荧光探针是指由高分子聚合物构成的荧光探针,其具有较好的溶解性和稳定性。

聚合物荧光探针可以通过调整聚合物的结构和链长来实现特定的探测需求。

常见的聚合物荧光探针包括聚合物分子探针、聚合物纳米探针等。

总之,常见的小分子荧光探针种类繁多,具有不同的结构和功能特点,可以根据具体的研究需求选择适合的荧光探针进行应用。

这些小分子荧光探针为生物学研究提供了有力的工具,有助于深入理解生命的基本过程和疾病的发生机制。

未来,随着技术的不断发展和突破,相信小分子荧光探针在生物领域的应用会得到更广泛的推广和应用。

1.2文章结构1.2 文章结构本文主要围绕"常见的小分子荧光探针种类"展开讨论。

文章分为引言、正文和结论三个部分。

在引言部分,将进行概述、文章结构和目的的介绍。

荧光探针的研究及应用

荧光探针的研究及应用

荧光探针的研究及应用随着科技的不断发展,荧光探针逐渐成为生命科学研究领域中不可缺少的重要工具。

荧光探针是一种能够发射出荧光信号的分子,在分子生物学、生物医学和化学生物学等领域中有着广泛的应用。

它们可以被用来研究细胞内的分子相互作用、识别生物分子、分析细胞功能,并可以在体内用作活体成像和药物筛选的工具。

本文将简要介绍荧光探针的基本原理、常见的荧光探针类型和其在生物学研究中的应用。

一、荧光探针的基本原理荧光探针的基本原理是荧光共振能量转移(FRET),其通过将荧光分子与生物分子(生物样品)耦合,使两者之间发生相互作用,从而产生能量转移。

FRET 能量转移是从能量接受者的激发态到另一个分子的荧光染料的发射态的一种非辐射性能量转移。

在FRET中,激发荧光染料的光子会被共振耦合到另一个染料的激发态,从而使其发出荧光光子。

这样,在激发荧光染料的时候,可以用荧光染料的荧光光子来检测另一个染料的存在和位置。

荧光探针对于荧光光子的发射特征和其它的生化参数是很敏感的,所以它们可以被用来探测各种细胞和分子。

二、常见的荧光探针类型1. 荧光染料:荧光染料是最常见的荧光探针类型之一,它们有着广泛的应用,可以被用来标记蛋白质、核酸等生物分子。

常见的荧光染料包括荧光素、草铵膦、偶氮染料等。

2. 荧光蛋白:荧光蛋白是一种具有自发荧光性质的蛋白质,其最早源自于水母Aequorea victoria。

荧光蛋白可以用来跟踪胞内或胞外的重要过程,如蛋白质、核酸合成、信号传递等。

3. 量子点:量子点是一种半导体纳米粒子,具有窄的发射光谱、强的光稳定性和较大的荧光量子产率。

这些特点使得量子点成为新一代高亮度及高灵敏度的荧光探针。

三、荧光探针在生物学研究中的应用荧光探针广泛地应用于细胞内信息传递、化学生物学、生物传感、药物筛选和临床诊断等方面。

以下为举几个常见的案例:1. 细胞内信息传递:荧光探针可被用于研究细胞内信号转导、磷酸化和蛋白质相互作用等过程。

分析化学中的荧光探针及其应用

分析化学中的荧光探针及其应用

分析化学中的荧光探针及其应用荧光探针是指能够发射特定波长的光的分子或离子。

它们在分析化学中得到了广泛应用,因为它们可以在微量、无害和无破坏性的条件下检测和定量各种化学物质。

本文将讨论荧光探针的类型、特点和应用,并展示其在化学分析中的作用。

一、荧光探针的类型荧光探针可以分为有机和无机两种类型。

有机荧光探针是碳基化合物,通常包括芳香环、环结构和吸受基等。

无机荧光探针是由无机物质组成,如离子、氧化物、硼氢化物和金属络合物。

荧光分子通常需要在可见光谱区或近紫外光区吸收较长波长的光,然后在发射光谱区处以较短波长的光发出荧光。

荧光探针颜色通常是明亮的绿色、黄色或红色。

荧光探针可以进行外部荧光检测和内部荧光检测。

外部荧光探测是通过分析样品周围散射的荧光来识别化学物质,而内部荧光探测则是将荧光探测剂添加到样品中进行分析。

二、荧光探针的特点荧光探针具有以下特征:1. 显著的选择性。

一些荧光探针只与特定化学物质反应,这限制了潜在误报。

2. 极高的灵敏度和分辨率。

这些探针可以检测到非常微量的物质。

3. 高度可扩展性。

荧光探针可以被改变以适应特定的检测目标。

4. 可用于实时监测。

对于许多应用程序,荧光探针可以实时检测反应过程。

5. 无毒。

荧光探针不会对环境或生物组织造成损害。

三、荧光探针的应用由于荧光探针的独特性质和特点,使它被广泛应用于许多领域中,包括医学、生物学、环境科学、食品安全和纳米技术等。

1. 医学应用荧光探针已被用于实现药物的快速检测、药物溶出行为的研究、细胞成像、癌症治疗、诊断和疗效评估等医学领域。

例如,在肿瘤治疗中,荧光探针可用于检测肿瘤转移并诊断疾病。

在心血管疾病的研究中,荧光探针可用于检测低密度脂蛋白(LDL)和高密度脂蛋白(HDL)。

2. 生物学应用荧光探针已被广泛用于生物学领域,包括细胞成像、分子传感、蛋白质纯化和内部器官追踪等方面。

例如,在细胞成像中,荧光探针可以用来区分不同的细胞类型,并监测其活动。

荧光探针在生物分析中的应用

荧光探针在生物分析中的应用

荧光探针在生物分析中的应用荧光探针作为一种重要的化学工具,在生物分析领域中得到了广泛应用。

其独特的荧光性质和分子识别能力使得荧光探针成为生物分析的理想选择。

本文将从荧光探针的原理、种类和在生物分析中的应用等方面进行探讨。

一、荧光探针的原理荧光探针是一种特殊的化学物质,其通过吸收外部能量后,能够发射特定波长的荧光。

荧光探针的原理基于分子的能级跃迁和荧光发射的过程。

当外界能量被注入到荧光探针分子中时,分子的电子会从基态跃迁到激发态。

在激发态停留一段时间后,电子会跃迁回基态并发射荧光。

荧光的强度和发射波长可用于分析和检测不同的物质。

二、常见的荧光探针种类1. 有机染料荧光探针:有机染料荧光探针是最早应用于生物分析的一类探针。

如常用的荧光标记剂FITC和Rhodamine B等,它们具有较好的荧光性能和化学稳定性,可用于细胞成像和蛋白质检测等。

2. 量子点荧光探针:量子点荧光探针是一种由半导体材料组成的纳米颗粒,具有尺寸可调、较窄的荧光发射光谱和较高的荧光量子产率等特点。

量子点荧光探针在细胞成像、癌症诊断等方面具有重要应用。

3. DNA探针:DNA探针是一类由DNA序列构成的荧光标记物,常用于基因检测、病毒检测等分子生物学研究。

通过合成具有特定序列的DNA探针,可以实现对特定基因序列的高选择性检测。

4. 蛋白质标记剂:荧光探针还可用于蛋白质的标记和鉴定。

通过将荧光探针与特定的抗体结合,可以实现对目标蛋白质在生物样品中的定量和定位检测。

三、荧光探针在生物分析中的应用1. 细胞成像:荧光探针可用于细胞内某种分子的动态观察。

通过将特定的荧光探针标记到目标分子上,如膜蛋白、胞质囊泡等,可以实现对细胞内生物过程的实时跟踪和定量分析。

2. 分子诊断:荧光探针在生物分子的检测和诊断中扮演着重要角色。

例如,通过荧光DNA探针可以实现基因突变的检测和药物靶点的鉴定,从而在疾病的早期诊断和治疗中起到关键作用。

3. 环境监测:荧光探针还可应用于环境监测。

荧光探针分类

荧光探针分类

荧光探针分类
荧光探针是一种用于生物学研究的重要工具,它可以通过荧光信号来标记和检测生物分子的存在和活动。

根据其结构和应用,荧光探针可以分为多种类型。

第一种类型是荧光染料。

荧光染料是一种具有荧光性质的有机分子,可以通过与生物分子结合来标记和检测它们。

常见的荧光染料包括荧光素、罗丹明、乙酰胆碱等。

荧光染料具有灵敏度高、稳定性好、光谱范围广等优点,因此被广泛应用于生物学研究中。

第二种类型是荧光蛋白。

荧光蛋白是一种天然存在的蛋白质,具有荧光性质。

它们可以通过基因工程技术进行改造,使其具有更好的荧光性能和特异性。

常见的荧光蛋白包括绿色荧光蛋白、红色荧光蛋白、黄色荧光蛋白等。

荧光蛋白具有标记特异性高、无毒性、可重复使用等优点,因此被广泛应用于细胞和分子生物学研究中。

第三种类型是荧光探针。

荧光探针是一种具有特定结构和功能的分子,可以通过与生物分子结合来检测其存在和活动。

常见的荧光探针包括荧光酶、荧光标记核酸探针、荧光标记抗体等。

荧光探针具有灵敏度高、特异性好、可定量检测等优点,因此被广泛应用于生物学研究和临床诊断中。

荧光探针是一种重要的生物学工具,可以通过荧光信号来标记和检测生物分子的存在和活动。

根据其结构和应用,荧光探针可以分为
荧光染料、荧光蛋白和荧光探针三种类型。

不同类型的荧光探针具有不同的优点和适用范围,研究人员可以根据实际需要选择合适的荧光探针进行研究。

药物化学中的荧光探针研究

药物化学中的荧光探针研究

药物化学中的荧光探针研究荧光探针是一种使用荧光作为信号输出的化合物,广泛应用于生物与药物化学领域。

它的独特性质使得荧光探针成为了研究药物分子的活性、相互作用、分布和代谢等方面的重要工具。

在本文中,我们将探讨药物化学中荧光探针的研究进展、应用领域以及未来发展趋势。

一、荧光探针的研究进展荧光探针的研究始于上世纪20年代,随着科学技术的提高和应用需求的增加,研究人员对荧光现象的理解逐渐深入,荧光探针的设计和合成也得到了极大的发展。

目前,已经有许多种类的荧光探针被应用于药物化学研究。

1. 荧光染料类探针荧光染料类探针是最常见的一类荧光探针,其具有良好的光稳定性和荧光效率。

这种探针一般由荧光染料和特异性药物结构组成。

通过与靶分子的相互作用,荧光染料的荧光特性会发生明显的变化,从而实现对药物分子的直接检测。

2. 荧光化学传感器类探针荧光化学传感器类探针可用于检测生物体系中的离子、分子和代谢产物等。

这类探针具有高选择性和灵敏度,并能够对环境或靶分子发生可逆变化。

目前,已经有许多种类的荧光化学传感器被研发出来,用于研究药物分子的内部环境和代谢过程等。

3. 荧光蛋白类探针荧光蛋白类探针是一种利用荧光蛋白家族中的成员作为荧光标记物质的探针。

这类探针具有优异的光稳定性和荧光效率,且能够在活细胞内稳定地发光。

荧光蛋白类探针的研究不仅可以实现对药物分子在细胞水平的观察,还可以用于药物靶点的筛选和药物疗效的评价等。

二、荧光探针的应用领域荧光探针作为一种功能性化合物,已经在药物化学研究中得到了广泛的应用。

1. 药物分子活性研究通过设计和合成荧光探针,可以实现对药物分子的活性进行快速、高通量的筛选和评价。

荧光探针可以直接与靶分子相互作用,通过观察其荧光变化来获取药物分子的活性信息。

这种方法在新药研发和药物结构优化中具有重要意义。

2. 药物相互作用研究荧光探针可以用作药物相互作用的标志物,用于研究药物分子与靶分子之间的结合过程。

常见荧光探针标记的扁豆凝集素辣根过氧化物酶标记的刀豆凝集素(HRP-ConA)

常见荧光探针标记的扁豆凝集素辣根过氧化物酶标记的刀豆凝集素(HRP-ConA)

常见荧光探针标记的扁豆凝集素辣根过氧化物酶标记的刀豆凝集素(HRP-ConA)常见荧光探针标记的扁豆凝集素/辣根过氧化物酶标记的刀豆凝集素(HRP-ConA)凝集素的应用前景凝集素的特殊的生物学功能,使其具有广泛的利用前景。

特别是随着生物工程的研究手段和研究领域的不断扩大,凝集素的各种实际应用也展现了新的途径。

凝集素在生命机体中识别外来物,在体内<外)起调理作用。

因此它在认识和解决集约化、半集约化的养殖生物的防病治病中有重要作用。

对凝集素认识的普及和研究的深入将提高我国养殖业总体水平。

对凝集素开发、利用和生化工程技术的拓展,将会使养殖业及其病害防治转化为高技术类型。

凝集素的防卫作用可应用于抗虫基因工程,为抗虫育种提供新的途径。

雪花莲外源凝集素(GNA)对某些咀嚼式和刺吸式昆虫均有抗性,如烟草夜蛾、豇豆象、飞虱、叶蝉和蚜虫,但对高等动物没有毒性。

将编码雪花莲外源凝集素成熟蛋白的eDNA GNA 12和其前体蛋白eDNA GNA 34插入到二元载体pBin438的双倍增强子CaM V 35S启动子或二元载体pBcop l的CoYMV启动子下游,分别构建成植物表达载体pBGnal2、pBGna34、pBCGnal2和pBCGna34。

凝集素由于能和糖专一性识别,而且糖的专一性范围又广,加上易于分离纯化,所以经常作为免疫学和糖生物学的分子探针,对生理、生化过程进行研究。

先用标记物将凝集素标记,再利用标记的凝集素来研究糖复合物的结构、在生物体内的分布,也可用于研究生理、病理过程。

比如研究精子在与卵子结合过程中,其细胞表面受体的种类和分布的变化:研究细胞分化发育过程中,糖结构发生的变化和蛋白质糖基化;恶性病变细胞表面糖类结构变化及转移过程中糖类结构特征等等。

由于凝集素可与糖分子专一性可逆结合,从而被广泛用于分离纯化糖分子、糖蛋白、糖脂。

利用凝集素分离糖蛋白开始于ConA分离酵母蔗糖酶。

现在已有商品化的ConA、扁豆凝集素、PNA等亲合层析柱出售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
七、Hoechst
Hoechst stains are part of a family of blue fluorescent dyes used to stain DNA. These Bis-benzimides were originally developed by Hoechst AG. There are three related Hoechst stains: Hoechst 33258, Hoechst 33342, and Hoechst 34580. The dyes Hoechst 33258 and Hoechst 33342 are the ones most commonly used and they have similar excitation/emission spectra.
11
DAPI (magenta) bound to the minor groove of DNA (green and blue).
DAPI can be used for fixed cell staining, the concentration of DAPI needed for live cell staining is generally very high and rarely used for live cells. Though it was not shown to have mutagenicity to E. coli, it is labelled as a known mutagen in manufacturer information. As it is a DNA binding compound it is likely to have some low level mutagenic properties and care should be taken in its handling and disposal.
ICC/IF image of ab64503 stained human HeLa cells. The cells were methanol fixed (10 min), permabilised in 0.1% PBS-Tween (20 min) and incubated with the antibody (ab64503, 1µg/ml, FITC conjugated (green)) for 1h at room temperature. 1% BSA / 10% normal goat serum / 0.3M glycine was used to block non-specific protein-protein interactions. Alexa Fluor® 594 WGA was used to label plasma membranes (red). DAPI was used to stain the cell nuclei (blue).
13
Endothelial cells under the microscope. Nuclei are stained blue with DAPI, microtubles are marked green by an antibody and actin filaments are labelled red with phalloidin.
DAPI is a dye which binds to DNA and shows an increased blue fluorescence when bound to DNA. The blue fluorescent spots in the picture show the nuclei in the mycel.
12
A type of simple fluorescence: DAPI is excited in near UV with 365 nm and emitted in the violet-blue spectral range. The marking reveals cell nuclei and particularly the chromosomes
17
八、碘化丙啶(Propidium Iodide, PI)
PI
EB
Propidium iodide is an intercalating agent and a fluorescent molecule that can be used to stain cells. When PI is bound to nucleic acids, the fluorescence excitation maximum is 535 nm and the emission maximum is 617 nm. Excitation energy can be supplied with a xenon or mercury-arc lamp or with the 488 line of an argon-ion laser. Propidium iodide is used as a DNA stain for both flow cytometry, to evaluate cell viability or DNA content in cell cycle analysis, and microscopy to visualise the nucleus and other DNA containing organelles. It can be used to differentiate necrotic, apoptotic and normal cells.
6
Detection of α-tubulin in A549 cells demonstrates use of rhodamine-labeled secondary antibody. Cells were probed with a mouse anti-α-tubulin primary antibody (0.4µg/mL) and Rhodamine-goat anti-mouse secondary antibody (2µg/mL). Nuclei were labeled with Hoechst Dye. Images were acquired by fluorescence microscopy. A. Fluorescence image shows a delicate network of α-tubulin (pseudo-colored green) located exclusively in the cytoplasm. B. Nuclear counterstain with Hoechst Dye (pseudo-colored blue) C. Merged image.
7
四、罗丹明200
AC41323-0010
RB200,也称丽丝胺罗丹明B 无定形褐红色粉末,不溶于水,易溶于酒精 和丙酮,性质稳定,可长期保存,最大吸收光谱为570nm,呈明亮的橙色荧 光,因与FITC的黄绿色有明显区别,故被广泛用于对比染色或用于两种不同 颜色的荧光抗体的双重染色。
标 记 方 法 方法:取1g RB200及五氯化磷(PCL5)2g放乳钵中研磨5min (在毒气操作橱中),加10ml无水丙酮,放置5min,随时搅拌,过滤,用所 得溶液进行结合。将每亳升血清用1ml生理盐水及1ml碳酸盐缓冲液 (0.5mol/L,pH9.5)稀释,逐滴加入0.1ml RB200溶液,随加随搅拌,在04℃继续搅拌 12-18h。
9
五、溴化乙锭
详见第四节“应用于核酸检测的荧光探针技术”
10
六、DAPI ( 4‘,6-diamidino-2-phenylindole)
DAPI was first synthesised in as part of a search for drugs to treat trypanosomiasis. Although it was unsuccessful as a drug, further investigation indicated it bound strongly to DNA and became more fluorescent when bound. When bound to double-stranded DNA DAPI has an absorption maximum at a wavelength of 358 nm (ultraviolet) and its emission maximum is at 461 nm (blue). Therefore for fluorescence microscopy DAPI is excited with ultraviolet light and is detected through a blue/cyan filter. The emission peak is fairly broad DAPI will also bind to RNA, though it is not as strongly fluorescent. Its emission shifts to around 500 nm when bound to RNA.
常用荧光探针小结
一、异硫氰酸荧光素(Fluorescein isothiocyanate, FITC) FITC有两种异构体,性质稳定,低温下干燥保存,其
性状多年不变,室温下也能保存两年以上。异构体I、II均 能与蛋白质良好结合,但异构体I的荧光效率更高,与蛋白 质的结合也更稳定。 FITC的最大吸收光谱为490----495纳 米,最大发射光谱为520-530nm,呈明亮的黄绿色荧光。 FITC含有异硫氰基 , 在碱性条件下能与IgG的自由氨基 (主要是赖氨酸的-氨基)形成荧光抗体结合物。
相关文档
最新文档