化学生物学荧光探针发光机理[1]
pcr荧光探针法原理

pcr荧光探针法原理PCR荧光探针法原理。
PCR(Polymerase Chain Reaction)是一种重要的分子生物学技术,它能够在体外迅速扩增DNA片段。
PCR荧光探针法是PCR技术的一种重要应用,它通过引入荧光探针来实现对PCR产物的实时检测,具有高灵敏度、高特异性和高准确性的优点。
本文将介绍PCR荧光探针法的原理及其应用。
PCR荧光探针法利用一种叫做荧光探针的分子来实现对PCR产物的实时检测。
荧光探针通常由一个荧光素和一个猝灭素组成,当它与靶标DNA序列结合时,荧光素和猝灭素之间的距离会发生改变,导致荧光信号的增强。
PCR荧光探针法主要包括两种类型,TaqMan探针和Molecular Beacon探针。
TaqMan探针是一种双链DNA分子,其中心有一个荧光素和一个猝灭素。
在PCR反应中,Taq DNA聚合酶在合成新DNA链时会遇到TaqMan探针,当Taq DNA聚合酶到达TaqMan探针时,会将其附近的DNA链降解,导致荧光素和猝灭素之间的距离发生改变,从而释放出荧光信号。
通过检测荧光信号的强度,可以实时监测PCR产物的数量。
Molecular Beacon探针是一种形似发夹的双链DNA分子,其中心有一个荧光素和一个猝灭素。
在PCR反应中,Molecular Beacon探针会与靶标DNA序列结合,形成一个环状结构,导致荧光素和猝灭素之间的距离发生改变,从而释放出荧光信号。
通过检测荧光信号的强度,同样可以实时监测PCR产物的数量。
PCR荧光探针法在生物医学研究和临床诊断中有着广泛的应用。
在基因表达分析中,可以利用PCR荧光探针法实时监测目标基因的表达水平;在病原微生物检测中,可以利用PCR荧光探针法快速准确地检测病原微生物的存在;在药物研发中,可以利用PCR荧光探针法筛选药物的活性成分。
总之,PCR荧光探针法是一种重要的分子生物学技术,它通过引入荧光探针来实现对PCR产物的实时检测,具有高灵敏度、高特异性和高准确性的优点。
荧光探针技术原理及应用

荧光探针技术原理及应用荧光探针技术是一种在生物、医学、环境等领域中广泛应用的分析技术,其原理是利用特定荧光物质(荧光探针)对目标物进行特异性的识别和检测。
荧光探针技术的原理主要包括激发、激发态寿命和荧光发射三个基本过程。
首先,通过合适的激发源,荧光探针被激发到激发态,从而产生激发态寿命。
接着,部分激发态的荧光探针经历非辐射转移回到基态,这个过程称为非辐射损失。
最后,剩余的激发态荧光探针会通过放射转移激发态能量,在发射光子过程中产生荧光。
荧光探针技术的应用非常广泛。
在生物学领域,荧光探针技术可用于细胞成像、分子诊断、蛋白质研究等方面。
例如,在细胞成像中,可以通过给目标物标记荧光探针来实现对细胞、细胞器以及生物分子的实时可视化;在分子诊断中,可以通过标记特定的荧光探针来检测特定的基因突变、DNA合成以及蛋白质表达水平等。
此外,荧光探针技术也被广泛应用于药物筛选、生物传感器、基因芯片等领域。
荧光探针技术的应用还扩展到医学领域。
例如,在肿瘤诊断与治疗中,可以设计特定的荧光探针来检测和定位肿瘤细胞,实现早期诊断和精确治疗;在药物输送和释放研究中,荧光探针可以作为载药系统的标记,用于追踪药物的分布和释放过程。
在环境领域,荧光探针技术可以用于监测和分析水体、土壤和大气中的污染物。
例如,可以设计针对特定污染物的荧光探针,通过检测目标物的荧光强度变化或荧光光谱变化来实现对污染物的高灵敏度检测和定量分析。
随着荧光探针技术的不断发展,也出现了许多新的应用领域。
例如,荧光探针技术可以应用于纳米材料表面的检测和修饰,用于纳米材料的生物传感、药物传递等方面;荧光探针技术还可以与其他分析技术相结合,例如质谱、红外光谱等,实现更加灵敏和准确的分析。
总的来说,荧光探针技术以其高灵敏度、高选择性和实时可视化的特点,在生物、医学、环境等领域发挥着重要的作用。
随着技术的不断发展和创新,相信荧光探针技术在更多领域中将发挥更大的应用潜力。
荧光探针原理

荧光探针原理
荧光探针原理是一种常用的生物标记技术,用于研究生物样品中特定分子的分布和动态变化。
荧光探针通常由两个组成部分构成:一个是荧光染料,它能够吸收外界的激发光并发射出荧光信号;另一个是靶向分子,它能够与目标分子特异性结合。
荧光探针的工作基于荧光现象和能量转移原理。
当荧光染料被激发光激发后,其电子跃迁到高能级,随后又以放射光的形式返回到基态。
这个过程中放射的光具有特定的波长和颜色,称为荧光。
当荧光探针中的靶向分子与目标分子结合后,它们之间的距离和相对位置可能会发生变化。
如果这个变化导致荧光染料与另一个分子之间的距离适合,就会引发能量转移现象。
即原本由荧光染料发出的荧光信号将被转移给另一个分子,导致荧光染料的荧光强度减弱或熄灭。
通过测量荧光强度的变化,可以推断出目标分子的存在和活动状态。
荧光探针还可以通过调整荧光染料的性质,如吸收和发射波长,来实现多种目标的同时检测。
综上所述,荧光探针原理基于荧光现象和能量转移原理,利用荧光染料和靶向分子的相互作用实现对目标分子的检测和分析。
荧光探针法的原理

荧光探针法的原理
荧光探针法是一种常用的分析方法,用于检测和测量样品中的化学物质的存在和浓度。
其原理基于荧光现象,即某些物质在激发后能够发出特定的波长的荧光信号。
荧光探针法的原理是利用荧光分子作为化学指示剂,通过与待分析物发生特异性的反应,使荧光分子的发光性质发生变化,从而实现待分析物的检测与测量。
首先,需要选择一个合适的荧光探针分子。
这种分子应具有以下特性:能够与待分析物发生特异性的反应,产生可观测的光谱变化;荧光信号强度随待分析物浓度的变化呈线性关系;对其他干扰物质不敏感。
当待分析物存在于样品中时,荧光探针分子与待分析物发生特异性的相互作用。
这种相互作用可以是共价结合、离子键或氢键的形成,也可以是物理吸附或包结等方式。
这种相互作用使得荧光探针分子的荧光性质发生变化,产生与待分析物特异性相关的荧光信号。
通过测量和记录荧光信号的强度或光谱变化,可以推断出待分析物的存在和浓度。
一般情况下,荧光信号的强度与待分析物的浓度成正比关系,可以通过标准曲线或其他定量方法进行浓度的计算。
荧光探针法具有灵敏度高、选择性好、操作简便等优点,因此在生物医学研究、环境监测、食品安全等领域得到广泛的应用。
不过,荧光探针法也存在一些局限性,如有些荧光信号易受其他环境因素干扰,对样品的预处理要求较高等。
因此在具体应用时需要综合考虑其适用性和实际情况。
荧光探针的研究及应用

荧光探针的研究及应用随着科技的不断发展,荧光探针逐渐成为生命科学研究领域中不可缺少的重要工具。
荧光探针是一种能够发射出荧光信号的分子,在分子生物学、生物医学和化学生物学等领域中有着广泛的应用。
它们可以被用来研究细胞内的分子相互作用、识别生物分子、分析细胞功能,并可以在体内用作活体成像和药物筛选的工具。
本文将简要介绍荧光探针的基本原理、常见的荧光探针类型和其在生物学研究中的应用。
一、荧光探针的基本原理荧光探针的基本原理是荧光共振能量转移(FRET),其通过将荧光分子与生物分子(生物样品)耦合,使两者之间发生相互作用,从而产生能量转移。
FRET 能量转移是从能量接受者的激发态到另一个分子的荧光染料的发射态的一种非辐射性能量转移。
在FRET中,激发荧光染料的光子会被共振耦合到另一个染料的激发态,从而使其发出荧光光子。
这样,在激发荧光染料的时候,可以用荧光染料的荧光光子来检测另一个染料的存在和位置。
荧光探针对于荧光光子的发射特征和其它的生化参数是很敏感的,所以它们可以被用来探测各种细胞和分子。
二、常见的荧光探针类型1. 荧光染料:荧光染料是最常见的荧光探针类型之一,它们有着广泛的应用,可以被用来标记蛋白质、核酸等生物分子。
常见的荧光染料包括荧光素、草铵膦、偶氮染料等。
2. 荧光蛋白:荧光蛋白是一种具有自发荧光性质的蛋白质,其最早源自于水母Aequorea victoria。
荧光蛋白可以用来跟踪胞内或胞外的重要过程,如蛋白质、核酸合成、信号传递等。
3. 量子点:量子点是一种半导体纳米粒子,具有窄的发射光谱、强的光稳定性和较大的荧光量子产率。
这些特点使得量子点成为新一代高亮度及高灵敏度的荧光探针。
三、荧光探针在生物学研究中的应用荧光探针广泛地应用于细胞内信息传递、化学生物学、生物传感、药物筛选和临床诊断等方面。
以下为举几个常见的案例:1. 细胞内信息传递:荧光探针可被用于研究细胞内信号转导、磷酸化和蛋白质相互作用等过程。
荧光探针的原理及应用

荧光探针的原理及应用1. 荧光探针的定义荧光探针是一种用于检测分子或离子存在和活动的化学试剂。
它们基于荧光现象,通过发射和吸收特定波长的光来揭示目标分子的存在和特性。
荧光探针已成为生物学、药物研究和环境监测等领域中常用的工具。
2. 荧光探针的原理荧光探针的原理基于以下几个方面:2.1 发射和吸收光荧光探针能够吸收特定波长的光能,激发其电子到较高能级。
随后,这些电子以非辐射的方式退回到基态,并且在这个过程中会发射一个较长波长的荧光光子。
2.2 荧光强度与浓度的关系荧光探针的荧光强度与其所探测物的浓度成正比关系,利用这种关系可以定量地测量目标物。
2.3 荧光寿命荧光探针的荧光寿命是指其从较高能级退回到基态所需的时间。
不同的荧光探针具有不同的荧光寿命,可以利用这个特性来区分不同的物质。
3. 荧光探针的应用荧光探针在许多领域都有广泛的应用,以下是一些常见的应用:3.1 生物分子检测荧光探针可以用于检测生物分子,如蛋白质、核酸和糖类等。
通过将荧光探针与目标分子结合,可以通过测量荧光强度或荧光寿命来研究生物分子的结构和功能。
3.2 细胞成像荧光探针可以用于细胞成像,通过标记特定的细胞结构或代谢物,可以实现对细胞内过程的实时观察。
这在生物学和医学研究中具有重要意义。
3.3 药物筛选荧光探针可以用于药物筛选和评价。
通过将荧光探针与药物结合,可以测量药物对目标分子的影响,从而评估药物的活性和选择性。
3.4 环境监测荧光探针可以用于环境监测,例如检测水中的污染物或土壤中的重金属。
通过选择适合的荧光探针可以实现快速和敏感的分析。
3.5 医学诊断荧光探针可以用于医学诊断。
例如,在癌症诊断中,可以利用荧光探针来检测肿瘤标记物,从而早期发现和诊断肿瘤。
4. 荧光探针的发展趋势随着科学技术的不断进步,荧光探针的研究也在不断发展。
以下是一些目前的研究方向:4.1 高灵敏度和高选择性研究人员致力于开发具有更高灵敏度和更高选择性的荧光探针,以实现更准确和可靠的检测。
荧光探针原理

荧光探针原理引言:荧光探针是一种被广泛应用于生物科学研究中的工具,它通过发射荧光信号来检测和定量分析生物分子的存在和活动。
荧光探针原理的理解对于正确应用和解读荧光实验结果至关重要。
本文将详细介绍荧光探针的工作原理及其在生物科学研究中的应用。
一、荧光的基本原理荧光是一种当物质受到激发后发出的可见光。
荧光现象的产生涉及到分子的能级跃迁过程。
当物质受到激发后,其内部的电子从基态跃迁到激发态。
随后,电子会通过非辐射跃迁回到低能级的激发态,释放出能量,产生荧光信号。
荧光信号的特征是具有一定的波长和强度。
二、荧光探针的构成荧光探针通常由两部分组成:荧光染料和连接基团。
荧光染料是荧光探针的核心组成部分,它能够吸收外界的激发光,并发射荧光信号。
连接基团则是将荧光染料固定在生物分子上的部分,使荧光染料能够与目标生物分子结合。
三、荧光探针的工作原理荧光探针的工作原理是基于荧光共振能量转移(FRET)现象。
FRET 是一种非辐射能量传递的过程,它能够在两个相互靠近的荧光染料之间传递能量。
在荧光探针中,荧光染料通常被设计成能够与目标生物分子结合,并被定位在目标分子的近旁。
当目标分子与荧光探针结合时,能量传递发生,导致荧光信号的发射强度发生变化。
通过测量荧光信号的强度变化,可以获得目标分子的定量信息。
四、荧光探针在生物科学研究中的应用荧光探针在生物科学研究中有着广泛的应用。
以下是一些常见的应用领域:1. 细胞成像:荧光探针可以标记细胞中的特定蛋白质或分子,从而实现对细胞的可视化观察和研究。
通过荧光探针,研究人员可以观察细胞内分子的分布、定位和相互作用等信息。
2. 蛋白质相互作用研究:荧光探针可以标记两个相互作用的蛋白质,通过检测荧光信号的强度变化,可以判断蛋白质之间的相互作用程度和动力学特性。
3. DNA和RNA分析:荧光探针可以与DNA或RNA结合,用于检测和定量分析DNA或RNA的存在和活动。
例如,荧光探针可以用于检测DNA的扩增反应、基因突变和序列特异性等。
荧光探针原理

荧光探针原理
荧光探针原理是一种利用荧光现象进行检测的技术。
荧光是一种发光现象,物质在受到激发后,能量超过一定阈值时,会从高能级跃迁到低能级,释放出光的能量。
荧光探针利用这一原理,通过特定的化学反应或物理过程,将荧光物质与待检测物相结合,使得待检测物被标记并能发出荧光。
待检测物可以是分子、细胞、组织或生物体等。
荧光探针可以根据所需检测的物质来选择合适的荧光物质。
荧光物质通常具有以下特点:高荧光量子产率、较长的激发和发射波长、较小的光敏感性和光稳定性。
在荧光探针中,荧光物质的选择非常重要。
荧光物质的光谱性质需要与检测物的性质相匹配,以便能够有效地发出信号。
此外,荧光物质的稳定性和选择性也是考虑的因素之一。
荧光探针可以通过荧光显微镜等光学仪器进行检测和观察。
在实际应用中,荧光探针被广泛应用于生物医学研究、生物传感、免疫染色、蛋白质定位等领域。
荧光探针具有高灵敏度、高选择性和实时检测等优点,可以提供丰富的信息和可视化的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H2O2荧光探针生物应用
第一个比例性H2O2探针 J. Am. Chem.Soc. 2012, 134, 1305 −Boronate Probes for Ra-tiometric Peroxide Imaging in Living Cells
PMA:全称为Phorbol-12-myristate-13-acetate(PMA),或12-OTetradecanoylphorbol 13-acetate(TPA),是一种最常用的佛波酯(phorbol ester)。PMA可以结合PKC,并激活PKC,随后导致一系列的细胞响应。PMA可 以抑制Fas诱导的细胞凋亡,但又可以诱导HL-60细胞的凋亡。PMA在肝细胞中可 以诱导iNOS的表达。PMA可以增强forskolin诱导的cAMP形成。PMA是一种促 瘤剂,可以促进小鼠皮肤的成瘤。
化学生物学荧光探针发光机理[1]
什么是荧光探针?
荧光探针是建立在光谱化学和光学波 导与测量技术基础上,选择性的将分析对 象的化学信息连续转变为分析仪器易测量 的荧光信号的分子测量装置。
荧光探针受到周围环境的影响,使其 发生荧光发射发生变化,从而使人们获知 周围环境的特征或者环境中存在的某种特 定信息
R O S Reactive oxygen species
包括氧离子、过氧化物和自由基等有机物和无机物。这些粒子均十分微小, 由于存在未配对的自由电子,这些粒子均十分活跃。ROS是正常氧代谢的副产 物,并且在细胞信号传导,和保持机体恒常性起很大作用。然而,在时间以及 外界环境影响下(例,暴露于紫外线或热源下),ROS的量会急剧增多。引起 这种改变的原因有可能是由于明显的细胞结构的损坏。这种表现,被称为氧化 应激。
罗丹明B
PET FRET
J. Am. Chem.Soc. 2012, 134, 1305 − 1315
TEBT
荧光探针 发光机理
Anal. Chem. 2012, 84, 4915− 4920
ICT
······
Org. Lett.DOI:10.1021/ol3032889
TICT
ESIPT
Inorg. Chem. 2012, 51, 8760− 8774
H2O2荧光探针生物应用
J. AM. CHEM. SOC. 9 VOL. 132, NO. 12, 2010
H2O2荧光探针生物应用
Fluorescence Imaging of Endogenously Produced H2O2and NO in RAW 264.7 Macrophages Cells.
H2O2荧光探针生物应用
1.PG1 的 4-甲氧基被 SNAP tag 的底物苄 基鸟T嘌ar呤ge或ta苄bl基e a-2n-d氯T-r6ap-氨pa基bl嘧e 啶Bo取ro代nate 2.新P的ro取b代e s基f可or以U将ndSePrsGta1n或dinSgPGP2er与oxide AGTT(rOaf6f-ic烷ki基ng鸟a嘌nd呤S-tDeNmAC烷el基l F转un移ct酶io)n融 合蛋白相连接
光 诱导电子转移
PET( photo-induced electron transfer)
Coordination Chemistry Reviews 2000,205,3–40
分子内电荷转移 ICT( intramolecular charge transfer)
Tetrahedron ,69 ,2013, 1700 -1704
ACCOUNT S OF CHEMICAL RESEARCH ,793– 804 ,2011,Vol. 44, No. 9
R O S Reactive oxygen species
ACCOUNTS OF CHEMICAL RESEARCH ,793– 804 ,2011,Vol. 44, No. 9
荧光分子探针的优点
• 灵敏度高 • 选择性好 • 使用方便 • 成本低 • 不需预处理 • 不受外界电磁场影响 • 远距离发光
荧光分子探针通常由三部分组成:
• 识别基团(receptor) • 荧光基团(fluorophore) • 连接体部分(spacer)
香豆素
BODIPY
1,8-萘二酰亚胺
下几个条件:
• (1)能量供体荧光团D的荧光发射位于短波长处,且发射 光谱和能量受体荧光团A的吸收光谱有一定重叠,能量受 体能够在能量供体的发射波长处吸收能量;
• (2)能量供体与能量受体相隔的距离必须远大于它们之 间的碰撞直径(有时甚至为70-100Å);
• (3)能Ino量rg供. C体he与m.能20量13受, 5体2, 7还43必−须75以2 适当的方式排列。
荧光共振能量转移 FRET( fluorescence resonace energy transfer )
•
荧光共振能量转移指一个荧光体系含有两个
荧光团,一个充当能量供体D,另一个为能量受体
A,当用供体D的激发去激发荧光体系时,可以发
生从D到A的非辐射能量转移,从而发射出受体荧
光团的荧光。荧光共振能量转移发生必须具备以
细胞器靶向性的过氧化氢探针
SNAP-tag 来自烷基鸟嘌呤-DNA烷基转移 酶(O6-alkylguanine-DNAalkyltransferase,hAGT),该酶是一种 DNA修复蛋白,它的底物是一类苄基嘌呤 和嘧啶的衍生物,包括苄基鸟嘌呤
AGT SNAP-tag
J. AM. CHEM. SOC. 9 VOL. 132, NO. 12, 2010 ACCOUNTS OF CHEMICAL RESEARCH ,793– 804 ,2011,Vol. 44, No. 9
H2O2的检测
中国科学: 化学 2012 年 第42卷 第12期
H2O2的检测
Chem. Commun., 2003, 2728.
H2O2的检测
Tetrahedron Letters 49 (2008) 3045–3048 Tetrahedron Letters 51 (2010) 1152–1154