凝结水溶解氧的原因分析

合集下载

凝结水溶解氧超标原因分析及改进

凝结水溶解氧超标原因分析及改进

凝结水溶解氧超标原因分析及改进凝结水是指在冷却过程中由于水蒸气凝结成水的过程中形成的水。

在许多工业过程中,凝结水被用作冷却剂,以吸收和排除热量,以保持设备温度的正常工作条件。

然而,有时候凝结水中的氧含量会超过标准限制。

本文将分析凝结水溶解氧超标的原因,并提出改进措施。

2.温度和压力:溶解氧的溶解度与温度和压力密切相关。

在较高温度下,溶解氧的溶解度会降低,而在较低温度下,溶解度会增加。

当冷却系统温度较高时,溶解氧容易超标。

3.冷却系统的设计和操作:冷却系统的设计和操作不当也是导致溶解氧超标的一个重要原因。

例如,冷却器中的水流速度过快和水流方向不合理可能引起氧气的混合,导致溶解氧超标。

为了改善产生凝结水溶解氧超标的问题,可以采取以下改进措施:1.检查进水质量:确保进水中的溶解氧含量符合要求。

若进水中含有过多的溶解氧,在加入冷却系统之前进行氧气去除处理,例如采用降解剂或空气分离器,以减少氧气进入凝结水中的几率。

2.检查冷却系统泄漏:定期检查和维护冷却系统,确保没有泄漏现象。

特别是在管道系统中,应定期检查和修复泄漏问题,以减少空气进入凝结水的机会。

3.温度和压力控制:合理控制冷却系统的温度和压力,使其在安全范围内运行。

尽量避免过高或过低的温度和压力,以减少溶解氧超标的风险。

4.冷却系统的设计和操作:重新设计和调整冷却系统,以优化水的流速和方向。

合理选择冷却器和其他设备,以最大限度地减少氧气的混入。

此外,定期检查和清洗冷却系统,确保其正常运行。

综上所述,凝结水溶解氧超标可能是由于进水中的溶解氧过多、空气和管道泄露、高温和压力以及冷却系统设计和操作不当等因素所致。

通过检查进水质量、修复冷却系统泄漏、合理控制温度和压力以及优化冷却系统的设计和操作,可以有效降低凝结水溶解氧超标的风险。

凝结水溶氧偏高原因分析

凝结水溶氧偏高原因分析

凝结水溶氧偏高原因分析按照GBT12145《火力发电机组及蒸汽动力设备水汽质量》要求,空冷机组凝结水溶氧标准为≤100ug/L,我厂1、2号机组凝结水溶氧一直处于超标运行状态(O2>100ug/L),现就凝结水溶氧超标原因分析及控制措施说明如下:1.凝结水溶氧超标可能原因(1)真空系统有泄漏。

真空严密性试验不合格。

(2)凝结水系统负压侧泄漏。

(如滤网放水、放气阀及法兰连接点泄漏、凝泵机封水压低等)。

(3)排汽装置除氧喷头雾化效果差,除氧效果不好。

(4)凝补水除氧效果差,凝补水流量大。

(5)轴加疏水水封筒、汽泵密封水回水水封筒水封破坏。

(6)溶氧测量表计不准。

2.原因分析(1)7月份真空严密试验结果为225pa/min,真空严密性试验不合格,经过查漏消缺,8月1日真空严密性试验结果为81.25pa/min。

根据《大唐直接空冷机组运行管理指导细则》真空下降速度≤100Pa/min,真空严密性试验合格。

7月29日19:00,负荷212MW机组真空为-85kpa,背压10kpa,通过启动真空泵等方法提高真空,记录凝结水溶氧变化。

真空度越高排汽装置内不凝结气体分压力越低,凝结水溶氧越低。

(2)凝结水负压侧查漏,通过超声波检漏仪及通过对逐台凝泵打压检查结果,凝结水低压侧基本不存在泄漏。

(3)通过试验:8月1日22:45分排汽装置水位补至1323mm,凝结水流量为480T/H,隔离除盐水至排汽装置补水。

每隔十分钟记录凝结水溶氧值。

通过数据分析凝补水对凝结水溶氧有影响。

除盐水溶氧在7000ug/L,按照10T/H的凝补水量,计算若进入排汽装置的除盐水没有经过除氧,影响凝结水溶氧为140ug/L,实际影响为27ug/L,说明进入排汽装置的除盐水是经过除氧的。

(4)轴加疏水水封筒及汽泵密封水回水水封筒水封破坏造成从水封筒处进入空气。

就地检查汽泵轴端无吸气现象,排除汽泵密封水回水水封筒水封破坏。

对轴加疏水水封筒采用调整轴加水位的方法记录凝结水溶氧的变化。

凝泵变频运行凝结水溶氧超标原因分析

凝泵变频运行凝结水溶氧超标原因分析

凝泵变频运行凝结水溶氧超标原因分析一、凝泵变频运行介绍凝泵变频是一种能够实现恒压、节能、稳定运行的智能设备。

它通过调整泵的运行频率来控制水的流量和压力,从而达到节能的效果。

在凝固工艺中,凝泵变频可以使溶解在水中的有害气体充分产生气泡,提高气液界面的积累,从而提高凝固效率,减少运行成本。

1.设备故障:凝泵变频在运行过程中可能存在设备故障,导致气体无法充分释放,进而导致溶解在水中的氧气超标。

例如,泵体密封不严或泵内部存在泄漏,会导致外部空气进入泵体,从而增加了溶氧量。

2.运行参数设置不当:凝泵变频的运行参数设置不当也可能导致凝结水溶氧超标。

例如,过高的运行频率或不恰当的运行模式会导致气体无法有效释放,而积累在凝结水中。

3.水质问题:凝结水的水质也是导致溶氧超标的重要因素之一、一些因素,如高温、浑浊、水质污染等,都可能导致溶氧增加。

此外,水中的盐度、PH值等参数也会对溶氧含量产生影响。

4.环境因素:凝泵变频所处的环境也可能导致凝结水溶氧超标。

例如,当凝泵变频工作环境中存在大量气溶胶,空气中的气体会在液体中溶解,增加溶氧量。

5.运行时间过长:凝泵变频长时间运行也可能导致溶氧超标。

当凝泵变频连续工作一段时间后,溶解在水中的氧气无法及时释放,导致溶氧超标。

三、解决凝泵变频运行凝结水溶氧超标的措施1.检修设备:定期检查和维护凝泵变频设备,保证设备正常运行,避免泵体密封不严或泄漏等问题,减少溶氧。

2.调整运行参数:根据实际情况调整凝泵变频的运行参数,合理设置运行频率和运行模式,使气体得以充分释放,减少溶氧。

3.改善水质:通过采取适当的水质处理措施,减少水中的污染物和溶解氧含量,降低溶氧超标。

4.优化环境:优化凝泵变频的工作环境,减少气溶胶和空气中气体的存在,降低溶氧含量。

5.控制运行时间:合理控制凝泵变频的运行时间,避免过长时间连续运行,减少氧气的溶解和积累。

总结:通过检修设备、调整运行参数、改善水质、优化环境和控制运行时间等措施,可以有效解决凝泵变频运行凝结水溶氧超标的问题,提高凝固效率,降低运行成本。

汽轮机凝结水溶解氧量高的原因分析及对策

汽轮机凝结水溶解氧量高的原因分析及对策

汽轮机凝结水溶解氧量高的原因分析及对策汽轮机的凝结水是通过冷凝器中冷却汽流产生的,其中溶解氧是一种非常重要的指标。

高溶解氧量会导致腐蚀和氧化问题,进而影响汽轮机的正常运行。

现在我们来分析一下导致汽轮机凝结水溶解氧量高的原因,并提出相应的对策。

导致汽轮机凝结水溶解氧量高的原因:1.空气泄漏:在汽轮机冷凝器中,如果存在空气泄漏,会导致空气进入凝结水中,增加溶解氧的含量。

2.进水中的氧气:如果进水中含有溶解的氧气,会在冷凝过程中进入凝结水中。

3.电离和分解反应:一些离子或有机物在凝结水中可能发生电离和分解反应,进而造成新的溶解氧。

对策:1.加强设备维修和检查:定期检查和维修冷凝器、凝结水处理系统和其他关键设备,确保密封和接口完好,减少空气泄漏的几率。

2.定期检测进水中的氧气含量:定期监测进水中的氧气含量,根据检测结果采取相应的措施,如增加进水预处理,预先去除部分溶解氧,减少其进入凝结水中。

3.优化水处理系统:使用更先进的水处理技术,如气体移除系统、溶解氧移除系统等,可以有效降低凝结水中的溶解氧含量。

4.控制凝结水的pH值:凝结水的pH值对溶解氧的含量有一定影响。

适当调整凝结水的pH值可以减少溶解氧的含量。

5.添加氧化剂:可以在凝结水中添加适量的氧化剂,如次氯酸钠等,来与溶解氧发生反应,减少溶解氧的含量。

6.增加气体移除设备:可以在汽轮机凝结水系统中增加气体移除设备,如空气放气器、真空泵等,帮助去除凝结水中的气体,包括溶解氧。

7.增加保护层:在凝结水中形成一层保护膜,可以减少氧与金属的接触,减缓金属的腐蚀和氧化。

总结起来,汽轮机凝结水溶解氧量高主要是由于空气泄漏、进水中的氧气和电离分解反应等原因导致的。

通过加强设备维修、检测进水中的溶解氧含量、优化水处理系统、控制凝结水的pH值、添加氧化剂、增加气体移除设备和增加保护层等对策,可以有效降低凝结水中的溶解氧含量,保证汽轮机的正常运行。

凝结水溶氧大原因分析

凝结水溶氧大原因分析

凝结水溶氧大原因分析及解决方案探讨火电厂机组凝结水溶解氧是电厂化学监督的主要指标之一,凝结水溶氧高低将直接影响机组的安全、经济运行,根据电力技术监督的规定要求,300MW亚临界发电机组,凝结水溶氧含量应≤30μg/L。

但国内投运的300MW机组,特别是国产机组,普遍存在凝结水溶解氧超标且长期不合格的问题,因此,掌握凝结水溶氧高的各方面因素,并能及时地查找消除对发电机组的健康经济运行显得尤为重要。

1凝结水溶氧超标对发电机组的危害凝结水含氧量过大对机组造成的危害主要有以下几方面:1.1 缩短设备的寿命凝结水溶解氧大幅度超标或者长期不合格,会加速凝结水管道设备腐蚀及炉前热力系统铁垢的产生。

凝结水溶解氧严重超标时,还会导致除氧器后给水溶解氧超标,影响锅炉受热面传热效率,加速锅炉管道设备腐蚀结垢乃至发生锅炉爆管等事故,严重威胁机组的安全、经济运行。

1.2 降低回热设备的换热效率在汽轮机的回热系统中,采用的是表面式换热器,设备的腐蚀产物附着在换热面上,形成疏松的附着层,同时,凝结水中含氧过多,会使换热面上形成一层薄膜,均使换热热阻增大,降低循环的热效率。

1.3 影响机组的真空为了保证机组的稳定经济运行,凝汽器必须处于高度的真空状态。

过多的空气漏入凝汽器,会造成真空降低,一方面会影响机组的经济性,严重时将降低机组的出力;另一方面,也使得抽气系统的抽气负荷增加,增加了厂用电量。

2影响凝结水溶氧的因素由于凝汽器、空气系统及凝结水泵正常运行中处于负压状态,系统中的每个不严密处都有可能漏入空气而影响凝结水的溶氧含量。

归结起来有如下几个方面:2.1 化学制水设备及凝汽器补水方式特点对凝结水溶解氧的影响凝汽器补水来源于化学制备的除盐水,除盐水溶氧指标合格与否将对凝结水溶氧产生最直接的影响,很多电厂在一定程度上忽视对除盐水溶氧指标的控制,大量的实验结果表明,除盐水溶氧≤100ug/l时,凝结水溶氧即能得到保障。

现阶段大部分电厂化学制水除碳器不外乎真空除气器和鼓风式两种,在除二氧化碳的同时,水中其他溶解气体(如氧气)也同时被除去,而两者由于工作原理的不同,除氧效果也不一样,一般真空式除氧效果要好于鼓风式的。

凝结水溶氧高的原因及处理

凝结水溶氧高的原因及处理

凝结水溶氧高的原因及处理凝结水是指水蒸气通过冷凝作用形成的液体水,通常用于工业生产中冷却系统或蒸汽发电厂中的冷凝器。

在一些情况下,凝结水中的溶氧含量较高,这会导致一系列问题,如腐蚀、微生物生长和系统效率降低。

因此,凝结水中高溶氧的问题需要得到解决。

下面将详细探讨凝结水溶氧高的原因及处理方法。

一、原因1.空气的溶解:凝结水在接触空气时,会导致氧气从空气中溶解到水中,进而造成溶氧含量增加。

2.梯级进水系统造成气液混合:在梯级进水系统中,高速进水会产生气泡,这些气泡会带入空气中的氧气,从而导致凝结水中的溶氧含量增加。

3.调节池进水:如果调节池中的水与外界空气接触时间较长,将带入较多的氧气,增加了溶氧的含量。

4.冷凝器内氧化:由于冷凝器内部存在金属结构,这些金属结构容易氧化,从而使冷却水中溶氧的含量增加。

5.水质处理问题:如不适当的水质处理或水质处理不完善,会导致凝结水中溶氧含量增加。

二、处理方法1.加强水质处理:选用适当的水质处理方法,如添加阻垢剂、缓蚀剂和杀菌剂等,可以有效减少溶氧含量,杜绝腐蚀和微生物生长等问题。

2.清除冷凝器内沉积物:定期清除冷凝器内的沉积物,可以降低溶氧含量,并提高系统的效率。

3.使用气体分离器:通过在冷凝器进水口处安装气体分离器,可以分离空气中的氧气,减少溶入凝结水中的氧气含量。

4.抑制气泡形成:在梯级进水系统中,采用合适的加热和水位控制措施,可以减少气泡形成,从而降低溶氧含量。

5.适当控制进水速度:通过调整进水速度,可以避免凝结水与空气充分接触,减少氧气溶解到水中的机会。

6.分析和监测:定期对凝结水中的溶氧含量进行分析和监测,及时发现问题,并采取相应的处理措施。

综上所述,凝结水溶氧高的原因主要是因为空气的溶解、梯级进水系统和调节池进水等因素。

为了处理凝结水中溶氧过高的问题,可以加强水质处理、清除冷凝器内的沉积物、使用气体分离器等方法,并定期分析和监测溶氧含量,以确保凝结水的质量和系统的正常运行。

凝结水溶氧超标的原因分析及处理措施

凝结水溶氧超标的原因分析及处理措施

凝结水溶氧超标的原因分析及处理措施摘要:大机组随着参数、自动化程度的提高,对热力循环的工作介质的品质要求也越来越高,对汽轮机凝结水的水质要求的标准逐步提高,凝结水溶解氧量是表征凝结水水质的重要指标之一,凝结水溶解氧大幅度超标会加速凝结水管道设备腐蚀及炉前热力系统铁垢的产生,凝结水溶解氧严重超标时,还会导致除氧器后给水溶解氧量超标,影响锅炉受热面传热效率,甚至发生锅炉爆管事故,严重威胁机组安全、经济运行。

关键词:火电厂;汽机运行;凝结水;冷凝汽器引言当前,火电厂对于促进经济的发展起到重要作用。

因此汽机运行过程中的节能问题得到了业内的广泛关注,研究其相关课题有着重要意义。

下面对凝结水溶解氧量的机理、因素及技术发展进行分析,提出了采取的措施,供设计和运行维护参考。

1 间接空冷机组凝结水溶氧超标原因分析1.1 间接空冷凝结水过冷度对其溶氧的影响根据气体溶解定律(亨利定律)可知,气体在水中的溶解度与此气体在气水界面上的分压成正比。

也就是说,凝结水的温度越接近于排汽压力对应的饱和温度(凝结水过冷度越小),那么气相中除水蒸汽以外的其它气体(氧气、二氧化碳等)的分压越小,水相中气体的溶解度也越小。

即过冷度越小,机组凝结水的含氧量越小。

间接空冷机组的过冷度由于受天气变化、热网参数、扇段开度、负荷大小的原因影响,一天变化的范围也比较大,特别是在冬季空冷机组凝结水的过冷度比较大,一般都在3℃以上,冬季过冷度一般在3-6℃。

另外空冷系统冷却面积非常庞大,局部过冷非常容易发生。

因此相对应的凝结水溶氧值也比较高。

1.2 机组真空严密性对凝结水溶氧的影响衡量真空严密性好坏的依据是在真空严密性试验时,以平均每分钟在真空系统中升高的压力值,正常为100Pa/min。

机组真空严密性好也就是汽机侧负压区漏点少,负压区进入的空气少则凝结水溶氧小,因为凝结水氧气的来源主要是外界漏进凝汽器的空气中的氧气,将凝汽器的漏点消除,凝结水的溶氧值就会明显下降。

凝结水溶氧高的原因及处理

凝结水溶氧高的原因及处理

凝结水溶氧高的原因及处理凝结水是指在供热系统中,由于热量传递和冷却作用导致的蒸汽或热水冷凝后形成的水,其水流量大、温度高、含有大量的溶气。

凝结水在供热系统中的应用广泛,但若溶氧含量过高会导致一系列问题,如腐蚀设备、降低热交换效率等。

本文将探讨凝结水溶氧高的原因和处理方法。

1.溶氧的吸入:溶氧通常来自外界,如空气、供水等。

当凝结水长时间暴露在空气中或通过供水中的气体溶入到凝结水中,使凝结水溶氧含量增加。

2.供水溶氧高:若供水中氧含量较高,凝结水也会相应地具有较高的溶氧含量。

3.温度变化:凝结水的温度波动也会影响其溶氧含量。

高温会使凝结水中的溶氧含量降低,而低温则会有相反效应。

因此,当供热系统中的温度变化不稳定时,凝结水溶氧含量也会受到影响。

为了处理凝结水溶氧高的问题,可以采取以下方法:1.增加通气设备:通过增设通气设备,如放气阀、通气管等,可以将凝结水中的溶氧释放到空气中。

通气设备应布置在凝结水水箱的高位,以利于氧气的有效排出。

2.采用除气设备:在供热系统中加装除气设备,如除气器、空气预热器等,可以有效地去除凝结水中的氧气。

4.控制温度波动:合理调节供热系统的运行参数,保持稳定的温度。

避免过高或过低的温度变化,减少凝结水中溶氧含量的波动。

5.使用氧化剂:可以在凝结水中添加适量的氧化剂,如NaClO、KClO、H_2O_2等,使溶氧得到氧化,从而减少溶氧含量。

6.增加抗腐蚀剂:针对凝结水中存在的腐蚀问题,可以添加抗腐蚀剂来保护设备。

抗腐蚀剂可以在一定程度上降低凝结水中溶氧的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凝结水溶解氧的原因分析(摘抄)
大机组随着参数、自动化程度的提高,对热力循环的工作介质的品质要求也越来越高,对汽轮机凝结水的水质要求的标准逐步提高,凝结水溶解氧量是表征凝结水水质的重要指标之一,下面对凝结水溶解氧量的机理、因素及技术发展进行分析,提出了采取的措施,供设计和运行维护参考。

凝汽器内除氧技术的发展:早先的中低压汽轮机的凝汽器热水井无除氧淋水装置和凝汽器冷却水管束布置不合理,蒸汽直接加热热水井凝结水效果不好等,随着对凝结水水质的要求越来越高,高压机组、超高压机组、亚临界机组凝汽器开始设置有淋水装置和汽轮机排汽直接加热凝结水的设计,来减少凝结水过冷,前苏联和美国电站广泛采用凝汽器鼓泡装置,并且近几十年来,研制了凝汽器加热凝结水的除氧装置和扫气式除氧装置。

凝汽器内鼓泡装置,在热水井的凝结水被蒸汽鼓泡搅动而混合加热,凝结水被加热到饱和温度时,释放出非凝结气体,这种装置在低负荷启动和非正常工况下投运。

加热凝结水的除氧装置是1984年2月Katsumoto ohtake等人提出快速去除凝汽器内凝结水中氧气的除氧装置,凝汽器内设有用隔板分割成明渠和暗渠,明渠中设有加热装置,凝结水先进入明渠被蒸汽加热,对凝结水除氧后流向暗渠,这种设施对全部凝结水加热,使除氧效果更好,除氧时间更短。

扫气式除氧装置是日本Keizo ishida等人于1983年2月提出热水井除氧效果好和阻止氧气重新溶于凝结水的除氧装置,此结构是热水井和冷却水管之间安装两块倾斜上下错开的隔板,隔板固定凝汽器前后壁,凝结水沿此隔板曲折流动,热水井底部引入辅助蒸汽与凝结水流向相反,这样改善凝汽器除氧性能,并且除氧时间短。

1凝结水溶解氧原因分析
凝结水溶解氧的机理:由于凝汽器内空气进入和凝结水存在过冷,使凝结水中溶解氧,这就是凝结水溶解氧的机理。

空气漏入量增加,凝结水溶解氧量增加,凝结水过冷度增加,凝结水溶解氧量也随之增加,如果空气不进入和过冷度为零,氧气在液体里的溶解度趋于零,因此凝汽器被设计成象除氧器那样,并且在满负荷时效果最佳,这是理想状态,影响凝结水溶解氧的两个因素是凝结水存在过冷度和空气的进入。

1.1 过冷的原因
凝结水过冷度表征凝汽器热水井中凝结水的过冷却程度,凝结水热水井出口凝结水温度与凝汽器在排汽压力下对应的饱和温度之差称为过冷度。

现代装置对凝汽器要求其过冷度不超过0.5—1℃。

过冷度增加,凝结水溶解氧量也随之增加,因此过冷度不仅影响低压给水系统的腐蚀,而且也影响凝汽器空气漏入量的估算,机组的经济性和安全性。

过冷的原因:由于蒸汽从排汽口向下部流动时产生阻力,造成下部蒸汽压力低于上部压力,下部凝结水温度较上部低,从而产生过冷,此外蒸汽被冷却成液滴时,在凝汽器冷却水管间流动,因液滴的温度比冷却水管管壁温度高,凝结水降温从而低于其饱和温度,产生过冷,以及空气漏入,空气分压力增大,蒸汽的分压力相对降低,蒸汽仍在自己的分压力下凝结,使凝结水温度低于排汽温度,产生过冷,如果抽气器不能及时抽出,增大了传热阻力,也使过冷度增大,从而使凝汽器溶解氧量增大;热水井水位高于正常范围,铜管淹没,使下面几排铜管中的冷却水又带走一部分凝结水的热量而产生过冷却,过冷度增加,凝结水的溶解氧增加;循环水温度过低和循环水量过大,凝结水被过度冷却,过冷度增加,
溶解氧相对增加;凝汽器内的淋水装置,它是将凝结水分成细小的水滴,与蒸汽逆流被重新加热,减少过冷和除掉水中的溶解氧,淋水装置将影响凝结水过冷和溶解氧量;凝汽器设计负荷以及设计合理的凝结水再次被加热。

1.2 空气进入的原因
根据美国热交换学会的规定,设计和性能合理的凝汽器,在过冷度为零时,空气的漏入量为0.17m3/min,这时凝结水的溶解氧量为7微克/升,当空气漏入量为0.283m3/min,凝结水的溶解氧量为14微克/升。

空气漏入凝汽器,增大了空气的分压力,因而增加了空气在水中的溶解度,使凝结水中溶解氧量增加,凝结水溶解氧量随空气漏入量增加而增加,凝结水溶解氧量影响低压给水系统的腐蚀。

空气的进入的原因:凝汽器补充除盐水带入的氧气,椐《世界工业信息》1988年7期《氧气发生器在鱼卵化场中的应用》(美)Konaldj.Lewandowski报道,水中溶解氧量取决于温度、海拔高度详见表1,补充水溶解氧是凝结水的近千倍,可见对凝结水溶解氧的影响是很大的;蒸汽夹带进的氧气,这个数量是很小的;真空系统漏入的空气带入的氧,这是凝结水溶解氧的主要来源,如真空系统的设备因振动、塑性变形、膨胀不均等,出现裂纹、断裂等,使空气进入,以及阀门盘根和管道的接头等漏泄;机组负荷低,蒸汽流量小,处于真空状态下工作的区域扩大,漏入的空气量大大增加;凝汽器铜管腐蚀或破裂漏泄、胀口漏泄循环水漏入热水井,不仅影响水质,而且影响凝结水溶解氧量,虽然溶解氧量很高,但循环水的漏量是很小的,且漏泄的几率很小;各种疏水回收带入的氧,如生水加热器疏水、凝结水回收水箱疏水、热网加热器疏水、锅炉疏水箱疏水等,疏水中夹带着空气和溶解氧,对于闭式不接触大气的疏水,溶解的氧相对较少,而对于接触大气的疏水受温度的影响较大,温度低溶解的氧较多,温度高溶解的氧较少。

凝汽器内空气等不凝结气体的进入是不可避免的,首先尽最大努力减少空气的进入,然后将进入的不凝结的气体及时排除,防止氧气重新溶解于凝结水中。

所以真空泵或抽气器的效率的高低及空抽区设计是否合理直接影响凝结水的含氧量,在不凝结气体量一定的情况下,抽出的气体量多,重新溶解于凝结水中的氧量少,反之亦然。

表1在各种温度及三种海拔高度情况下溶解于水中的氧气的平衡浓度单位:
2 减少凝结水溶解氧量采取的对策
凝结水存在溶解氧威胁机组的经济性和安全性,凝结水溶解氧量较大时,会引起凝结水系统的腐蚀,还会引起凝结水进入给水系统的腐蚀产物,影响水质。

因此从设计、检修、运行维护等各方面引起足够的重视,减少凝结水系统的腐蚀,提高凝结水温度,提高机组的经济性和安全性。

(1)设计、安装中:改进冷却水管束的布置,在管束中设计适当留有汽流通道,保证有一部分排汽直接通至凝汽器底部,加热凝结水,减少过冷度,以减少凝结水溶解氧量,以及抽汽口的位置应离开凝结水远一些,借以减少凝结水过冷度;凝汽器进口到抽汽口的途径应力求直接,且有足够的流通面积,蒸汽进入管束的流速不超过50m/s,减少阻力,降低凝结水的过冷度,从而减少凝结水溶解氧量;凝汽器内淋水装置合理选择;循环水量优化设计;凝汽器补充除盐水、有关疏水设计最好排到凝汽器喉部,对轴封冷却器、低压加热器等疏水回收,排放点在凝汽器热水井水位线上。

汽轮机排汽口与凝汽器连接采用柔性连接,防止运行中膨胀不畅,出现裂纹,空气漏入。

凝汽器安装后做泡水试验;冷却水管用扩管或密封圈连接与管板上,保证具有高度的严密性和进行水压试验。

(2)检修中:机组检修中检查凝汽器内的除氧装置;消除阀门的漏泄,尤其是关键的阀门,如:汽包的事故放水、高压加热器的危急疏水门、给水管道的放水门等减少汽水损失,以减少凝汽器的补充水量;对真空系统泡水查漏。

重点检查的部位,如凝汽器喉部、低压抽汽蒸汽管道、低压缸法兰结合面。

对凝汽器水位调节器和轴封压力调节器检修;对真空泵进行检修,保持真空泵效率,以便及时抽出凝汽器内不凝结气体。

(3)运行中:运行中加强对过冷度、真空严密性、循环水量和循环水温等监视,采取的对策如下:凝汽器水位自动调节器投入运行保持水位在正常范围内,防止水位过高淹没铜管;加强调节减少汽水损失率,从而减少凝汽器的补水量;轴封压力调节器投入运行,控制在规定值内,防止空气从低压轴封漏入;通常冷却塔设计循环水温度在12—33℃之间,主要受当地的气候条件影响,大型冷却塔采用分区运行,改变水温度,但是循环水温度的调节非常困难;根据负荷对循环水量的调节,保持合适的循环倍率,冬季循环水温度低于某值(经试验确定),可以停止一台循环水泵运行,减少循环水量,低负荷时,根据负荷和水温,对照试验曲线,利用凝汽器出入口门,调整循环水量,减少凝结水过度冷却,但循环水量的调节是有限的,根据美国热交换学会规定,凝汽器端差应控制在不低于5℉(1℉=5/9℃),以及考虑循环水被用来冷却其它设备,因此调整凝结水过冷度时应从整个循环水系统来考虑;运行中凝汽器铜管漏泄,及时停止堵管;分析机组负荷变化时,凝结水溶解氧量变化的规律,如果溶解氧量增加说明微正压系统漏泄,如低压抽汽管路、轴封系统等。

通过对凝结水溶解氧量原因。

相关文档
最新文档