基于热敏电阻的温度传感器

基于热敏电阻的温度传感器
基于热敏电阻的温度传感器

热电偶温度传感器设计报告

传感器课程设计 设计题目:热电偶温度传感器 2010年12月30日 目录 1、序言 (3) 2、方案设计及论证 (4)

3、设计图纸 (9) 4、设计心得和体会 (10) 5、主要参考文献 (11) 一、序言 随着信息时代的到来,传感器技术已经成为国内外优先发展的科技领域之一。测控系统的设计通常是从对象信息的有效获取开始的不同种

类的物理量不仅需要不同种类的传感器进行采集,而且因信号性质的不同,还需要采用不同的测量电路对信号进行调理以满足测量的要去。因此,触感其与检测技术在现代测量与控制系统中具有非常重要的地位。 而在所有的传感器中,热电偶具有构造简单、适用温度范围广、使用方便、承受热、机械冲击能力强以及响应速度快等特点,常用于高温区域、振动冲击大等恶劣环境以及适合于微小结构测温场合。 因此,我们想设计一种热电偶传感器能够在低温下使用,可以适用于试验和科研中,测量为温度范围:-200 ℃ ~500 ℃,电路不太复杂的简易的热电偶温度传感器,考虑到制作材料相对便宜,我们选择了铜-铜镍(康铜)。在选择测量电路时,我们从简单,符合测量范围要求及热电偶的技术特性,我们采用了AD592对T型热电偶进行冷结点的补偿电路。这种型号的电路允许的误差(0.5 ℃或0.004x|t|)相对于其他类型的热电偶具有测量温度精度高,稳定好,低温时灵敏度高,价格低廉。能较好的满足测量范围。 热电偶同其它种温度计相比具有如下特点: a、优点 ·热电偶可将温度量转换成电量进行检测,对于温度的测量、控制,以及对温度信号的放大、变换等都很方便, ·结构简单,制造容易, ·价格便宜, ·惰性小,

DS18B20温度传感器使用方法以及代码

第7章 DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温 度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个 I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。 7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS^导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9?12位的数字 值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入 DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的 DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较 DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口 线即可实现微处理器与DS18B20勺双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 C。固有测温分辨率为0.5 C。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个 DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. 引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式 DS18B20的原理图。 3. 工作原理 单片机需要怎样工作才能将DS18B2 0中的温度数据独取出来呢?F面将给出详细分析

《温度传感器原理》.(DOC)

一、温度传感器热电阻的应用原理 温度传感器热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.温度传感器热电阻测温原理及材料 温度传感器热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。温度传感器热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器热电阻。 2.温度传感器热电阻的结构

(1)精通型温度传感器热电阻工业常用温度传感器热电阻感温元件(电阻体)的结构及特点见表2-1-11。从温度传感器热电阻的测温原理可知,被测温度的变化是直接通过温度传感器热电阻阻值的变化来测量的,因此,温度传感器热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有关具体内容参见本篇第三章第一节.

(2)铠装温度传感器热电阻铠装温度传感器热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。 与普通型温度传感器热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 (3)端面温度传感器热电阻端面温度传感器热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向温度传感器热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型温度传感器热电阻隔爆型温度传感器热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场

智能仪器设计温度传感器的完整设计

指导老师: 班级: 姓名: 学号:

目录 1系统方案...................................................................................................... 错误!未定义书签。 1.1 测温模块的论证与选择................................................................. 错误!未定义书签。 1.2 电源电路切换模块的论证与选择................................................. 错误!未定义书签。 1.3 控制系统的论证与选择................................................................. 错误!未定义书签。 1.4 显示模块的论证与选择................................................................. 错误!未定义书签。 1.5键盘模块.......................................................................................... 错误!未定义书签。2系统理论分析与计算.................................................................................. 错误!未定义书签。3电路与程序设计.......................................................................................... 错误!未定义书签。 3.1电路的设计...................................................................................... 错误!未定义书签。 3.1.1系统总体框图...................................................................... 错误!未定义书签。 3.1.2 电源转换电路子系统的设计............................................. 错误!未定义书签。 3.1.3 STC89C52单片机子系统的设计........................................ 错误!未定义书签。 3.1.4电源的设计.......................................................................... 错误!未定义书签。 3.1.5温度采集电路子系统电路的设计...................................... 错误!未定义书签。 3.1.6键盘模块.............................................................................. 错误!未定义书签。 3.2程序的设计...................................................................................... 错误!未定义书签。 3.2.1程序功能描述...................................................................... 错误!未定义书签。 3.2.2程序流程图.......................................................................... 错误!未定义书签。4测试方案与测试结果.................................................................................. 错误!未定义书签。 4.1测试方案.......................................................................................... 错误!未定义书签。 4.2 测试条件与仪器............................................................................. 错误!未定义书签。 4.3 测试结果及结论............................................................................. 错误!未定义书签。

热电阻电路测温计设计

燕山大学 传感器原理及应用课程设计题目:热电阻温度传感器器 学院(系)电气工程学院 年级专业: 12级自动化仪表 学号: 120103020133 学生姓名:马冰卿 指导教师:童凯 教师职称:教授

一、概述 1.1 热电阻温度传感器简介 热电阻温度传感器是利用导体或半导体的电阻值随温度变化而变化的原理进行测温的一种传感器温度计。 热电阻温度传感器分为金属热电阻和半导体热敏电阻两大类。热电阻广泛用于测量-200~+850°C范围内的温度,少数情况下,低温可测至1K,高温达1000°C。 热电阻传感器由热电阻、连接导线及显示仪表组成,热电阻也可以与温度变送器连接,将温度转换为标准电流信号输出。 用于制造热电阻的材料应具有尽可能大和稳定的电阻温度系数和电阻率,输出最好呈线性,物理化学性能稳定,复线性好等。目前最常用的热电阻有铂热电阻和铜热电阻。 1.2 pt100热电阻简介 pt100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。

二、工作原理 2.1 热电阻工作原理 与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。下面以铂电阻温度传感器为例:Pt100 是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。 金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 ()[]010t t Rt Rt -+=α (1) 式中,Rt 为温度t 时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值α为温度系数。 半导体热敏电阻的阻值和温度关系为: t e Rt B A = (2) 式中Rt 为温度为t 时的阻值;A 、B 取决于半导体材料的结构的常数。相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测 量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。 2.2 接线方式 采用pt100测温一般有三种接线方式:二线制、三线制、四线制。 ① 二线制接法:这种接法不考虑PT100电缆的导线电阻,将A/D 采样端与电流源的正极输出端接在一起,这种接法由于没有考虑测温电缆的电阻,因此只能适用于测温距离较近的场合。

热敏电阻温度传感器

热敏电阻温度传感器电气与电子测量技术 ?

热敏电阻(Thermistor) ?材料:半导体 ?陶瓷材料 ?金属氧化物 ?高分子材料 ?测量范围 ?-100 —+300℃ ?热敏电阻分类 ?NTC: 负温度系数热敏电阻 ?PTC: 正温度系数热敏电阻 ?CTR: 临界温度系数热敏电阻

?温度-电阻特性 热敏电阻工作原理和基本特性 R(T)=Ae B T或R T=R0e B(1 T ?1 T0 ) ?NTC的R-T关系式 A、B——与热敏电阻尺寸、形式及其半导体物理性能有关的常数; T——绝对温度 U/V I/mA U U a I a Im a b c d ?NTC的伏安特性 (热敏电阻两端电压与稳定电流的关系)

?灵敏度 热敏电阻的特点 2 t B T α=- 优点 灵敏度比热电阻高1-2个数量级 常温下阻值大,可忽略引线电阻 响应时间快(时间常数1-10ms) 成本低,易于维护 ?灵敏度 缺点 分散性大,互换性不好 非线性严重 长期稳定性差体积可以做得很小

家用电器 电熨斗、电冰箱、电饭煲、洗衣机、电暖壶、烘干机、电 烤箱、空调机、电热毯、热水器、热得快、电磁炉、汽车电子电子喷油嘴、空调机、发电机防热装置、电热座椅 测量仪器 流量计、风速表、真空计、浓度计、湿度计、空气传感器、 环境监测仪、 办公设备复印机、传真机、打印机、扫描仪 农业园艺温室控制、人工气候箱、烘干系统、 医疗器具体温计、人工透析、散热系统 热敏电阻的应用 温度测量(NTC或PTC)

Page .6热敏电阻的应用 其他相关应用 材料用途举例 NTC温度补偿带温度补偿的石英晶体振荡器 NTC浪涌抑制 抑制开关电源、电动机、白炽灯接通瞬间的浪涌电流 PTC恒温加热元件自控温电热器、恒温电烙铁 PTC过载保护自恢复保险丝 NTC浪涌抑制 自恢复保险丝

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

常用温度传感器解析,温度传感器的原理、分类及应用

常用温度传感器解析,温度传感器的原理、分类及应用 温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 温度传感器的分类接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。 随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。 非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐

温度传感器工作原理

温度传感器工作原理 温度传感器temperature transducer,利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 1.热电偶的工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V 很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度

热敏电阻温度传感器

热敏电阻温度传感器 词条简介 热敏电阻温度传感器(Thermistor Temperature Probe)是根据周围环境温度变化而改变自身电阻的温度传感装置。由于热敏电阻的电阻很容易测得,所以通常用作温度传感器使用。热敏电阻的电阻和温度之间的关系是高度非线性的。 目录 热敏电阻温度传感器的特点>热敏电阻温度传感器的参数>热敏电阻温度传感器的型号规格>热敏电阻温度传感器在水壶中的应用原理>热敏电阻温度传感器的选择要点 热敏电阻温度传感器的特点 ·宽温度范围 · 0.35°C 精确度 ·卓越的长期稳定性 ·可更换传感器 ·适用于多种媒介的传感器 ·可选单位显示 ·快速响应 ·小巧的尺寸>热敏电阻温度传感器的参数 测量温度范围:-50℃~120℃-50℃~250℃; R25电阻值:3K, 5K, 10K, 20K, 100K 等; B值:3435K,3950K,3270K,4537K等; R25电阻值和B值精度:分别可达±1%~5%; 采用日本热敏电阻芯片; 采用双层密封工艺,具有良好的绝缘和抗机械碰撞、抗折弯能力; 保护管直径:Φ4,Φ5; 外引线采用PVC绝缘电缆或高温电缆; 安装方式:直管式,螺纹式,螺丝压接式等;>热敏电阻温度传感器的型号规格 热敏电阻温度传感器的型号与规格:

用途:家用空调、汽车空调、冰箱、冷柜、热水器、饮水机、暖风机、咖啡机,烘干机以及中低温干燥箱、恒温箱等场合的温度测量与控制。>热敏电阻温度传感器在水壶中的应用原理 热敏电阻温度传感器在水壶中的应用时的温控器原理: 将热敏电阻放在电热水壶某一位置,通过热敏电阻进行温度采样,并将此处的温度相关信息传送给MCU处理;根据此处温度与壶内水的温度的规律关系,MCU将计算出的水温与用户设定的温度进行比较,如果水的温度大于或等于设定的温度,则MCU控制断开加热电路,使电路停止加热发热盘。同样,如果热敏电阻读取到的发热盘温度大于110℃(即发生干烧时),对发热盘的加热电路也将立即断开。>热敏电阻温度传感器的选择要点热敏电阻温度传感器的选择要考虑如下问题: (1)被测对象的温度是否需记录、报警和自动控制,是否需要远距离测量和传送。 (2)测温范围的大小和精度要求。 (3)测温元件大小是否适当。 (4)在被测对象温度随时间变化的场合,测温元件的滞后能否适应测温要求。 (5)被测对象的环境条件对测温元件是否有损害。 (6)价格如何,使用是否方便。

温度传感器

温度传感器 一、简介 温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。 二、主要分类 1、接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测量范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸气压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差热电偶等。低温温度计要求感温元件体积小、精确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳少杰而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6-300K范围内的温度。 2、非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微

温度传感器常见故障的处理方法

温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。在实际使用上通常会和一些仪表配套使用,但也会出现很多故障现象。下面就让艾驰商城小编对温度传感器常见故障的处理方法来一一为大家做介绍吧。 第一,被测介质温度升高或者降低时变送器输出没有变化,这种情况大多是温度传感器密封的问题,可能是由于温度传感器没有密封好或者是在焊接的时候不小心将传感器焊了个小洞,这种情况一般需要更换传感器外壳才能解决。 第二,输出信号不稳定,这种原因是温度源本事的原因,温度源本事就是一个不稳定的温度,如果是仪表显示不稳定,那就是仪表的抗干扰能力不强的原因。 第三,变送器输出误差大,这种情况原因就比较多,可能是选用的温度传感器的电阻丝不对导致量程错误,也有可以能是传感器出厂的时候没有标定好。 温度传感器出现故障的情况很少见,只要出厂的时候进行仔细的检测,这些情况都是可以避免的,所以温度传感器在出厂的时候一地要进行检验,客户也可找传感器厂家索要出厂检测报告进行参考。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/7515994892.html,/

温度传感器课程设计

温度传感器课程设计报告 专业:电气化 年级: 13-2 学院:机电院 姓名:崔海艳 学号:8021209235 -- 目录 1引言 (3) 2 设计要求 (3)

3 工作原理 (3) 4 方案设计 (4) 5 单元电路的设计和元器件的选择 (6) 5.1微控制器模块 (6) 5.2温度采集模块 (7) 5.3报警模块 (9) 5.4温度显示模块 (9) 5.5其它外围电路 (10) 6 电源模块 (12) 7 程序设计 (13) 7.1流程图 (13) 7.2程序分析 (16) 8. 实例测试 (18) 总结 (18) 参考文献 (19) 1 引言 传感器是一种有趣的且值得研究的装置,它能通过测量外界的物理量,化学量或生物量来捕捉知识和信息,并能将被测量的非电学量转换成电学量。在

生活中它为我们提供了很多方便,在传感器产品中,温度传感器是最主要的需求产品,它被应用在多个方面。总而言之,传感器的出现改变了我们的生活,生活因使用传感器也变得多姿多彩。 温度控制系统广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等,常用的控制电路根据应用场合和所要求的性能指标有所不同,在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用,但由于继电器动作频繁,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。由于DS18B20芯片的小型化,更加可以通过单跳数据线就可以和主电路连接,故可以把数字温度传感器DS18B20做成探头,探入到狭小的地方,增加了实用性。更能串接多个数字温度传感器DS18B20进行范围的温度检测 2 设计要求 本设计主要是介绍了单片机控制下的温度检测系统,详细介绍了其硬件和软件设计,并对其各功能模块做了详细介绍,其主要功能和指标如下: ●利用温度传感器(DS18B20)测量某一点环境温度 ●测量范围为-55℃~+99℃,精度为±0.5℃ ●用液晶进行实际温度值显示 ●能够根据需要方便设定上下限报警温度 3 工作原理 温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机 AT89S51 获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处

WZPK型温度传感器使用说明书

WZPK型温度传感器 使用说明书 泰兴市热工仪表厂2015年01月10日

隔爆温度传感器 ■应用 通常和显示仪表、记录仪表、电子计算机等配套使用。直接测量生产现场存在碳氢化合物等爆炸的0~500℃范围内液体、蒸汽和气体介质以及固体表面温度。 ■特点 ●压簧式感温元件,抗振性能好; ●测量范围大; ●毋须补偿导线,节省费用; ●进口薄膜电阻元件,性能可靠稳定。 ●防爆标志:Ex dⅡBT1~T5,防爆合格证号:GYB ■主要技术参数 ●产品执行标准 JB/T8622-1997 《工业铂热电阻技术条件》 《爆炸性气体环境用电气设备第1部分:设备通用要求_部分2》和《爆炸性气体环境用电气设备第2部分:隔爆型“d”保护的设备》,《设备保护等级(EPL)为Gb级的设备产品防爆标志为Ex d ⅡB T1~T5 Gb ■常温绝缘电阻 防爆热电阻在环境温度为15~35℃,相对湿度不大于80%,试验电压为10~100V(直流)电极及外套管之间的绝缘电阻≥100MΩ.m。

■测温范围及允差 ●测温范围及允差 注:t为感温元件实测绝对值。 ●防爆分组形式 d Ⅱ□ T □ 温度组别:T1~T5 防爆等级:A、B、C 工厂用电气设备 d:隔爆型 ai:本质安全型 ○电气设备类别 Ⅰ类——煤矿井下用电气设备 Ⅱ类——工厂用电气设备 ○防爆等级 防爆热电偶的防爆等级按其使用于爆炸性气体混合物最大安

全间隙分为A、B、C三级。 ○温度组别 防爆热电偶的温度组别按其外漏部分允许最高表面温度分为T1~T5 ●防爆等级 ●Exd Ⅱ□T□ ●Exia Ⅱ□T□ ●防护等级:IP65 ■接线盒形式

温度传感器设计报告

。 目录 摘要 (1) 1单片机简介 (1) 2基于单片机和温度传感器设计数字温度计的发展现状 (1) 3基于单片机的温度传感器设计数字温度计的技术现状 (2) 4选择的意义 (3) 第一部分 单片机的温度计设计制作准备 | 1电路介绍 (4) 2制作所需电子元件及其功能介绍 (4) 3制作焊接要求及注意事项 (5) 4安装完成调试说明及其使用说明 (7) 第二部分 单片机的温度计设计各个部分工作及其相关性能介绍 1 温度计的总体设计 (8) 总体论述 (8) 、 设计思路 (9) 2 硬件说明 (10) 测量输入模块 (10) 传感器选择 (10) DS18B20的介绍 (11) 键盘输入模块 (12) 显示模块 (13) 报警模块 (13) # 低功耗设计 (16) 设计思

路 (16) 20C51的低功耗措施 (17) 3软件和功能说明 (18) 数据的读取 (19) DS18B20的软件设计 (19) 第三部分 设计制作心得体会 (21) … 参考文献 (22) 附表 附表1---电路图 附表2---单片机控制程序 摘要 单片机简介 , 单片机全称为单片微型计算机。单片机发展始于70年代,经过30多年的发展,由于其具有高集成度、低功耗、工作电压范围宽、价格便宜、使用方便等诸多优点而在广泛使用。到目前为止将单片机发展阶段分为三个阶段,分别为初级阶段、高性能阶段、以及高位单片机的推出。通常单片机内部含有中央处理部件(CPU)、数据存储器(RAM)、程序存储器(ROM、EPROM、Flash ROM)、定时器、计数器和各种输入输出接口等。目前8位单片机是目前品种最丰富、应用最广泛的单片机。今天我所使用的就其中比较典型的一种8位单片机AT89C51。

嵌入式课程设计温度传感器-课程设计(1)

@ 嵌入式系统原理与应用 课程设计 —基于ARM9的温度传感器· 学号:01** 班级:**************1班 姓名:李* 指导教师:邱* 、

课程设计任务书 班级: ************* 姓名: ***** 设计周数: 1 学分: 2 指导教师: 邱选兵 $ 设计题目: 基于ARM9的温度传感器 设计目的及要求: 目的: 1.熟悉手工焊锡的常用工具的使用及其维护与修理。 2.基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊 接。熟悉电子产品的安装工艺的生产流程。 3.熟悉印制电路板设计的步骤和方法,熟悉手工制作印制电板的工艺流程,能 够根据电路原理图,元器件实物设计并制作印制电路板。 4.* 5.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的 电子器件图书。 6.能够正确识别和选用常用的电子器件,并且能够熟练使用普通万用表和数字 万用表。 7.掌握和运用单片机的基本内部结构、功能部件、接口技术以及应用技术。 8.各种外围器件和传感器的应用; 9.了解电子产品的焊接、调试与维修方法。 要求: 1.学生都掌握、单片机的内部结构、功能部件,接口技术等技能; 2.根据题目进行调研,确定实施方案,购买元件,并绘制原理图,焊接电路板, 调试程序; 3.} 4.焊接和写汇编程序及调试,提交课程设计系统(包括硬件和软件);. 5.完成课程设计报告 设计内容和方法:使用温度传感器PT1000,直接感应外部的温度变化。使用恒流源电路,保证通过PT1000的电流相等,根据PT1000的工作原理与对应关系,得到温度与电阻的关系,将得到的电压放大20倍。结合ARM9与LCD,将得到的

DS18B20温度传感器使用方法以及代码

第7章DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1.DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 ℃。固有测温分辨率为0.5 ℃。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2.引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式DS18B20的原理图。 3.工作原理 单片机需要怎样工作才能将DS18B20中的温度数据独取出来呢?下面将给出详细分析。

相关文档
最新文档