二元一次不等式组与平面区域ppt课件

合集下载

【数学课件】二元一次不等式

【数学课件】二元一次不等式
若C≠0,则直线定界,原点定域
特殊点(0,0)
画出下列不等式表示的平面区 域:
(1) x-y+1<0 ;
(2) x+ y>0;
(3) 2x+5y-10≥0 ;
(1)x-y+1<0
y x-y+1=0
1
-1
o
取(0,0) 0-0+1>0
x
(2)x+ y>0
y
1
o
直线过(0,0)
取(0,1)
0+1>0
Y
x+y-1>0
x+y-1<10XO Nhomakorabea1
l
点集{(x,y)|x+y-1>0}表示直线x+y-1=0右上方平面区域 点集{(x,y)|x+y-1<0}表示直线x+y-1=0左下方平面区域
(1)Ax+By+C>0在平面直角坐标系中 表示直线Ax+By+C=0某一侧所有点组成的平面区域。
(2)在确定区域时,在直线的某一侧取一个特殊点
-1 D
l 右上方的点(x,y), x+y-1>0成立
l 左下方的点(x,y), x+y-1<成立
证明:如图,设M(x,y)为 l
右上方区域内任一点
P YM
过M作MP平行于x轴交 l
于点P (x0 , y0 )
则 x x0 , y y0
x y x0 y0
1
X
O1
l
x+y-1=0
问3 在平面直角坐标系下作出A(1,1),B(1,2),

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

高三数学二元一次不等式(组)与平面区域

高三数学二元一次不等式(组)与平面区域

澳洲赛车是不是ห้องสมุดไป่ตู้人做庄
[单选]关于CT扫描层厚的理解,哪个是错误的()A.层厚是CT扫描技术选择的重要参数B.层厚薄空间分辨率高C.层厚加大,密度分辨率低D.层厚的选择,应根据扫描部位和病变大小决定E.层厚薄,病灶检出率高 [单选,A1型题]人体消灭结核杆菌主要依靠的细胞是()A.中性粒细胞B.嗜酸性粒细胞C.浆细胞D.B淋巴细胞E.巨噬细胞 [单选,A2型题,A1/A2型题]妇女一生中最后一次行经后,停闭1年以上,称()A.绝经期B.绝经C.绝经前期D.绝经后期E.围绝经期 [单选]平面倾斜于投影面时,其投影的形状改变,而且比原来平面()A.缩小B.真实形状C.一条直线 [判断题]玻璃体由Ⅱ型胶原纤维网支架和交织在其中的透明质酸分子构成。A.正确B.错误 [填空题]刚度与质量分布特别不均匀的建筑物、甲类建筑物等,宜采用()。 [单选,A1型题]治风痰癫狂,常以白矾配()A.郁金B.磁石C.朱砂D.远志E.皂荚 [单选]下列哪项不是烧伤脓毒症的早期表现()A.高热或低温B.呼吸增快,浅促C.烦躁不安D.腹胀E.出现坏死斑 [单选,A1型题]原发性醛固酮增多症的高血压的特点是()A.以收缩压升高为主B.以舒张压升高为主C.收缩压和舒张压均升高明显D.收缩压和舒张压增高均不明显E.收缩压升高,舒张压正常 [单选]油罐进油前应提前()h投运采暖管线预热。A、3B、2C、1D、0.5 [单选,A1型题]关于臀位,哪项错误()A.为最常见的异常胎位B.胎儿病死率比枕前位高3~8倍C.多见于经产妇D.必须在妊娠28周左右行外转胎位术E.后出头困难时需产钳助产 [单选]输卵管阻塞造成不孕与下列哪项无关?()A.阑尾炎B.盆腔炎C.结核性腹膜炎D.先天性输卵管发育不全E.结肠炎 [单选]论文得不到公认,就是不科学的:()A、对B、不全对C、错 [单选,A2型题,A1/A2型题]引用散装劣质酒导致人体酒精中毒的成分主要是()。A.甲醇B.超重C.琥珀酸D.酒石酸E.乙醇 [问答题,简答题]轴箱定位方式有哪几类? [单选,A1型题]中毒是指()A.物理因素引起的损害B.有毒化学物质引起的损害C.细菌感染引起的损害D.放射物质引起的损害E.药物引起的损害 [单选,A1型题]医疗机构从业人员违反本规范的,视情节轻重给予处罚,其中不正确的是()A.批评教育、通报批评、取消当年评优评职资格B.卫生行政部门依法给予警告、暂停执业或吊销执业证书C.纪检监察部门按照党纪政纪案件的调查处理程序办理D.缓聘、解职待聘、解聘E.涉嫌犯罪的,移 [单选,A1型题]慢性肾炎高血压目前治疗倾向()A.单独使用利尿剂B.单独使用&beta;受体阻滞剂C.单独使用血管紧张素转换酶抑制剂D.联合使用降压药E.硝普钠 [单选,A1型题]下列各项,不属于伤寒证别称的是()。A.外寒证B.表寒证C.寒邪束表证D.太阳表虚证E.太阳伤寒证 [单选,B1型题]扩大鼻前庭纤维组织性狭窄常用()。A.氩离子激光B.准分子激光C.半导体激光D.CO2激光E.Nd:YAG激光 [单选]假定某公司的税后利润为500000元,按法律规定,至少要提取50000元的公积金。公司的目标资本结构为长期有息负债∶所有者权益=1:1,该公司第二年投资计划所需资金600000元,当年流通在外普通股为100000股,若采用剩余股利政策,该年度股东可获每股股利为()元。A、3B、2C、4D [名词解释]家长制 [填空题]旅游业的四要素是指()、()、旅行社、()。 [多选]导致钻孔灌注桩施工中断桩的原因有()。A.混凝土坍落度太小,骨料太大,运输距离过长,混凝土和易性差B.计算导管埋管深度时出错,或盲目提升导管,使导管脱离混凝土面C.钢筋笼将导管卡住,强力拔管时,使泥浆混入混凝土中D.桩底清孔不彻底E.导管接头处渗漏,泥浆进入管内,混 [单选]下列各项中,会导致企业资产负债率下降的是()。A.收回应收款项B.计提资产减值准备C.盈余公积转增资本D.接受股东追加投资 [单选]孔子在《论语》中说:为人师者就当“诲人不倦”。这名话名言至今仍在中国流传说明了()A.职业道德的广泛性B.职业道德的连续性和稳定性C.职业道德的有限性D.职业道德的社会性 [单选,A型题]红霉素片是下列那种片剂()A、糖衣片B、薄膜衣片C、肠溶衣片D、普通片E、缓释片 [单选]下列股利分配政策中体现了"多盈多分,少盈少分,不盈不分"原则的是()。A.剩余股利政策B.固定股利政策C.固定股利支付率政策D.低正常股利加额外股利政策 [填空题]合适的入浮煤浆浓度取决于()和(),尤其是()。 [单选,A1型题]下列除哪项外都是得神的表现()A.两目精彩B.面色荣润C.肌肉不削D.面色潮红E.运动自如 [单选]据统计,杆面击球点偏离杆面甜蜜点半英寸(1.27厘米),距离将损失()左右。A、5%B、10%C、20%D、25% [单选]职业技术课程内容选择的主要方法是()A、职业需求B、职业活动C、职业目标D、职业标准E、职业分析 [单选]我国古代数学家中将计算圆周率精确到小数点后第六位的是()。A.张衡B.祖冲之C.刘徽D.王孝通 [填空题]把毛泽东思想确立为我们党的指导思想的会议是()。 [问答题,简答题]ST型缓冲器的组成? [填空题]量体时被测者应()姿式。 [问答题,简答题]对各设备及开关进行填料及检修时,必须保证哪些条件方可操作? [问答题,简答题]重车重心高度超过规定高度时有何规定? [多选]中医诊察疾病的四种方法是()A.寒、热B.闻、同C.表、里D.虚、实E.望、切 [名词解释]区域异常

人教a版必修五课件:二元一次不等式(组)与平面区域(62页)

人教a版必修五课件:二元一次不等式(组)与平面区域(62页)

2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
新知初探
1.二元一次不等式及其解集的意义 (1)二元一次不等式 含有两 个未知数,并且含未知数的项的最高次数是 1 的不等式称为二元一次不等式. 二元一次不等式的一般形式是Ax+By+C>0,Ax+By +C<0,Ax+By+C≥0,Ax+By+C≤0,其中A,B不同 时为零.
(2)二元一次不等式组 由几个 二元一次不等式 组成的不等式组称为二元一次 不等式组. (3)二元一次不等式(组)的解集 满足二元一次不等式(组)的x和y的取值构成有序数对 (x,y),所以这样的有序数对(x,y)构成的集合称为二元一 次不等式(组)的解集.一个二元一次不等式,它的解是一些 数对(x,y),因此,它的解集不能用数轴上一个区间表示, 而应是平面上的一个区域.
By+C=0划分平面成两个半平面的区域,分别由不等式Ax +By+C>0与Ax+By+C<0决定.因此,如同前面所学平面 内的直线可以视为二元一次方程的几何表示一样,半平面 就是二元一次不等式的几何表示.
思考感悟
1.每一个二元一次不等式(组)都能表示平面上的一个 区域吗? 提示:不一定.当不等式组的解集为空集时,不等式 组不表示任何图形.
7 答案:4
类型三 [例3]
点与平面区域的关系 已知点P(1,-2)及其关于原点的对称点中有

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域
二元一次不等式(组)与平面 区域(1)
石泉中学 詹礼荣
2014高考导航
考纲展示
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域 表示二元一次不等式组.
教材回顾夯实双基
基础梳理
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式 Ax+By+C>0 在平面直角 坐标系中表示直线 Ax+By+C=0 某一侧的所有的点组 不含 边界直线,不等式 Ax+By 成的平面区域(半平面)______ +C≥0 所表示的平面区域(半平面)含有边界直线. (2)对于直线 Ax+By+C=0 同一侧的所有的点(x,y), 使得 Ax+By+C 值的符号相同,也就是位于同一半平 面的点,其坐标适合 Ax+By+C>0;而位于另一半平 Ax+By+C<0 面的点,其坐标适合_________________. (3)可在直线 Ax+By+C=0 的某一侧任取一点, 一般取 符号 来判断 Ax 特殊点(x0,y0),从 Ax0+By0+C 的_______ +By+C>0(或 Ax+By+C<0)所表示的区域.
2.已知点(-3,-1)和 (4,- 6)在直线 3x-2y-a= 0 的两 侧,则 a 的取值范围是( ) A. (- 24,7) B.(-7,24) C. (-∞,- 7)∪(24,+∞ ) D. (-∞,- 24)∪ (7,+∞ )
解析:选 B.∵点(-3,- 1)和(4,-6)在直线 3x- 2y-a=0 的两侧,则(-9+2-a)(12+12- a)<0, 即(a+7)(a-24)<0. ∴-7<a<24.
课堂小结(学生总结)
作业
• 1.阅读课本必修5 96-100页内容 • 2.课时达标检测(A) 219页第8题 • 3.补充题:直线 2 x y 10 0

高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22

高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22
4.利用可行域求非线性目标函数最值的方法:画出可行域,分析目
标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得
最值.
-27考点1
考点2
考点3
对点训练 2(1)(2020 河北唐山二模)已知 x,y 满足约束条件
- + 2 ≥ 0,
-2 + 1 ≤ 0,则 z=x-y 的最大值为( B )
包括
标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应_____
实线
边界直线,则把边界直线画成
.
(2)因为对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)
代入Ax+By+C,所得的符号都 相同
,所以只需在此直线的同
一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的 符号 即
-1 ≤ 0,
- + 1 ≥ 0
为( D )
A.-5
B.1
C.2
D.3
(2)如图,阴影部分表示的区域可用二元一次不等式组表示
+ -1 ≥ 0,
为 -2 + 2 ≥. 0
-17考点1
考点2
考点3
+ -1 ≥ 0,
解析: (1)不等式组 -1 ≤ 0,
所围成的平面区域如图所示.
3
3
7
A.1
B.
C.
D.
2
4
4
- ≥ 0,
2 + ≤ 2,
(2)若不等式组
表示的平面区域是一个三角形,则
≥ 0,
+ ≤
a 的取值范围是( D )

高考数学一轮复习课件:二元一次不等式(组)

高考数学一轮复习课件:二元一次不等式(组)

由x2+ x+2yy- -24= =00, , 得A(2,0). 由42xx- +yy+ -14= =00,. 得点B(12,3), ∴zmax=3×2-0=6,zmin=3×12-3=-32. 故z的取值范围是[-32,6].
【答案】 [-32,6]
x≥0, 若不等式组 x+3y≥4, 所表示的平面区域被直线y 3x+y≤4
(1)求z=x-y的最小值和最大值;
(2)若z= x2+y2,求z的取值范围.
•【审题视点】 明确目标函数z的几何意义, 数形结合找最优解,代入求值.
x≥0, 【尝试解答】 作约束条件 x+2y≥3,
2x+y≤3. 域,如图所示为△ABC及其内部.
联立x2+x+2yy==33,. 得A(1,1).
当直线l:y=-m1 x+mz 在y轴 上的截距最大时,目标函数取最大值. 平移直线l,当l过点B时,z有最大值.
因此z=x+my的最大值zmax=12+m2 . 依题意,12+m2 <2(m>1),得1<m<3. 故实数m的取值范围是(1,3).
•【答案】 C
•错因分析:(1)忽视条件m>1,没能准确判 定直线l的斜率范围,导致错求最优解,从而 错得实数m的取值范围.
•【解析】 可行域如图 中阴影部分所示.先画出 直线l0:y=-3x,平移 直线l0,当直线过A点时z =3x+y的值最大,
由xy=-2y-,1=0,得xy==23., ∴A点坐标为(3,2).∴z最大=3×3+2=11.
•【答案】 B
x≥1, 3.在平面直角坐标系中,不等式组 x+y≤0, 表示
•2.解线性规划应用问题的一般步骤是:(1) 分析题意,设出未知量;(2)列出线性约束条 件和目标函数;(3)作出可行域并利用数形结 合求解;(4)作答.

【数学】3.5.1《二元一次不等式(组)所表示的平面区域》课件(新人教B版必修5)

【数学】3.5.1《二元一次不等式(组)所表示的平面区域》课件(新人教B版必修5)

否则应画成实线。
2、画图时应非常准确,否则将得不到正确结果。 3、熟记“直线定界、特殊点定域”方法的内涵。
x+y-1≥0 在平面直角坐标系中,若不等式组x-1≤0 ax-y+1≥0 常数)所表示的平面区域内的面积等于 2,求 a 的值.
[解题过程] 如图可得阴影区域为不等式组
x+y-1≥0 x-1≤0
解:设开设初中班x个,高中班y个。因办学规模 以20~30个班为宜,所以, 20≤x+y≤30 而由于资金限制,26x+54y+2×2x+2×3y≤1200 另外,开设的班级不能为负,则x≥0,y≥0。
把上面四个不等式合在一起,得限制条件用数学关系式表示为
y
20 x+y 30 30 x+2y 40 20 x0 y 0
y
左上方 x-y+1<0
1
x-y+1=0
-1
o
x
(x。,y。) x0>x,y=y0 x0-y0+1> x-y+1
(x,y)
右下方 x-y+1>0
问题:一般地,如何画不等式 AX+BY+C>0表示的平面区域?
(1)二元一次不等式Ax+By+C>0在平面 直角坐标系中表示直线Ax+By+C=0某一侧 所有点组成的平面区域。
(2)由于对直线同一侧的所有点(x,y),把 它代入Ax+By+C,所得实数的符号都相同, 所以只需在此直线的某一侧取一个特殊点 (x0,y0) ,从Ax0+By0+C的正负可以判断出 Ax+By+C>0表示哪一侧的区域。 一般在C≠0时,取原点作为特殊点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 用农药消灭害虫,开始时,效果显著,但 过一段时间后,药效明显下降,是什么原 因使害虫产生了抗药性?
结论二
直线定界,特殊点定域。
例题
例1:画出不等式 x + 4y < 4表示的平面区域
解:(1)直线定界:先画直线x + 4y – 4 = 0(画成虚线)
(2)特殊点定域:取原点(0,0),代入x + 4y - 4, 因为 0 + 4×0 – 4 = -4 < 0
所以,原点在x + 4y – 4 < 0
表示的平面区域是( B )小:⑴ 二元一次不等式表示平面区域: 3、不等直式组线某一侧所有点组成的平面区域。
⑵ 判定方法: 直线定界,特殊点定域。
⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
作业:
作业本
3.3.1二元一次不等式(组)与平面区域
生物普遍存在变异 人们根据自己需要
注意:把直
线画成虚线以 表示区域不包
括边界
不等式x – y > 6表示直线x – y = 6右下方的平面区域;
直线叫做这两个区域的边界。
一般地:
二元一次不等式Ax + By + C>0在平面直角坐标 系中表示直线Ax + By + C = 0某一侧所有点组成 的平面区域。(虚线表示区域不包括边界直线)
3.3.1 二元一次不等式 (组)与平面区域
一、引入:
一家银行的信贷部计划年初投入25 000 000 元用于企业和个人贷款,希望这笔资金至少可带来 30000元的收益,其中从企业贷款中获益12%,从个 人贷款中获益10%.那么,信贷部应刻如何分配资 金呢?
问题:这个问题中存在一些不等关系
应该用什么不等式模型来刻画呢?
• 它们都要吃树叶而树叶不够吃 (生存斗争);
• 它们有颈长和颈短的差异 (遗传变异);
• 颈长的能吃到树叶生存下来, 颈短的却因吃不到树叶而最终 饿死了(适者生存)。
生物普遍存在变异
影响存活与繁殖
生存斗争
适者生存,不适者淘汰
数代选择
适应环境的所需变异被保存
进化,新物种产生
达尔文把这种在生存斗争中,适者生存、 不适者被淘汰的过程,叫做自然选择. 达尔文认为: 自然选择是进化的重要动力和机制.
结论一
二元一次不等式表示相 应直线的某一侧区域
y Ax + By + C = 0
O
x
直线Ax+By+C=0同一侧的所有点(x,y)代 入Ax+By+C所得实数的符号都相同,只 需在直线的某一侧任取一点(x0,y0),根据 Ax+By+C的正负即可判断Ax+By+C>0表 示直线的哪一侧区域,C≠0时,常把原 点作为特殊点
选择合乎要求的变异个体,淘汰其他 数代选择 所需变异被保存
微小变异变成显著变异
培育出新品种
实例:在经常刮大风的海岛上,无
翅或残翅的昆虫特别多
达尔文的自然选择学说如何解释 长颈鹿脖子为什么会变长?
达尔文对长颈鹿进化的解释
• 达尔文认为长颈鹿的进化原因 是:
• 长颈鹿产生的后代超过环境承 受能力(过度繁殖);
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点
c)在直线x – y = 6右下方区域内
的点
b)在直线x – y = 6左上方区域内的点
y
左上方区域
O
6
x
x–y=6
-6
右下方区域
验证:设点P(x,y 1)是直 线x – y = 6上的点,选取点 A(x,y 2),使它的坐标 满足不等式x – y < 6,请完 成下面的表格,
y
0 x-2y=0
x 3x+y-12=0
练习2:
1、不等式x – 2y + 6 > 0表示的区域在直线x – 2y +
6 = 0的( B )
(A)右上方 (B)右下方 (C)左上方 (D)左下方
2、不等式3x + 2y – 6 ≤0表示的平面区域是( D)
练习2:
x 3y 6 0 3、x不等y式组2 0
y x–y=6
O
x
横坐标 x
–3 –2 –1 0 1 2 3
点 P 的纵坐标 y1 - 9 - 8 - 7 - 6 - 5 点 A 的纵坐标 y2 - 8 - 6 - 5 - 3 6
-4 -3 40
思考: (1) 当点A与点P有相同的横 坐标时,它们的纵坐标有什么 关系? y2>y1 (2) 直线x – y = 6左上方的坐 标与不等式x – y < 6有什么关 系? (3) 直线x – y = 6右下方点的 坐标呢?
2、二元一次不等式(组)的解集表示的图形
(1)复习回顾 一元一次不等式(组)的解集所表示的图形
——数轴上的区间。
如:不等式组 xx
3 4
0 0
的解集为数轴上的一个区间(如图)。
-3≤x≤4
思考:在直角坐标系内,二元一次不等式(组)的解集
表示什么图形?
下面研究一个具体的二元一次不等式
x – y < 6 的解集所表示的图形。 作出x – y = 6的图像—— 一条直线
y x–y=6
O
x
结论
在平面直角坐标系中, 以二元一次不等式x – y < 6的解为坐标的点都在 直线x – y = 6的左上方; 反过来,直线x – y = 6左 上方的点的坐标都满足 不等式x – y < 6。
y x–y=6
O
x
结论
不等式x – y < 6表示直线x – y = 6左上方的平面区域;
(1)二元一次不等式: 含有两个未知数,并且未知数的最高次数是1的不等式;
(2)二元一次不等式组: 由几个二元一次不等式组成的不等式组;
(3)二元一次不等式(组)的解集:
满足二元一次不等式(组)的有序实数对(x,y)构成的集合;
(4)二元一次不等式(组)的解集可以看成是直角坐标系 内的点构成的集合。
表示的平面区域内,
y
不等式x + 4y – 4 < 0 表示的区域如图所示。
1
4 x
x+4y―4=0
练习:
(1)画出不等式
4x―3y≤12 表示的平面区域
(2)画出不等式x≥1 表示的平面区域
y 4x―3y-12=0 x
y
x x=1
例题
例2、用平面区域表示不等式组
y < -3x+12
x<2y
的解集。
设用于企业贷款的资金为x元,用于个人贷款的资 金y元。则
x y25000000
(12%)x (10%) y 30000
x0, y0
所以得到分配资金应该满足的条件:
x y 25000000
12x 10 y 3000000
x
0
y 0
新知探究:
1、二元一次不等式和二元一次不等式组的定义
相关文档
最新文档