调频接收机
基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计一、无线调频接收机的原理调频接收机是一种接收调频信号并转换为基带信号的设备,其原理主要包括信号接收、信号解调和信号处理等几个部分。
在信号接收过程中,接收天线接收到调频信号并将其转换为电信号;在信号解调过程中,利用鉴频器和解调器将接收到的信号解调为基带信号;在信号处理过程中,对基带信号进行滤波、放大和解码等处理,最终输出语音、数据等信息。
二、基于Multisim的无线调频接收机设计1. 确定设计参数在进行无线调频接收机的设计前,首先需要确定一些关键的设计参数,包括接收频率、带宽、灵敏度等。
根据设计要求,本文选择接收频率为800MHz,带宽为10kHz,灵敏度为0.5μV。
2. 绘制电路原理图在Multisim软件中,可以通过拖放元件和连线的方式绘制无线调频接收机的电路原理图。
具体包括射频前端、中频放大器、鉴频器、解调器和后端处理等模块。
射频前端包括天线、滤波器和射频放大器;中频放大器包括中频滤波器和中频放大器;鉴频器包括鉴频器和环路滤波器;解调器包括解调放大器和基带滤波器;后端处理包括解码器和输出放大器等。
3. 进行仿真分析在绘制完电路原理图后,可以通过Multisim软件进行仿真分析,验证设计电路的性能和稳定性。
可以对接收灵敏度、信噪比、频率响应等进行仿真测试,并根据仿真结果进行相应的调整和优化。
4. 优化设计电路根据仿真分析的结果,可以对设计电路进行相应的优化,包括调整放大器增益、优化滤波器性能、提高解调灵敏度等。
通过不断地优化设计电路,最终达到设计要求,并且确保接收收率和抗干扰能力得到有效提升。
5. 实现无线调频接收机在完成电路原理图设计和优化后,可以根据Multisim软件进行PCB布局和线路布线,最终实现无线调频接收机的硬件设计。
并通过实际测试,验证设计电路的性能和可靠性,确保其能够稳定地接收和解调调频信号,输出基带信号。
三、实现效果和应用展望通过基于Multisim的无线调频接收机设计,可以实现对无线调频信号的稳定接收和解调,并输出高质量的基带信号。
基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频(FM)接收机是一种用于接收电台发出的调频信号的无线电设备。
在本文中,我们将介绍如何使用Multisim进行无线调频接收机的设计。
首先,我们需要确定调频信号的频率范围。
例如,我们可以选择从88 MHz到108 MHz 的频率范围,这是广播电台的常见频段。
然后,我们需要选择适当的电路元件。
在FM接收机中,至少需要下列元件:天线、放大器、混频器、滤波器和解调器。
天线用于接收调频信号。
一般来说,需要使用一支能够接收指定频率范围内信号的射频天线。
然后,信号被送到放大器进行放大以增强信号质量。
接下来,我们将信号传递到混频器,以将信号转换为中频信号。
这一步骤的目的是使信号的频率下降到能够处理的范围。
在混频器中,我们需要使用一个能够将射频和本振信号混合的二极管。
然后,我们需要使用滤波器来去掉不需要的杂波,只保留中频带宽内的信号。
一般来说,需要使用一个精细的带通滤波器来达到这一目的。
最后,我们需要使用解调器来将频率调制信号转换为基带信号。
解调器需要使用一个专用的芯片来完成该任务。
芯片通常包含一个鉴定器、一个解调器、一个限幅器和一个滤波器。
通过Multisim,我们可以轻松地进行这些设备的设计和调试,以确保它们能够正确运行。
使用Multisim进行电路仿真可以减少实际制造的成本和风险,使我们更快地得到想要的结果。
在设计FM接收机时,还需要考虑其他因素,例如信噪比和灵敏度。
这些因素可通过调整电路参数和增加附加电路来优化。
一旦调试完成,我们就可以将设计转换为实际的PCB 电路板,并进行实际测试和验证。
总之,使用Multisim设计无线调频接收机是一项很有挑战性的任务,但它可以为我们提供一个强大而可靠的工具,以快速轻松地开发出高品质的FM接收机。
基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种用来接收调频信号的设备,它可以将无线电信号转换成声音或者数字信号。
在现代通信系统中,无线调频接收机的设计是非常重要的,它可以用于无线电台、无线通信、广播等领域。
本文将介绍基于Multisim的无线调频接收机设计。
Multisim是一款由美国国家仪器(NI)公司开发的用于电子电路仿真和原型设计的软件。
它提供了丰富的元器件库和强大的仿真功能,可以帮助工程师们进行各种电路设计与验证。
利用Multisim,我们可以设计并验证无线调频接收机的电路,以确保其性能和稳定性。
在设计无线调频接收机时,需要考虑到接收机的频率范围、频率选择、信号放大、解调等多个方面的问题。
接下来,我们将详细介绍基于Multisim的无线调频接收机设计。
我们需要确定无线调频接收机的工作频率范围。
在设计中,我们选择100MHz~500MHz范围内的调频信号。
接着,我们需要设计频率选择器和射频放大器。
频率选择器可以用来滤除非目标频率的信号,而射频放大器可以用来增强目标信号的幅度。
在Multisim中,我们可以利用其丰富的元器件库,选择合适的电感、电容和晶体管等元器件进行设计和仿真。
我们需要设计接收机的中频放大器和解调器。
中频放大器可以用来增强射频信号的幅度,并将其转换成中频信号;解调器可以用来将中频信号解调成原始信号。
在Multisim中,我们可以利用其模拟电路分析模块,对中频放大器和解调器进行仿真和分析,以确保其性能和稳定性。
通过以上设计和仿真,我们可以得到一套完整的无线调频接收机电路设计。
接下来,我们可以将设计结果导出到PCB设计软件中,进行布局和布线,并最终制作出真实的电路原型。
通过不断的调试和优化,我们最终可以得到一个高性能、高稳定性的无线调频接收机。
基于Multisim的无线调频接收机设计可以帮助工程师们快速有效地进行无线调频接收机设计与验证。
通过充分利用Multisim的强大功能和丰富资源,我们可以设计出高性能、高稳定性的无线调频接收机,为现代通信系统的发展做出贡献。
基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种电子设备,用于接收无线电信号,并将其转换为音频信号,在通信、广播和其他应用中广泛应用。
在现代无线通信领域,无线调频接收机已成为必不可少的设备之一。
本文将介绍如何使用Multisim软件设计并模拟一个基本的无线调频接收机。
我们将从理论上讨论无线电接收机的工作原理,并使用Multisim软件进行模拟实现。
1. 无线调频接收机的工作原理无线调频接收机的主要工作原理是将无线电信号从天线中捕获并将其转换为与之同步的局部振荡器信号。
该局部振荡器信号经过混频器和滤波器处理,输出中频信号。
该中频信号经过放大器和解调器处理后,最终输出音频信号。
为了设计无线调频接收机,我们需要将其分为几个基本模块。
这些模块包括:1)射频放大器:在此模块中,我们使用同轴电缆将输入无线电信号传送到接收机中。
然后,它将无线电信号放大,并将其发送到混频器。
2)混频器:在此模块中,我们将输出由射频放大器产生的信号(RF信号)与局部振荡器的输出(LO信号)混合在一起,产生中频信号。
3)中频放大器:中频放大器被设计用来增加中频信号的振幅。
这使得中频信号更容易处理和解调。
4)解调电路:解调器被设计用来将经过放大的中频信号转换为音频信号。
解调器主要将信号的振幅分离并复制到一个新的音频载波上。
5)音频输出电路:这个模块被设计用来将解调后的信号从解调器输出,输出的信号可以连接到扬声器或其他音响设备。
在Multisim模拟前,我们需要确定接收机的一些关键参数。
这些参数包括:1)局部振荡器频率:这是我们将用来混合RF信号的频率,通常在300kHz-1.2GHz之间。
2)射频信号频率:这是我们要接收的无线电信号的频率,可以从天线上接收到。
4)混频器和放大器的增益:这是我们需要使用的两个关键参数,混频器和放大器的增益应设定为满足设计规格的最小值。
根据以上参数和电路设计原理,我们可以开始使用Multisim软件实现无线调频接收机的模拟。
调频接收机设计课程设计说明书

根据接收信号的特性,设计合适的滤波器,滤除带外干扰和噪声,提 高接收信号的信噪比。
电路原理图及PCB设计
01
原理图设计
使用专业的电路设计软件,绘制详细的电路原理图,包括微控制器、射
频前端、模数转换器、滤波器、电源管理等部分的电路连接。
02 03
PCB设计
根据电路原理图,进行PCB布局布线设计,优化电路板性能,减小信号 干扰和损耗。同时,考虑散热、机械强度、可制造性等因素,确保电路 板的稳定性和可靠性。
sizeof(float));
float* demodulated = (float*)malloc(length *
sizeof(float));
float* processed = (float*)malloc(length *
sizeof(float));
程序流程图及代码展示
• // 读取或生成调频信号数据(这里省略具 体实现)
Chapter
调试过程记录
调试前准备
熟悉接收机结构和工作原理,准备必要的测试仪器和工具,如示 波器、信号发生器、频率计等。
调试步骤
按照设计流程逐步进行调试,包括电源电路、本振电路、混频电 路、中放电路、解调电路等各个模块的调试。
调试记录
详细记录每个模块的调试结果,包括波形、幅度、频率等参数, 以便后续分析和优化。
03
硬件设计方案及实现
主要器件选型与参数设置
微控制器
选用高性能、低功耗的STM32F4系列微控制器,具有丰富的外设接 口和强大的处理能力,满足接收机复杂算法和实时性要求。
射频前端
采用高性能的射频芯片,支持宽频带接收,低噪声系数,高线性度, 确保接收信号的准确性和稳定性。
基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种广泛应用于通信领域的设备,它能够通过接收无线电信号并转换成可供人们理解的信息。
在当今日益发展的通信技术中,无线调频接收机的设计变得愈发重要。
本文将介绍一种基于Multisim的无线调频接收机设计。
Multisim是一款由美国国家仪器公司推出的集成电路设计软件,它可以帮助工程师们进行电子电路的设计、仿真和分析。
在本设计中,我们将利用Multisim软件来搭建一个无线调频接收机。
设计的重点是保证接收机的高灵敏度、低噪声和良好的抗干扰性能。
我们要明确无线调频接收机的基本原理。
无线调频接收机通过天线接收到的无线电信号,经过放大、滤波、解调等过程,将信号转换成可供人们理解的信息。
在本设计中,我们将主要关注接收机的前端部分,包括信号的放大和滤波。
接下来,我们将从以下几个方面介绍基于Multisim的无线调频接收机设计:1. 天线和射频放大器2. 射频滤波器3. 中频放大器和检波器4. 输出滤波器和音频放大器首先是天线和射频放大器。
在接收机的前端,天线负责接收到的无线电信号,并将其输入到射频放大器中。
射频放大器起到放大信号的作用,同时也需要具备一定的抗干扰能力。
在Multisim软件中,我们可以选择合适的射频放大器模型,并进行参数配置和性能仿真。
接下来是射频滤波器。
由于天线接收到的信号中可能包含多种频率成分,需要通过滤波器来对信号进行初步的频率分离。
在Multisim中,我们可以设计并调整滤波器的频率响应曲线,以满足接收机对不同频率信号的需求。
接着是中频放大器和检波器。
经过射频滤波器的处理,信号进入中频放大器,进一步放大信号以便后续处理。
随后信号经过检波器解调成基带信号,在Multisim中我们可以模拟中频放大器和检波器的工作过程,并分析其性能指标。
通过以上设计过程,我们可以得到一套基于Multisim的无线调频接收机设计方案。
该设计方案具备高灵敏度、低噪声和良好的抗干扰性能,能够满足无线通信中对接收机性能的要求。
全波段调频接收机

新闻 言论 消费难得一见的高灵敏、高保真全波段调频接收机——PB-0308黑龙江 王秀军 首次试听本机,即被其超高的接收灵敏度、全波段(BL:48~120MHz;BH:120~370MHz;BU:370~870MHz)调频接收、Hi-Fi级的音质效果所折服。
开盖细看,精湛的印板布局,清一色的补品元件,考究的电路板材质,反映出设计者对高灵敏、高保真的理解。
感谢华声电子公司将本人多年梦寐以求的电路变为现实。
此机堪称目前国内难得一见的高灵敏全波段Hi-Fi调频接收机。
整机方框图见图1,电原理图见图2。
一、高频接收、二次变频电路 高频接收部分采用了一致性极好的名牌产品画佳全增补高频头,保证了较高的灵敏度和选择性。
由于高频头输出的31.5MHz伴音中频必须经过二次变频才能与标准的10.7MHz调频中频信号相匹配,故二次变频显得格外重要。
本机没有采用普通的三极管变频混频方式,而是采用美国高性能的专用通信集成电路NE602N。
B2的振荡频率为42.2MHz,与31.5MHz的第一中频B1差出第二中频10.7MHz信号,由IC4⑤脚输出经X201/10.7MHz滤去杂波后,再经一级C9018的放大,再经两级10.7MHz滤波器,选出纯净的中频信号送入中放、鉴频及立体声解码级。
二、中放、解码部分 此部分采用了以三菱M51535P为核心、配合外围元件构成的中放、鉴频及立体声解码电路。
这片高保真芯片最先就是华声电子公司推介给国内读者的,其性能参数十分优良。
M51535P在国内收音解码电路中几乎没有它的踪迹,因为该商品是受日本国限制出口的战略物资。
常见的CXA1238、TA8132、LA1816等的性能均无法与之匹敌。
本机该IC的外围元件尽皆补品,尤其左右声道的元件参数一致性极好,保证了声道之平衡。
10.7MHz信号由(21)脚输入,⑦、⑧脚解出立体声音频信号经一级电压放大后进入音调级。
值得一提的是:IC5的(15)脚为AFC输出,与高频头的AFC脚配合得很好,在调台时有被牵引到位的感觉,一旦调准台,便锁定,不会有逃台现象。
调频接收机电路

新颖的调频接收机电路本文介绍的调频接收机利用超再生调频接收原理,因采用了高增益微型集成电路,故电路简单新颖。
接收效果达到一般调频接收机的水平,同时克服了超再生接收机选择性差、噪声大等缺点,又保持了灵敏度高、耗电少、线路简单和成本低(元件费用不足5元)等优点。
适合电子爱好者制作。
该机的电路原理图如图所示。
由超再生调频接收、FM-AM变换部分、调幅检波及低放电路组成。
调频波的超再生接收,实际上就是将调频波转换成调幅波,同时对调幅波进行包络检波以得到低频信号。
图中的三极管VTl及外围元件组成典型的超再生调频接收电路,并将调频波信号转换成调幅信号以及进行包络检波输出音频信号。
如果直接从R3端取出包络检波后的音频信号进行放大,得到的音频噪声比较大,但使接收机的选择性变差。
因此,这里采用从VT1的发射极通过串联回路中的高频扼流圈上感应到的调幅信号再进行高频放大、检波输出音频信号的方法,以克服上述不足。
当VT1工作时,在高频扼流圈上会形成一个被调频节目调制的调幅信号。
这个信号通过互感器T1耦合到调幅专用接收微型IC1 7642上进行调幅波的解调。
这块集成电路包含了一级高阻输入、三级高频放大及检波输出的全过程,而且增益大于70dB。
检波输出的音频信号由电容C9耦合到三极管VT2进行低频放大,通过耳机插座CZ 输出到负载(耳机)收听广播节目。
高频扼流圈T2作用是防止高频信号与电池及其他部分形成回路而被衰减,但对音频信号却无阻碍作用。
电容C6为小型瓷介微调电容,焊接时要求把动片接在图中的A端,目的是减小调台时人体感应对调谐回路的影响。
高频电感L1采用Φ1.0mm的漆包线在Φ5.0mm的圆棒上绕3圈脱胎而成。
高频扼流互感器T1选用从旧机中拆下的AM-IFT微型中周绕制,把原来绕制在“工”字形磁心上的漆包线拆下,再用ΦO.07mm的高强度漆包线重绕,初级高频扼流部分绕约50圈,次级感应部分绕约150圈后加上调节磁帽及外屏蔽即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:(高频电路设计与制作)实训论文说明书题目:调频接收机院(系):信息与通信学院专业:电子信息工程摘要随着现代社会的快速发展,人们对电子产品的要求越来越高,因而电子产品无论从制作上还是从销售上都要求很高。
要制作一个应用性比较好的电子产品就离不开高频电路,大到超级计算机、小到袖珍计算器,很多电子设备都有高频电路。
高频电路大部分应用于通信领域,信号的发射、传输、接收都离不开高频电路。
通信技术在我们的生活中应用广泛,而我们学的是电子信息工程,有一部分涉及的是通信技术,所以对于这次设计,我选择了超外差调频接收机的设计。
在以前应用最广泛的是调频接收机,随着科学技术的发展,出现了超外差式调频接收机。
所谓超外差,是指将所要接收的电台在调谐电路里调好以后,经过电路本身的作用,就变成另外一个预先确定好的频率,然后再进行放大和检波。
这个固定的频率,是由差频的作用产生的。
如果我们在收音机内制造一个振荡电波(通常称为本机振荡),使它和外来高频调幅信号同时送到一个晶体管内混合,这种工作叫做混频。
由于晶体管的非线性作用导致混频的结果就会产生一个新的频率,这就是外差作用。
采用了这种电路的接收机叫外差式收音机,混频与振荡的工作合称变频。
关键词:高频、调频、接收机AbstractWith the rapid development of modern society, people to the electronic product of the increasingly high demand, so the electronic products in terms of production or sales is demanding. To make an application of the better electronic products is inseparable from the high frequency circuit, the super computer, small to a pocket calculator, a lot of electronic equipment has a high frequency circuit. Most of high frequency circuit is applied to the communication field, signal transmission,transmission, reception is inseparable from the high frequency circuit. Communication technology in our life are widely used, and we learn iselectronic information engineering, part relates to communication technology, so for this design, I chose the superheterodyne FM receiver design. In the past the most widely used is the FM receiver, with the development of science and technology, appeared the superheterodyne FM receiver. The so-called super heterodyne, are to be received by the radio in the tuning circuit tuned circuit itself, after the action, it becomes a predetermined frequency, and then for the amplification and detection. The fixed frequency, by difference frequency effect. If we make an oscillation in radio waves (often referred to as the oscillation ), making it and the external high frequency amplitude-modulated signal at the same time to a transistor hybrid, this work is called mixing. Since the transistor nonlinear effect led to mixed results will generate a new frequency, which is the heterodyne action. Using this circuit receiver called superheterodyne, mixing and oscillation frequency work together.Key words: high frequency, receiver, FM目录引言 (1)1无线电的传播和收音机的基本知识 (1)1.1无线电的传播 (1)1.2收音机的发展 (1)1.3收音机的分类 (2)1.4调频/调幅/全波段收音机 (2)1.4.1调幅收音机 (2)1.4.2调频收音机 (2)1.4.3全波段收音机 (2)1.5调频、调幅、中波、短波介绍 (2)2 电路工作原理 (3)2.1原理框图 (3)2.2电路原理图 (4)3电路原理分析 (4)3.1高频放大电路 (4)3.2混频电路 (5)3.3本振电路 (6)4主要技术指标 (7)4.1工作频率范围 (7)4.2灵敏度 (7)4.3接收性 (8)4.4频率特性 (8)4.5功率输出 (8)5调试及故障排除 (8)5.1收音机的基本调试 (8)5.2中周调整 (8)5.3中频频率调整 (9)5.4统调 (9)6 结论 (9)谢辞 (11)参考文献 (12)引言在本次设计中,其目的是得到一个超外差调频接收机机。
在超外差式调频接收机的设计过程中,应将其分为高频放大、混频、本振、中放、限幅、鉴频、低频放大七个部分。
整个电路的设计必须注意几个方面。
选择性好的级,应尽可能靠近前面,因在干扰及信号都不大的地方把干扰抑制下去,效果最好。
如干扰及信号很大,则由于晶体管的非线性,将产生严重的组合频率及其他非线性失真,这时滤除杂波比较困难。
为此,在高级接收机中,输入电路常采用复杂的高选择电路。
1无线电的传播和收音机的基本知识1.1无线电的传播调幅制无线电广播分为长波、中波和短波三个大波段,分别由相应波段的无线电波传送信号。
我国只有中波和短波两个大波段的无线电广播。
中波广播使用的频段大致为550kHz-1600kHz,主要靠地波传播,也伴有部分天波;短波广播使用的频段约为2MHz-24MHz,主要靠天波传播,近距离内伴有地波。
调频制无线电广播多用超短波(甚高频)无线电波传送信号,使用频率约为88MHz-108MHz,主要靠空间波传送信号。
目前,地面的广播电视分做VHF(甚高频或称米波)和UHF(特高频或称分米波)两个频段。
在我国,VHF频段电视使用的频率范围是48.5MHz-3MHz,划分成1-12频道,UHF 频段使用的频率范围是470MHz-956MHz,划分成:3-68频道,它们基本上都是靠空间波传播的。
1.2收音机的发展民用广播和收音机发明于本世纪初。
近百年来,无线电广播与收音机技术发生了翻天覆地的变化。
广播方式从调幅(AM)广播时代开始,经历了调频(FM)广播、调频立体声(FM STEREO)广播、数字音频广播(DAB)等阶段。
目前,科学家正研究短波段的数字广播(DRM)。
民用广播所使用的频率,经历了长波(LW)、中波(MW)、短波(SW)、超短波调频(FM)、卫星调频广播等阶段;广播的传播距离和覆盖范围也从近距离到利用人造地球卫星进行全球转播等;收音机从矿石收音机、电子管收音机、晶体管收音机、集成电路收音机,到使用微电脑处理器的数字调谐收音机;收音机的基本电路形式、也从直接放大式,到超外差式、多次变频式电路。
收音机的体积也从笨重变小到微型,而音质却越来越好。
1.3收音机的分类市场上常见的收音机,主要有以下几种分类方法:按波段分类可分为:调频/调幅两波段、调频立体声/调幅两波段、调频/中波/短波3-5波段、调频/中波/短波8-12波段、调频立体声/中波/短波8-12波段、电视伴音等收音机。
按电路技术特点可分为:传统超外差式、带数字电子钟及钟控功能(LCD型/LED型/荧光型显示)、模拟调谐/数字显示频率和时间,频率合成式(PLL)数字调谐(数字式、可记忆频率)、采用二次变频技术(高灵敏度和优良选择性)、高灵敏度短波/单边带(SSB 接收机)。
1.4调频/调幅/全波段收音机1.4.1调幅收音机调幅广播利用幅度调制的无线电波(高频载波)传送节目内容,幅度的调制就是原来等幅恒频的高频载波信号的幅度,随着调制信号(音频信号)的幅度而变化。
调幅收音机就是接收这些幅度调制无线电信号,经过解调还原成声波。
1.4.2调频收音机调频广播是利用频率调制的无线电波传送节目内容。
所谓频率调制是原来等幅恒频的高频信号的频率,随着调制信号(音频信号)的幅度而变化,调频收音机就是接收这些频率调制的无线电信号,经过解调还原成声波。
1.4.3全波段收音机全波段收音机,最早期规定为能接收国际无线电委员会规定的频率范围内所有广播信号的收音机,但由于很多米波段都没有电台,所以现在人们按习惯叫带有AM(中波)、FM(调频)、SW(短波覆盖在5.9MHz-21.85MHz范围内的米波段)的收音机为全波段收音机。
1.5调频、调幅、中波、短波介绍在一般的收音机或收录机上都有AM及FM频段,相信大家都以熟悉,这两个波段是供您收听国内广播之用,若收音机上还有SW波段时,除了国内电台之外,您还可以收听国外的电台。
事实上AM及FM指的是无线电学上的两种不同的调制方式。
AM称为调幅,是使载波振幅按照调制信号改变的调制方式。
它保持着高频载波的频率特性,但包络线的形状则和信号波形相似。
调幅波的振幅大小,由调制信号的强度决定。
使载波频率按照调制信号改变的调制方式叫调频。
已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。
已调波的振幅保持不变。
调频波的波形,就像是个被压缩得不均匀的弹簧,调频波用英文字母FM 表示。