定积分的简单应用——求体积

合集下载

北师大版数学高二课件 4.3.2 简单几何体的体积

北师大版数学高二课件 4.3.2 简单几何体的体积

梯形绕x轴旋转一周而成的几何体,则该旋转体的体积为V=
bπ[
a
f(x)]
2dx
.
答案
返回
题型探究
重点突破
题型一 简单旋转几何体的体积
例1 求由y=x3,y=0,x=2所围图形绕x轴旋转的旋转体的体积.

Vx=2πy2dx=2πx6dx=
0
0
πx72
7
0
=1278π.
反思与感悟
解析答案
跟踪训练1 求由曲线y=x2,x=y2围成的图形绕y轴旋转形成的几何体的 体积. 解 x1= y,x2=y2,0≤y≤1,
解析答案
课堂小结 1.简单旋转几何体可以看成一个平面图形绕平面内一条直线旋转而成. 2.利用定积分求体积要合理确定被积函数,然后根据图像确定积分上、 下限,要理解其中蕴含的定积分思想.
返回
本课结束
的几何体.如图所示:
因此 V=a A(x)dx
-a
=πab22a (a2-x2)dx=43πab2. -a
反思与感悟
解析答案
跟踪训练2 连接坐标原点O及点P(h,r)的直线、直线x=h及x轴围成一个 直角三角形.将它绕x轴旋转构成一个底半径为r、高为h的圆锥体.计算这个 圆锥体的体积. 解 直角三角形斜边的直线方程为 y=hrx. 所以所求圆锥体的体积为
第四章 §3 定积分的简单应用
4.3.2 简单几何体的体积
学习 目标
1.通过实例,进一步理解定积分的思想. 2.了解定积分在求旋转体的体积方面的简单应用.
栏目 索引

知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
自主学习
知识点 用定积分表示旋转体的体积 旋转体可以看作是由连续曲线y=f(x)、直线x=a、x=b及x轴所围成的曲边

上课用定积分的应用--简单几何体的体积

上课用定积分的应用--简单几何体的体积

两直线y=c与y=d及y轴所围成的曲边梯形绕y轴旋 转一周所成的旋转体的体积为
V d [( y)]2 dy c
【例1】 给定直角边为1的等腰直角三角形,绕一条直 角边旋转一周,得到一个圆锥体.求它的体积.
分析 在直角坐标系中,直角边为1的等腰直角三 角形可以看成是由直线y=x,x=1以及x轴所围成的 平面图形. 在区间[0,1]内插入n-1个分点,使
a
ln a a
(5) b sin xdx cos x b (6) b cos xdx sin x b
a
a
a
a
2.定积分的性质:
b
(1)
1dx b a
a
(2) abkf (x)dx k ab f (x)dx
b
b
b
(3) a [ f1(x) f2 (x)]dx a f1(x)dx a f2 (x)dx
0 x0 x1 x2 L xi1 xi L xn 1
把这个三角形分割成n个垂直于x轴的小梯形,设第I 个小梯形的宽是△xi=xi-xi-1,i=1,2,…n,这个小梯形 绕x轴旋转一周就得到一个厚度是△xi的小圆台当△xi 很小时,第i个小圆台近似于底面半径为xi的小圆柱, 因此,第i个小圆台的体积近似为
(1)画出所要旋转的平面图形;
(2)确定积分变量的范围,即确定积分的上、下限;
(3)确定旋转体体积的表达式(用定积分表示);
(4)求出定积分,即旋转体的体积。
【例2】 如图,求由抛物线y2=8x(y>0)与直线x+y-6=0 及y=0所围成的图形绕x轴旋转一周所得几何体的体积.
[思路探索] 解答本题可先由解析式求出交点坐标. 把组合体分开来求体积.
V
b

人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件

人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件

[答案]
1 2
2 3
[解析] 曲线y=x 与y=cx 由题意知
1 1 的交点为c ,c2.
2 1 =3.∴c=2.
典例探究学案
不分割型平面图形面积的求解
如图,求曲线y=x2与直线y=2x所围图形的面 积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为一 个三角形与一个曲边三角形面积的差,进而可以用定积分求 出面积.为了确定出积分的上、下限,我们需要求出直线和 抛物线的交点的横坐标.
(1)(2014· 山东理,6)直线y=4x与曲线y=x3在第一象限内 围成的封闭图形的面积为( A.2 2 C.2 ) B.4 2 D.4
(2)由y=-x2与y=x-2围成图形的面积S=________.
9 [答案] (1)D (2)2
[解析] (1)如图所示
y=4x, 由 3 y = x .
[答案] C
) B.gt2 0 1 2 D.6gt0
[解析] 如果变速直线运动的速度为 v=v(t)(v(t)≥0), 那么
b 从时刻 t=a 到 t=b 所经过的路程是 v(t)dt,

a

故应选 C.
2 4.若两曲线y=x 与y=cx (c>0)围成的图形的面积是 3 ,
2 3
则c=________.
[解析]
y=2x, 解方程组 2 y = x ,
得x1=0,x2=2.
故所求图形的面积为 S= 2xdx- x
2 0 2 0
2
2 2 dx=x 0
1 3 4 2 -3x 0 =3.
[方法规律总结] 利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图象. (2)将平面图形分割成曲边梯形,并分清在x轴上方与下方的 部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数和( 定积分为负的部分求面积时要改变符号处理为正),求出面 积.

高中数学同步教学 第4章 §3 定积分的简单应用

高中数学同步教学 第4章 §3 定积分的简单应用

0
0
=π(12x2-15x5)|01=π(12-15)=π×130=130π.
• 4.由曲线y=x2,直线x=1,x=2与x轴所围成的平面图形绕x
31π 5
轴[解旋析转] 一设周所得所旋得转旋体的转体体积的为 体V,积为________.
则 V=2π(x2)2dx=2πx4dx=5πx5|12=315π.
1
1
互动探究学案
命题方向1 ⇨不分割型平面图形面积的求解
• 典例 1 曲线y=x2与直线y=x所围成的封闭图形16 的面积 为____.
• [思路分析] 从图形上可以看出,所求图形的面积可以转化 为一个三角形与一个曲边三角形面积的差,进而可以用定积 分求出面积.为了确定出积分的上、下限,我们需要求出直 线[解和析抛] 物解线方程的组交yy点==xx的,2,横坐标.
第四章 定积分
• 本章知识概述:本章的主要内容是定积分的概念,计算和简 单应用.
• 教科书通过曲边梯形面积问题,变速直线运动物体的路程问 题,变力做功等问题,充分演示了定积分概念产生的背景以 及定积分概念形成过程中的思路.微积分基本定理为我们 处理积分的计算问题提供了有力工具,教科书主要介绍了求 简单图形的面积和求简单旋转体的体积.
1.平面图形的面积 如果函数 y=f(x)在区间[a,b]上连续且恒有 f(x)≥0,那么定积分b f(x)dx 表
a
示由__直__线__x_=__a_,x_=__b_(_a_≠_b_)_,y_=__0_和__曲__线__y_=__f_(_x)_______所围成的曲边梯形的面积. 2.简单几何体的体积
得 x1=0,x2=1. 故所求图形的面积为
S=1xdx-1x2dx
0
0

高中数学第一章导数及其应用1定积分的简单应用定积分在物理中的应用素材

高中数学第一章导数及其应用1定积分的简单应用定积分在物理中的应用素材

定积分在物理中的应用摘要:伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分.微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科.内容主要包括极限、微分学、积分学及其应用.微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分最重要的思想就是用"微元"与”无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。

微积分学是微分学和积分学的总称。

它是一种数学思想,‘无限细分'就是微分,‘无限求和’就是积分。

无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。

微积分堪称是人类智慧最伟大的成就之一.在高中物理中,微积分思想多次发挥了作用.定义:设函数f(x)在[a,b]上有界,在[a,b ]中任意插入若干个分点 a=X0〈X1〈...〈Xn —1<Xn=b 把区间[a ,b ]分成n 个小区间 [X0,X1],..。

[Xn —1,Xn]。

在每个小区间[Xi —1,Xi ]上任取一点ξi(Xi -1≤ξi≤Xi ),作函数值f(ξi )与小区间长度的乘积f(ξi )△Xi ,并作出和()in i ix s ∆=∑=1ξ如果不论对[a,b]怎样分法,也不论在小区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x)在区间[a ,b]上的定积分, 记作: ()dx x f a b⎰即: ()()ini ia bx f I dx x f ∆==∑⎰==11lim ξλ变力沿直线所作的功设物体在连续变力F(x )作用下沿x 轴从x=a 移动到x=b ,力的方向与运动方向平行,求变力所作的功.在[a ,b]上任取子区间[x ,x+dx ],在其上所作的功元素为()dx x F dW =因此变力F (x )在区间[a,b ]上所作的功为()dx x F W b a⎰=例1.在一个带+q 电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a 处移动到b 处(a 〈b ),求电场力所做的功。

定积分的应用研究

定积分的应用研究

特 别, 若
,可得球的体积公式为
(三)利用定积分求平行截面面积已知的立体的体积 例5 一平面经过半径为R的圆柱体的底圆中心,并与底面交成 角 ,计算这平面截圆柱体所得立体的体积.
解 截面面积
体积微元
所求体积:
二、定积分在经济中的应用
(一)利用定积分由变化率求总量
例6已知某产品总产量的变化率为 第5天到第10天产品的总产量。
梯形面积的方法,可以求出旋转体的体积
为体积微元。故所求旋转体的体积为
同 理 可得
由连续曲线
,直线y=c,y=d 及y轴所围成的曲边梯形
绕y 轴旋转 一周所 成的旋 转体的 体积为
例4求 椭 圆
分 别 绕x 轴 与y 轴 旋 转 而 得 的旋 转 体 的 体
积。
解 (1 )由 椭 圆 的方 程

,上半椭圆绕 x轴
(下 转第 293页 )
291
2010年第5期 总第100期
佳木斯教育学院学报
Journal of Jiamusi Education Institute
No.5. 2010 Sum 100
失自我,判断力下降。这个时候要注重对学生进行基本理论、基本 观点的教育,如进行当前的政治经济形势,当前国家关系与我国外 交,社会发展的一般规律等方面教育。宏观的理论认知可以指导微 观生活,这样他们站在一个比较高的角度来看待历史沿革,准确了 解当前社会发展情况,进而形成符合客观实际的、积极向上的形势 与政策观。高年级学生经过一段时间的大学生生活与学习,思想成熟 了许多,大多有着正确的社会认知和价值判断,这个阶段可以采用邀 请校外专家、学者、学校党政领导等开设形势与政策报告会、专题讲 座等形式解读当前形势与政策热点等,满足大学生对当下现实的认知 欲望。此时,形势与政策教育还可以结合社会实践、生产实习、暑期 三下乡等形式加深大学生对社会的了解,实现形势与政策的内化。

北师版高中数学选修2-2课后习题版 第四章 §3 定积分的简单应用

北师版高中数学选修2-2课后习题版 第四章 §3 定积分的简单应用

第四章DISIZHANG定积分§3定积分的简单应用课后篇巩固提升A组1.设f(x)在区间[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成的图形的面积为( )A.∫ba f(x)dx B.|∫f(x)badx|C.∫ba|f(x)|dx D.以上都不对f(x)在区间[a,b]上满足f(x)<0时,∫baf(x)dx<0,排除A;当围成的图形同时存在于x轴上方与下方时,∫baf(x)dx是两图形面积之差,排除B;无论什么情况C都正确.2.下列各阴影部分的面积S不可以用S=∫ba[f(x)-g(x)]dx求出的是( )S=∫ba[f(x)-g(x)]dx的几何意义是求函数f(x)与g(x)之间的阴影部分的面积,必须注意f(x)的图像要在g(x)的图像上方,对照各选项可知,D项中的f(x)的图像不全在g(x)的图像上方.故选D.3.如图,由函数f(x)=e x-e的图像,直线x=2及x轴围成的阴影部分的面积等于( )A.e2-2e-1B.e2-2eC.e 2-e 2D.e2-2e+1S=∫21f(x)dx=∫21(e x-e)dx=(e x-e·x)|12=e2-2e.4.直线y=2x,x=1,x=2与x轴围成的平面图形绕x轴旋转一周得到一个圆台,则该圆台的体积为( )A.28π3B.32π C.4π3D.3πV=∫21π·(2x)2dx=π∫214x2dx=4π·13x3|12=4π3(8-1)=28π3.5.如图所示,在边长为1的正方形OABC中,任取一点P,则点P恰好取自阴影部分的概率为( )A.14B.15C.16D.17{y=√x,y=x,得O(0,0),B(1,1).则S阴影=∫1(√x-x)dx=(23x 32-x 22)|01=23−12=16.故所求概率为S 阴影S 正方形=161=16.6.曲线y=cos x (π2≤x ≤3π2)与x 轴围成的平面图形的面积为 .解析由图可知,曲线y=cosx (π2≤x ≤3π2)与x 轴围成的平面图形的面积S=∫3π2π2cos xdx=-sin xπ23π2=(-sin3π2)−(-sin π2)=2.7.在同一坐标系中,作出曲线xy=1和直线y=x 以及直线y=3的图像如图所示,则阴影部分的面积为 . ∫113(3-1x )dx+∫31(3-x)dx=(3x-lnx)|131+(3x -12x 2)|13=3-(1-ln 13)+(9-12×32)−(3-12)=4-ln3.8.计算由y 2=x,y=x 2所围成图形的面积.,为了确定图形的范围,先求出这两条曲线的交点的横坐标.解方程组{y 2=x ,y =x 2,得出交点的横坐标为x=0或x=1.因此,所求图形的面积S=∫10(√x -x2)dx,又因为(23x 32-13x 3)'=x 12-x 2,所以S=(23x 32-13x 3)|01=23−13=13.9.求由曲线y=x 2+4与直线y=5x,x=0,x=4所围成的平面图形的面积.,如图所示.所求平面图形为图中阴影部分.解方程组{y =x 2+4,y =5x ,得交点为A(1,5),B(4,20).故所求平面图形的面积S=∫1(x 2+4-5x)dx+∫41(5x-x 2-4)dx=(13x 3+4x -52x 2)|01+(52x 2-13x 3-4x)|14=13+4-52+52×42-13×43-4×4-52+13+4=193.10.求抛物线y 2=2x 与直线y=4-x 围成的平面图形的面积.{y 2=2x ,y =4-x得抛物线和直线的交点为(2,2)及(8,-4).方法一:选x 作为积分变量,由图可得S=S A 1+S A 2.在A 1部分:由于抛物线的上部分方程为y=√2x ,下部分方程为y=-√2x ,所以S A 1=∫2[√2x -(-√2x )]dx=2√2∫20x 12dx=2√2·23x 32|02=163.S A 2=∫82[4-x-(-√2x )]dx =(4x -12x 2+2√23x 32)|28=383.所以S=163+383=18.方法二:∵y 2=2x,∴x=12y 2. 由y=4-x.得x=4-y,∴S=∫2-4(4-y -12y 2)dy=(4y -12y 2-16y 3)|-42=18.B 组1.如图,已知曲线y=f(x)与直线y=0,x=-32,x=2围成的图形面积为S 1=1,S 2=3,S 3=32,则∫2-32f(x)dx 等于( )A.112B.12C.-12D.72∫2-32f(x)dx=∫-1-32f(x)dx+∫1-1f(x)dx+∫21f(x)dx=S 1-S 2+S 3=1-3+32=-12.2.设直线y=1与y 轴交于点A,与曲线y=x 3交于点B,O 为原点,记线段OA,AB 及曲线y=x 3围成的区域为Ω.在Ω内随机取一点P,已知点P 取在△OAB 内的概率等于23,则图中阴影部分的面积为( )A.13B.14C.15D.16{y =1,y =x 3,解得{x =1,y =1. 则曲边梯形OAB 的面积为∫1(1-x 3)dx=(x -14x 4) 01=1-14=34.∵在Ω内随机取一个点P,点P 取在△OAB 内的概率等于23, ∴点P 取在阴影部分的概率等于1-23=13,∴图中阴影部分的面积为34×13=14.故选B.3.如图所示,直线y=kx 分抛物线y=x-x 2与x 轴所围成图形为面积相等的两部分,则k 的值为 .y=x-x 2与x 轴两交点横坐标为0,1,∴抛物线与x 轴所围成图形的面积为S=∫1(x-x 2)dx=(x 22-x 33)|01=16,抛物线y=x-x 2与直线y=kx 的两交点横坐标为0,1-k.∴S 2=∫1-k0(x-x 2-kx)dx=(1-k2x 2-x33)|01-k =16(1-k)3.又∵S=16,∴(1-k)3=12.∴k=1-√123=1-√432. 1-√4324.由直线y=x 和曲线y=x 3(x≥0)所围成的平面图形,绕x 轴旋转一周所得旋转体的体积为 .{y =x ,y =x 3(x ≥0),得{x =0,y =0,或{x =1,y =1.故所求体积V=∫1πx 2dx-∫10πx 6dx=π∫10x 2dx-π∫1x 6dx=π(13x 3|01-17x 7|01)=π(13-17)=4π21.5.已知函数f(x)=x 3-x 2+x+1,求其在点(1,2)处的切线与函数g(x)=x 2围成的图形的面积.(1,2)为曲线f(x)=x 3-x 2+x+1上的点,设过点(1,2)处的切线的斜率为k,则k=f'(1)=3×12-2×1+1=2,∴过点(1,2)处的切线方程为y-2=2(x-1),即y=2x.∴y=2x 与函数g(x)=x 2围成的图形如图.由{y =x 2,y =2x可得交点A(2,4). 又S △AOB =12×2×4=4,g(x)=x 2与直线x=2,x 轴围成的区域的面积S=∫20x 2dx=13x3|02=83,∴y=2x 与函数g(x)=x 2围成的图形的面积为S'=S △AOB -S=4-83=43.。

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。

它可以在几何学、物理学中解决积分、面积和容积计算题中应用。

首先,定积分在几何学中的简单应用。

比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。

它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。

它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。

其次,定积分也可以用在物理学中。

比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。

它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。

最后,定积分也可以应用于物理学的温度问题中。

比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。

还可以用它求解温度场、热传导率、热导率等问题。

以上是定积分在几何、物理学中的简单应用。

定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。

只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该几何体的体积V等于所有小圆柱的体积和:
2 2 2
V[ f (xi) xif (X2)X2L f (xn) Xn]
这个问题就是积分问题,则有:
b2b2
Vf (x)dx f (x)dx
aa
归纳:
设旋转体是由连续曲线y f(x)和直线x a,x b及x轴围成的曲边梯形绕x轴旋转
bo
而成,贝U所得到的几何体的体积为Vf2(x)dx
a
2.利用定积分形,它的边界曲线直接决定被积函数
(2)分清端点
(3)确定几何体的构造
(4)利用定积分进行体积计算
3.一个以y轴为中心轴的旋转体的体积
一一b o
若求绕y轴旋转得到的旋转体的体积,则积分变量变为y,其公式为vg2(y)dy
a
类型一:求简单几何体的体积
例1:给定一个边长为a的正方形,绕其一边旋转一周,得到一个几何体,求它的体积
思路:
由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定
积分上、下限,确定被积函数即可求出体积。
解:以正方形的一个顶点为原点,两边所在的直线为x, y轴建立如图所示的平面直角坐标系,
定积分的简单应用
复习:
(1)求曲边梯形面积的方法是什么
(2)定积分的几何意义是什么
(3)微积分基本定理是什么
引入:
我们前面学习了定积分的简单应用一一求面积。求体积问题也是定积分的一个重要应用。
下面我们介绍一些简单旋转几何体体积的求法。
1.简单几何体的体积计算
问题:设由连续曲线y f(x)和直线x a,x b及x轴围成的平面图形(如图甲)绕x轴
旋转一周所得旋转体的体积为V,如何求V
在区间[a,b]内插入n1个分点,使a xo捲X2Lxn!xnb,把曲线
y f(x)(a x b)分割成n个垂直于x轴的“小长条”,如图甲所示。设第i个“小长条”
的宽是x Xixi,i 1,2,L ,n。这个“小长条”绕x轴旋转一周就得到一个厚度是Xi的
小圆片,如图乙所示。当 人很小时,第i个小圆片近似于底面半径为y f (x)的小圆柱。 因此,第i个小圆台的体积Vi近似为Vif2(x)X
相关文档
最新文档